
Tutorial for P-Gen

Mohamed Nassim Seghir

University of Oxford

This is a brief tutorial that covers some basics of P-Gen.

1 Generating simple preconditions

Let us consider the routine memcpy from the string.h library, an implementation
of it is illustrated in Figure 1. This routine copies n bytes from the object pointed
by s2 into the object pointed to by s1. We want to verify that the write access
to the destination memory region does not go beyond the buffer reserved for
the object pointed by s1. As we do not know the upper bound for the memory
region reserved for the destination object (pointed by s1), we express it using
the variable s1 UB which is just used for the verification purpose. This variable
can have any arbitrary value as it is not initialized. The access violation to the
buffer pointed by s1 is expressed by the conditional statement at line 14 which
is the only way to reach the error location ERROR 1. We call P-Gen via the
command

./p-gen –reach –mainproc memcpy –file ../examples/memcpy.c –beyondwp –
precond –noinline –tprover z3

The option reach indicates that we are performing a reachability analysis.
Options mainproc and file specify the procedure and file name respectively. The
most important options here are precond and beyondwp. The first one tells P-Gen
to generate the precondition and the second one is for using the inference-rule-
based refinement mechanism. Finally, noinline is to avoid renaming local variables
of the procedure and tprover is for specifying the theorem prover to use (z3 in
our case).

Figure 2 displays the result of P-Gen after it terminates. It shows, in addition
to some statistics, the inferred precondition which is n − 1 < 0 ∨ −dst UB +
s1 + n − 2 < 0. The first disjunct represents the case where we skip the loop.
The second disjunct can be rewritten as s1 + n− 1 ≤ dst UB, it represents the
constraint that dst UB must fulfill when entering to the loop.

2 Generating quantified preconditions

Let us now consider the procedure strlen, illustrated in Figure 3. This procedure
returns the length of a 0 terminal string. The statement at line 10 specifies the
safe access for each element of the string pointed by s, assuming that s is not
equal to NULL. As in the previous example, here also we use s UB to model the
upper bound for the memory occupied by the object which is pointed by s.

1
2 void ∗ memcpy(void ∗ s1, const void ∗ s2, unsigned int n)
3 {
4 char ∗dst;
5 const char ∗src;
6 // dst UB is just used for verification purpose
7 int dst UB;
8
9 dst = s1;

10 src = s2;
11 while (n > 0)
12 {
13 n = n − 1 ;
14 if (dst > s1 UB) goto ERROR 1;
15 ∗dst++ = ∗src++;
16
17 }
18 return s1;
19
20 goto end;
21 ERROR 1:;
22 end:;

Fig. 1. Program that copies a memory reggion to another memory region.

In this case, the content of the buffer (string) is used to mark its bound (’\0’).
Thus, the content is relevant to the property that we want to verify. This time
we call P-Gen using the command

./p-gen –reach –mainproc strlen –file ../examples/strlen.c –beyondwp –precond
–noinline –tprover z3 –stringabs –dontabsarray –expheap

We can see three new options: stringabs, dontabsarray and expheap. The option
stringabs indicates to P-Gen to abstract string and character constants using
freshly generated identifiers. This is required as we do not have a dedicated
decision procedure. The option expheap is used to explicitly represent the heap as
an array. Finally, dontabsarray is used to avoid abstracting arrays in conditional
statements. As the heap is modeled as an array and it is relevant to the property
we want to verify, it makes sense not to abstract arrays. After calling P-Gen,
we obtain the result displayed in Figure 4. The identifier ABS STR 1 is used to
model the character ’\0’. The heap is explicitly modeled as an array of name
ACS HEAP, hence ACS HEAP[s] models *s. The obtained precondition says that
either s points to the character ’\0’ or the character ’\0’ must be pointed by an
element from the interval [s + 1, s UB].

INFORMATION ABOUT THE COMPUTATION OF UNSAFE STATES

NUMBER OF ITERATIONS: 4

Average predicate number per location: 2

Remain: 3

Nbr Loc: 5

INFORMATION ABOUT THE COMPUTATION OF SAFE STATES

NUMBER OF ITERATIONS: 5

Average predicate number per location: 2

Remain: 2

Nbr Loc: 6

*********** COMPUTED PRECONDITION *********

(n- 1 < 0 || -dst_UB+ s1+ n- 2 < 0)

**

Fig. 2. Result returned by P-Gen for procedure memcpy.

1
2 unsigned int strlen(const char ∗s)
3 {
4 int s UB;
5 p = s;
6
7 while (∗p != ’\0’)
8 {
9 p++;

10 if (p > s UB) goto ERROR 1;
11 }
12 return (size t)(p − s);
13 goto end;
14 ERROR 1:;
15 end:;
16
17 }

Fig. 3. Program that computes the length of a 0 terminal string.

3 Displaying internal information

One can display some additional internal information stored by P-Gen. The
option printcmd allows to display the internal representation of programs as
transition constraints, for the program strcpy we obtain the result in Figure 5.

INFORMATION ABOUT THE COMPUTATION OF UNSAFE STATES

NUMBER OF ITERATIONS: 4

Average predicate number per location: 4

Remain: 0

Nbr Loc: 3

INFORMATION ABOUT THE COMPUTATION OF SAFE STATES

NUMBER OF ITERATIONS: 4

Average predicate number per location: 3

Remain: 2

Nbr Loc: 3

*********** COMPUTED PRECONDITION *********

(-ABS_STR_1+ ACS_HEAP[s] == 0 ||

!FORALL(-ABS_STR_1+ ACS_HEAP[UNI_1] != 0 , UNI_1>= s+ 1 , UNI_1<= s_UB))

**

Fig. 4. Result returned by P-Gen for procedure strlen.

We can also display the abstraction map (location to predicate set) using option

pc== 1 && pc_1== 3 && dst== s1&& src== s2 [][]

pc== 5 && dst<= dst_UB&& pc_1== 3 && dst== dst+ 1 && src== src+ 1 && *dst== *src+ 1 [][]

pc== 3 && n> 0 && pc_1== 5 && n== n- 1 [][]

pc== 3 && n<= 0 && pc_1== 6 [][]

pc== 6 && pc_1== 7 [][]

pc== 11 && pc_1== 7 [][]

pc== 5 && dst> dst_UB&& pc_1== 8 [][]

Fig. 5. List of transition constraints corresponding to program memcpy.

abstmap to get the result shown in Figure 6.

Abstraction map:

location: 1 --> [0,n- 1 >= 0][5,-dst_UB+ s1- 1 >= 0][9,-dst_UB+ s1+ n- 2 >= 0]

location: 2 --> [0,n- 1 >= 0][5,-dst_UB+ s1- 1 >= 0]

location: 3 --> [0,n- 1 >= 0][2,dst- dst_UB- 1 >= 0][10,dst- dst_UB+ n- 2 >= 0]

location: 4 --> [0,n- 1 >= 0][9,-dst_UB+ s1+ n- 2 >= 0]

location: 5 --> [2,dst- dst_UB- 1 >= 0][11,dst- dst_UB+ n- 1 >= 0]

Fig. 6. Abstraction map corresponding to program memcpy.

