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—— Abstract

Labelled Markov processes are probabilistic versions of labelled transition systems. In general, the state
space of a labelled Markov process may be a continuum. Logical characterizations of probabilistic bisim-
ulation and simulation were given by Desharnais et al. These results hold for systems defined on analytic
state spaces and assume that there are countably many labels in the case of bisimulation and finitely many
labels in the case of simulation.

In this paper, we first revisit these results by giving simpler and more streamlined proofs. In particular,
our proof for simulation has the same structure as the one for bisimulation, relying on a new result of a to-
pological nature. This departs from the known proof for this result, which uses domain theory techniques

and falls out of a theory of approximation of Labelled Markov processes.

Both our proofs assume the presence of countably many labels. We investigate the necessity of this as-
sumption, and show that the logical characterization of bisimulation may fail when there are uncountably
many labels. However, with a stronger assumption on the transition functions (continuity instead of just
measurability), we can regain the logical characterization result, for arbitrarily many labels. These new
results arose from a new game-theoretic way of understanding probabilistic simulation and bisimulation.
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1 Introduction

It is now 40 years since the logical characterization of bisimulation was established by van Ben-
them [14] and by Hennessy and Milner [10] for nondeterministic transition systems. It was shown that
two states (or processes) are bisimilar if and only if they satisfied the same formulas of a modal logic
that has come to be called Hennessy-Milner logic. The probabilistic version was studied by Larsen
and Skou [12] who defined probabilistic bisimulation for discrete probabilistic transition systems
and established a logical characterization theorem for discrete systems with a strong finite-branching
assumption.

The analysis of bisimulation was extended to continuous state spaces by Blute et al. [4] and a
logical characterization was shown by Desharnais et al. [6, 7] who proved the result without using any
negative constructs in the logic nor any kind of finite branching assumptions. Their proofs marked a
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departure from the usual combinatorial arguments and used some non-trivial results from measure
theory, specifically using remarkable properties of analytic spaces; see [13] for an expository account.

The fact that the logical characterization result can be established with a purely positive logic was
a surprise at the time. It opened the door to the possibility that there could be a logical characterization
of simulation; we define this precisely below but the idea should be intuitively clear. A clever example,
due to Josée Desharnais [8], showed that this cannot be done with the same logic as the one used
for bisimulation; one needs to have disjunction in the logic. A logical characterization of simulation
was proved [8] for transition systems with finitely many labels. The main contribution of [8] was
approximation theory which included a domain-theoretic treatment; the logical characterization result
fell out of the domain theory results. Desharnais [5] in her thesis gave a proof not using domain
theory in the discrete case. What remained unknown until now is a proof that works for countably
many labels, continuous state spaces and, if possible, not using domain theory. We provide such a
result, extending the characterization for simulation to countably many labels with a proof very much
analogous to the one given for bisimulation.

1.1 Results

1. We give a characterization of bisimulation and simulation in terms of Spoiler/Duplicator games.
This is elementary but interesting: it was the main driver of the intuitions that led to the proofs of
the present paper though, in the end, one does not actually need the games to establish the results.

2. The logical characterization of bisimulation has a proof which has a structure which can be
boiled down to two main ingredients: Dynkin’s 7-A theorem and the Unique Structure Theorem
for analytic spaces. For simulation, it turns out that a completely analogous proof exists. It is
enough to replace the two main ingredients by new positive versions: a positive analogue of the
monotone class theorem and a positive UST, both of which we prove. This simplifies the previous
domain-theoretic proof and clarifies the picture. The small price to pay is to move from analytic
spaces to Polish ones; moving back to analytic is future work.

3. Both proofs rely on the countability of the set of formulas. This is necessary, as an explicit
counterexample shows. But if the transition structure is continuous, logical characterization
results are regained for arbitrary sized sets of labels. As far as we know, this is the first result of
this type for uncountable label spaces.

Both logical characterization proofs, for bisimulation and simulation, have a similar structure and can

even be said to follow the same fop-level strategy as the original Hennessy-Milner proof.

2 Probabilistic systems and logics

We review some definitions and concepts from measure theory and topology. We assume that the
reader is familiar with concepts like: o-algebra, measurable functions, measures, topology and
continuity.

