Online Space Complexity of Probabilistic Languages


Nathanaël Fijalkow



Logical Foundations of Computer Science, Deerfield Beach, January 6th, 2016

Probabilistic Automata


word read "" 1 0 word read "1" .5 .5 word read "11" .25 .75 word read "110" .625 .375 word read "1101" .3125 .6875
$$P_{\mathcal{A}}(a_1 \cdots a_n) = \frac{a_1}{2^n} + \cdots + \frac{a_n}{2^1}$$

Online Complexity


For a fixed $L \subseteq A^*$,

what is the size of the smallest data structure maintaining the answer to the Boolean query "is the prefix in $L$?"


Karp (67): consider infinite automata, the size is the number of different states after reading $n$ letters

language online complexity
regular constant
$\{w \mid |w|_a = |w|_b\}$ linear
$\{w \mid |w|_a = |w|_b = |w|_c\}$ quadratic
$\{w w \mid w \in A^*\}$ exponential

Myhill-Nerode point of view


The size of the minimal deterministic automaton for $L$ is given by the Myhill-Nerode equivalence classes: $$u \sim v \Longleftrightarrow \forall w, \quad (uw \in L \leftrightarrow vw \in L)$$
Count the number of equivalence classes for $A^{\le n}$.

Theorem: there exists a probabilistic automaton with exponential online complexity!

$$P_{\mathcal{A}}(u \sharp v) = \mathrm{bin}(u) \cdot \mathrm{bin}(v)$$
After reading $u 1 \sharp$ and $u' 1 \sharp$, the two states must be different:
Indeed, there exists $v$ such that $$\begin{cases} \mathrm{bin}(u 1) \cdot \mathrm{bin}(v) < \frac{1}{2} \\ \mathrm{bin}(u' 1) \cdot \mathrm{bin}(v) > \frac{1}{2} \end{cases}$$