Given a topological space X the o-algebra induced by its open sets (or its closed sets) is called the
Borel algebra; we will always work with Borel algebras of topological spaces. We call them Borel
spaces.

A topological space is said to be separable if it has a countable dense subset. For metric spaces
this is equivalent to having a countable base of open sets. A Polish space is the topological space
underlying a complete separable metric space. Note that a space like (0, 1) which is not complete in
its usual metric is nevertheless Polish, since it can be given a complete metric that produces the same
topology. If X, Y are Polish spaces and f : X — Y is a continuous function then the image f(X) C Y
is an analytic space. The class of analytic spaces is not altered if we allow f to be measurable instead
of continuous or if we take the image of a Borel set instead of all of X.
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» Definition 1. A Markov kernel on a Borel space (X, X) is a function 7 : X X X — [0, 1] such that
for each fixed x € X, the set function 7(x, -) is a sub-probability measure, and for each fixed C € X the
function 7(-, C) is a measurable function.

One interprets 7(x, C) as the probability of the process starting in state x making a transition into one
of the states in C.

» Definition 2. A labelled Markov process (LMP) S with label set (A is a structure (X, X, {1, | a €
A}), where (X, X) is a Borel space and

T, XXZ—[0,1]
is a Markov kernel for each a € A.

A key concept is bisimulation. The following definition is adapted from Larsen and Skou [12] to
deal with measurability issues.

» Definition 3 (Bisimulation). Let S = (X, X, 1) be a labelled Markov process. An equivalence
relation R on X is a bisimulation if whenever xRy, with x,y € X, we have that for all a € A and
every R-closed measurable set C € Z, 7,(x, C) = 7,(y, C). We say that x and y are bisimilar, denoted
x =y, if there exists a bisimulation R such that xRy.

The modal logic £, used in the logical characterization theorem of [7] is generated by the
grammar:

pu=T [ dANG | (a)d

where p ranges over rational numbers between 0 and 1. A state x satisfies the modal formula {a),¢ if
there exists a measurable subset C with every state in C satisfying ¢ and 7,(x, C) > p. Itis easy to
show that the sets defined by formulas [¢]] := {x | x = ¢} are all measurable. We write x =, y to say
that x and y satisfy the same formulas in L.

The logical characterization theorem for probabilistic bisimulation is:

» Theorem 4 ([7]). For any labelled Markov process (X, Z, 1) where (X,X) is analytic and A is
countable, and for any x,y € X, we have that x =, y if and only if x = y. <

For a preorder R on a set X, we say that C C X is R-closed if x € C and xRy implies y € C, for all
x,y € X.

» Definition 5 (Simulation). Let S = (X, X, 7) be a labelled Markov process. An preorder relation R
on X is a simulation if whenever xRy, with x,y € X, we have that for all a € ‘A and every R-closed
measurable set C € Z, 7,(x, C) < 7,(y, C). We say that x is simulated by y, denoted x < y, if there
exists a simulation R such that xRy.

The logic L, extends L, with disjunction:

¢ =T |oND | &V | (a)d.

We write x <\, y to say that every formula in L, satisfied by x is also satisfied by y.
The previous logical characterization theorem for probabilistic simulation is:

» Theorem 6 ([8]). For any labelled Markov process (X, Z, ) where (X, Z) is analytic and A is finite,
and for any x,y € X, we have that x <\, y if and only if x < y. <

Existing proofs of Theorems 4 and 6 span several pages each, and are markedly dissimilar. In
particular, the latter relies on the machinery of domain theory. One of our main contributions is to
provide new, short proofs of both results.
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3 Probabilistic (bi)simulation games

The classical notion of bisimulation and simulation for nondeterministic processes has a simple and
elegant characterization in terms of games. These games, played between two players named Spoiler
(who tries to prove that some two states in a process are not bisimilar) and Duplicator (who claims
the opposite), provide convenient intuitions about the essence of bisimilarity.

To the best of our knowledge, probabilistic bisimulation and simulations have not been charac-
terized by games before. In this section we fill this gap; as we shall see, the relevant games have a
pleasantly simple structure, even in the setting of continuous space processes.

We begin with the case of bisimulation game. As in the classical case, we consider a spoil-
er/duplicator game with two players. Duplicator’s plays are pairs of states that she claims are
bisimilar. Spoiler tries to show that a given pair of states proffered by Duplicator are not bisimilar.
Let S = (X, %, 7) be a labelled Markov process, and x,y € X. The bisimulation game starting from
the position (x, y) alternates between moves of the following kinds:

Spoiler chooses a € A and C € X such that 7,(x, C) # 7,(y, C),

Duplicator answers by choosing x” € C and y’ ¢ C and the game continues from (x’,y’).

A player who cannot make a move at any point loses. Duplicator wins if the game goes on forever.

Note that the only way for Spoiler to win is to choose C = X at some point; otherwise Duplicator
can always choose some x’ and y’ as prescribed. (The only other situation where Duplicator cannot
proceed would be C = 0, but that is not a legal move for Spoiler since always 7,(x, 0) = 7,(y,0) = 0.)
On the other hand, Duplicator can win either by forcing an infinite play or by reaching a position
(x,y) where 7,(x, C) = 7,(y, C) for every C € X.

The intuition behind the game should be clear. Spoiler tries to prove that states x and y are
not bisimilar by showing a label a and a set C, purportedly closed under bisimilarity, such that the
probabilities of a-labelled transitions to C are different for x and y. This difference of probabilities
is checked but not disputed by Duplicator, who instead claims that C, in fact, is not closed under
bisimilarity. She does that by choosing x' € C and y’ ¢ C and claiming that these two are bisimilar;
the game then proceeds in the same fashion.

Before we formally prove the correctness of this game, let us spend a moment to consider what
makes a game-theoretic characterization “elegant”. In our opinion, the classical bisimulation game
for nondeterministic processes is elegant because it allows one to characterize a global property of
behaviours (bisimilarity) in terms of a game whose rules only depend on local considerations. Indeed,
whether a move in the game is legal or not does not depend on bisimilarity or other long-range
properties, but merely on local observations about transition capabilities that cannot be disputed by
either player.

We argue that this criterion of elegance is satisfied by our probabilistic game. One can imagine
the players engaging in a brief experiment with the given Markov process after each move by Spoiler,
to determine that the two transition probabilities involved are indeed different. By performing random
a-transitions from x and y sufficiently many times, Spoiler can demonstrate to Duplicator, with an
arbitrarily high confidence level, that the probabilities of getting to C are different and so that the move
to C is legal for Spoiler. It is important to note, comparing the game to the definition of probabilistic
bisimulation itself, that the legality of a Spoiler’s move does not depend on the set C being actually
closed under bisimilarity; a game with such a condition would not be “elegant”.

The question of how many random transitions are enough to convince Duplicator that a Spoiler’s
move is legal, and hence how much time it takes for Spoiler to win the game if x and y are not
bisimilar, suggests a potentially interesting connection of the bisimulation game to the quantitative
framework of metrics on labelled Markov processes [9]. We leave this for future work.

Back to formal development. Since all infinite plays are won by the same player (Duplicator),
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standard game-theoretic arguments prove that:

» Fact 7. The bisimulation game is determined, i.e., from every position (x,y) either Spoiler has a
winning strategy or Duplicator does. <

From this we infer:

» Theorem 8. The states x and y are bisimilar if and only if Duplicator has a winning strategy from
(x,y).

Proof. For the left-to-right implication, for bisimilar x and y, we construct a winning strategy from
(x,y) for Duplicator. In this strategy, for any move a and C by Spoiler, Duplicator chooses some
arbitrary x” € C and y’ ¢ C such that x” and y are bisimilar. This is always possible: since Spoiler’s
move was legal, and it originated from a pair of bisimilar states, C cannot be closed under bisimilarity.
This strategy is winning for Duplicator since it allows her response to any move by Spoiler, and
Duplicator wins all infinite plays.

For the right-to-left implication, we shall show that the set R of all pairs (x, y) whence Duplicator
has a winning strategy, is a bisimulation. To this end, first we need to show that R is an equivalence
relation. Reflexivity is immediate, since from a position (x, x) Spoiler has no legal moves. For
symmetry, given a winning strategy from (x, y) Duplicator builds a strategy from (y, x) trivially: she
simply replies to any first move by Spoiler as if she would reply to a move from (x, y), and then she
follows the given strategy. For transitivity, assume winning strategies for Duplicator from (x, y) and
(v, z). A winning strategy for (x, z) works as follows: for a legal move a and C from Spoiler, it must
be that 7,(x,C) # 7,(y,C) or 7,(y,C) # 7,(z,C). Depending on which of these inequalities holds,
reply according to the strategy from (x, y) or from (y, z), and then follow that winning strategy.

Now assume towards contradiction that R is not a bisimulation. This means that for some x,y
such that xRy, there exists a letter a in A and an R-closed subset C of X such that 7,(x, C) # 7,(y, C).
Consider a and C as a Spoiler’s move from (x,y). No matter what Duplicator chooses as x” € C and
Yy ¢ C, since C is R-closed we have that not (x’Ry") and, by Fact 7, Spoiler has a winning strategy
from (x’,y"). This forms a winning strategy for Spoiler from (x, y), contradicting the assumption that
XRy. <

Simulation game is defined in a very similar fashion, alternating the following moves:
Spoiler chooses a € A and C € X such that 7,(x, C) > 1,(y, C),
Duplicator answers by choosing x” € C and y’ ¢ C and the game continues from (x’,y’).
Again, a player who cannot make a move at any point loses, and Duplicator wins all infinite plays.
The intuition behind the game is as before, except now Spoiler maintains that his chosen sets C
are $-closed, and Duplicator contradicts that by choosing x' € C and y’ ¢ C and maintaining that
x" < y'. All other considerations remain virtually the same, up to and including:

» Theorem 9. x <y if and only if Duplicator has a winning strategy from (x, y).

» Example 10. We illustrate the simulation game on an example (see Fig. 1). In this Markov process
there is only one label. From the state ¢, the process loops forever. On the other hand, from the state
p1, one can reach the deadlock state p,4 through the path to p, and ps.

We examine the simulation game and how Spoiler can successfully prove to Duplicator that the
state p; does not simulate g. We start the simulation game from (g, p;). A possible first move is
C = {q, p»} since 7(¢,C) = 1 > 7(p;,C) = %, but it allows Duplicator to play (g, p1), back to the
original position. A smarter move is C = {g, p1}, to which Duplicator has several possible answers,
all losing. For instance, if Duplicator plays (g, p4), Spoiler wins immediately by choosing C = X.
Duplicator may survive more steps by playing (g, p2), then (g, p3), before the fatal (g, p4).
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Figure 1 It takes four steps for Spoiler to convince Duplicator that the state p; does not simulate ¢.

4 Logical characterization of bisimulation, revisited

In this section, we give a short proof for the logical characterization of bisimulation, which relies on
two ingredients: the -1 theorem and the Unique Structure Theorem.

4.1 The n-1 Theorem and the Unique Structure Theorem

A m-system is a family of subsets of a set X closed under finite intersections. A A-system is a family
that contains X and is closed under complement and countable disjoint unions. A o-algebra is a
family closed under complement, countable unions and countable intersections. For a family &, let
0(&) denote the least o-algebra that contains &E.

» Theorem 11 (Dynkin’s 7-A theorem, [3]). For any n-system I1 and a A-system A on the same set
X, if 1 C A then o(IT) C A. <

Below, =g is the relation of equivalence up to &, i.e., x =g y if and only if, forevery Y € &, x € Y
iffyeY.

» Theorem 12 (Unique Structure Theorem, [1]). In any analytic space (X, ), for every countable
family & C X such that X € &, every measurable, =g-closed subset of X is an element of o7(E). <

4.2 Logical Characterization

» Theorem 13. For any labelled Markov process (X, 2, T) where (X, ) is analytic and A is countable,
=, is a bisimulation.

Proof. Take some x,y € X and assume that there exists some a € A such that 7,(x, C) # 7,(y, C) for
some =,-closed set C € X. We need to prove that x #, y.

Denote 6 = 7,(x,—) and y = 7,(y, —). If 6(X) > y(X), then pick a rational number p such that
0(X) > p > y(X); it is easy so see that x = {(a), T and y ¢ {a), T, therefore x #, y. The same formula
distinguishes x and y if 6(X) < y(X).

If 6(X) = y(X) then pick any =,-closed C € X such that §(C) # y(C). Define

M={[¢]l | ¢ € La} and  A={YeX|s)=yD)}

It is easy to see that IT is a -system and A is a A-system (in particular, A is closed under complement
since 6(X) = y(X)). Clearly, =;; = =,. Moreover, since there are only countably many formulas, IT is
countable and, by Theorem 12, C € o(II). Since by assumption C ¢ A, we have o(IT) £ A, hence (by
Theorem 11) IT € A. In other words, there exists an £, formula ¢ such that 5([¢]]) # y([#1).
Without loss of generality, assume d([¢])) > y([#]]) and pick p € Q such that 6([¢]) > p >
v([[#]1). We readily obtain x = {(a),¢ and y ¢ {(a),¢, hence x #, y as requested. <
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This easily implies Theorem 4, repeated here:

» Corollary 14. For any labelled Markov process (X, X, T) where (X, X) is analytic and A is countable,
and for any x,y € X, we have that x =, y if and only if x = y.

Proof. The right-to-left implication is an easy induction on the structure of formulas. The left-to-right
implication is immediate by Theorem 13. )

5 Logical characterization of simulation, revisited

Our proof of the logical characterization of simulation is completely analogous to the one for
bisimulation. It is enough to replace the two main ingredients (Theorems 11 and 12) by new ones.

5.1 The Positive Monotone Class Theorem and the Positive Unique
Structure Theorem

A lattice of sets is a family of subsets of a set X closed under finite unions and intersections.! A
monotone class is a family closed under unions of increasing chains and under intersections of
decreasing chains. A o-lattice of sets is a family of sets closed under countable unions and countable
intersections. For a family &, let L(E) denote the least o-lattice of sets that contains &.

» Theorem 15 (Positive Monotone Class Theorem). For any lattice of sets & and any monotone
class M on the same set X, if & C M then L(E) C M.

This result is similar and easier to prove than Theorem 11, and it should be treated as folklore.
Below, Cg is the preorder determined by &, i.e., x Cg y if and only if, forevery Y €e &, x € ¥
implies y € Y.

» Theorem 16 (Positive Unique Structure Theorem). In any Polish space (X, X), for every countable
family & C Z, every nonempty, different from X, measurable and Cg-closed subset of X is an element

of L(E).

This result strengthens Theorem 12, albeit on the restricted domain of Polish spaces. (Extending
it to analytic spaces is future work.) Its proof is also more involved, using ideas similar to the proof of
Lusin’s Separation Theorem for analytic sets (see [11]). The proof was pointed out to us by Roman
Pol.

5.2 The logical characterization

» Theorem 17. For any labelled Markov process (X, 2, T) where (X, £) is Polish and A is countable,
<w Is a simulation.

Proof. Take some x,y € X and assume that there exists some a € A such that 7,(x, C) > 7,(y, C) for
some <\ -closed set C € X. We need to prove that x £, y.

Denote ¢ = 7,(x,—) and y = 7,(y, —). Pick any <\ -closed C € X such that 5(C) > y(C). Then C
cannot be empty, since 6(0) = y(0) = 0. If C = X, pick a rational number p such that 5(X) > p > y(X);
it is easy so see that x = {(a), T and y [£ (a), T, therefore x £\, y.

I A lattice of sets is sometimes called ring of sets. However, in measure theory ring of sets means something else (a

family closed under union and set difference), so we choose a different name.

XX:7
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If C # X, define
E={loll | ¢ € Lin} and M={Y eXZ|o(Y) <y}

It is easy to see that & is a lattice of sets and (by continuity of measure) M is a monotone class.
Clearly, Cg = <\,. Moreover, since there are only countably many formulas, & is countable hence, by
Theorem 16, C € L(E). Since by assumption C ¢ M, we have L(E) £ M, hence (by Theorem 15)
& ¢ M. In other words, there exists a formula ¢ such that 6([¢]]) > y([¢]). Pick p € Q such that
o([l¢l) > p > y([¢1). We readily obtain x = (a),¢ and y I (a),¢, hence x £, y as requested. <

Compared to Theorem 6, the following easy consequence is restricted to Polish spaces but
generalized to countable sets of labels.

» Corollary 18. For any labelled Markov process (X, 2, 1) where (X, X) is Polish and A is countable,
and for any x,y € X, we have that x <\, y if and only if x < y.

Proof. The right-to-left implication is an easy induction on the structure of formulas. The left-to-right
implication is immediate by Theorem 17. <

6 The case of uncountably many labels

Our proofs of the logical characterizations for simulation and bisimulation rely on the assumption
that the set of formulas (and, equivalently, the set of transition labels) is countable. In this section
we investigate the necessity of this assumption. We first observe that indeed if there are uncountably
many labels, then the logical characterization fails in general. However, we show that if the transition
structure is continuous, then the logical characterization holds again, without any assumption on the
set of labels.

6.1 A counterexample

In the classical logical characterization of (bi)similarity for nondeterministic labelled transition
systems [10], one can restrict to a logic with finite conjunction and disjunction only if the systems in
question satisfy a finite branching property called image finiteness: each state can have only finitely
many successors for any given transition label. Since [6, 7] it has been known that this restriction
does not apply to probabilistic systems, where a finitary logic is enough to characterize bisimilarity
on systems with arbitrary (probabilistic) branching.

On the other hand, in the classical nondeterministic setting, once image finiteness is ensured, the
size of the set of transition labels matters very little. Even if infinitely many, or even uncountably
many labels are permitted, a finitary logic (with a correspondingly large set of modal operators) is
enough to characterize (bi)similarity for nondeterministic transition systems labelled with them.

We now show that this is not the case for labelled Markov processes with continuous state
spaces. Specifically, we show an example where the set of labels is uncountable and the logical
characterization fails, even though the space of states is a particularly simple, compact Polish space.

Denote X = {p,q, T} U [0, 1]. We equip X with the smallest o-algebra that makes all Borel sets of
[0, 1] as well as the singletons {p}, {g} and {T} measurable. Denote by u the Lebesgue” probability
measure on [0, 1].

2 We mean the usual measure on [0, 1] which assigns to intervals their length. However this is usually extended to the
Lebesgue o-algebra, i.e., the one obtained by completing the Borel o-algebra with respect to this measure. We are
just using this measure on the Borel sets.
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Figure 2 The two states p and g do not simulate each other, but they satisfy the same formulas of L.

Consider a set of actions A = [0, 1]. Define functions 7, : X X ¥ — [0, 1] for each a € A as
follows:

7(p.C) = u(CNIO0,3])
7(¢,0) = uCnlz 1]
e T) = {1 ifx=a
@ 0 otherwise

The following proposition easily implies that logical characterizations both for bisimulation and
for simulation fail for this labelled Markov process.

» Proposition 19. Neither p nor q simulates the other, but they satisfy the same formulas of L.

Proof. We prove that neither p nor g simulates the other. First, for any x,y in [0, 1], if x # y then
neither of these simulates the other. Indeed, from x, the action a = x leads to T with probability 1 and
leads nowhere from y. It follows that every subset of [0, 1] is <-closed; in particular this applies to
[0, %] and [%, 1]. This implies that neither p nor g simulates the other, because 7,(p, [0, %]) =1 and
74(g, [0, 31) = 0, and vice-versa 7,(p, [5,1]) = 0 and 74(q, [3, 1]) = 1.

To see that p and g satisfy the same formulas, we observe that for every finite subset 8 C A, p
and ¢ do simulate each other (indeed, they are even bisimilar) in the system restricted to labels from
B. The claim easily follows from this, since every formula of £, uses finitely many labels.

So for a finite 8 C A, define a relation R on X to be the least equivalence relation such that pRg
and xRy for each x,y € [0, 1] \ B. We claim that R is a bisimulation on the system restricted to labels
with 8. The only nontrivial case is the pair pRq: every R-closed set C C [0, 1] is either finite or
co-finite, from which it easily follows that 7,(p, C) = 7,(q, C). <

Intuitively, the core of the problem here is the highly non-continuous nature of transitions from
[0, 1], allowing one to observe specific states from that uncountable space. Indeed, as we show in the
following section, the problem disappears and the logical characterizations hold if we assume that the
transition function 7,(-, C) is continuous for each a and C.

6.2 Logical characterizations for continuous transition functions

Given a labelled Markov process (X, X, 7) with labels from a set A, we denote by (X, X, 7g) the same
system restricted to labels from 8 C ‘A.

» Theorem 20. For any labelled Markov process (X, 2, 7) where (X, X) is Polish and such that for
alla € A,C € Z, the function 7,(-, C) is continuous, there exists a countable set B such that the
bisimilarity relation = on (X, X, 1;g) coincides with that on (X, %, 7).

XX:9
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Proof. We will use the fact that, under the above assumptions, X2 is also a Polish space for the
product topology, hence it satisfies the hereditary Lindeldf property: any open cover of a subset of X?
has a countable subcover.

By definition, the bisimilarity relation = on (X, X, 7) is the largest bisimulation. It is standard
to define it as the greatest fixpoint of a certain operator on binary relations on X. For us it will be
convenient to speak in terms of complements, and we consider the complement of ~ as the least
fixpoint of the operator:

O(R) = {(x, y) € X*|Ja € A,3C € T (X* \ R)-closed, s.t. T,(x, C) # T,4(, C)}

Thanks to Tarski’s fixed point theorem, this is obtained by defining a sequence (W,,),, of subsets of X?
indexed by ordinals a: for @ + 1 a successor ordinal and § a limit ordinal, define:

WO = 0
Wit {(r.y) € X2 Ja € A,AC € T (X2 \ Wa)-closed, s.t. 7a(x,C) # 74(3, C) |
W,B = U(t<[3 W(Y'

The complement of ~ on (X, Z, 7) is the union of all W,, for all ordinals a. More specifically, (W,),
form an increasing sequence that reaches a fixpoint at some ordinal y not larger than the cardinality
of P(X?).

Note that all W, are open sets in X2. This is proved by ordinal induction: for a successor ordinal,
W,+1 18 a union of sets of the form

{6 3) € X2 74(x, ) # 143, O)

for some a and C. Such a set is open, since it is the inverse image of the (open) inequality relation on
[0, 1] along the continuous function 7,(-, C).

For each ordinal @ we construct a countable subset B, € A such that W, calculated on (X, X, 75, )
coincides with W, calculated on (X, Z, 7).

For sucessor ordinals, rewrite the definition of W, as:

Wit = U {(r.y) € X* | 3C € T (X* \ Wa)-closed, s.t. 74(x, C) # 74(y, O)}.
aceA

This is a union of open sets. Since X? is hereditary Lindel6f, one can extract a countable subcover of
this union, indexed by some set 8 C A. It is then enough to take B, = B, U B.

For limit ordinals, extract a countable subcover of the union Wg = (J,3 W, and take $B; to be the
union of the B,’s defined for a’s from that subcover.

Now the countable set 8,, where 7 is the ordinal for which W, reaches the least fixpoint of @,
satisfies the desired property. <

The same result holds for simulation:

» Theorem 21. For any labelled Markov process (X, X, 7) where (X, X) is Polish and such that for
alla € A,C € Z, the function 7,(-, C) is continuous, there exists a countable set B such that the
similarity preorder < on (X, Z, 1\g) coincides with that on (X, X, 7).

Proof. Completely analogous to the proof of Theorem 20, but with the operator
O(R) = {(x,y) € X*| Ja € A,3C € T (X* \ R)-closed, s.t. 7,(x,C) > 74(y, C) }
instead. In particular the fact that each W, is open, still holds. <«

The following immediately follows from Theorems 20 and 21 in the light of Corollaries 14 and 18.
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» Corollary 22. For any labelled Markov process (X, 2, T) where (X, X) is Polish and such that for
all a € A,C € %, the function 7,(-, C) is continuous, for any x,y € X,

x=pyifand only if x =y,

x Swyifandonlyif x < y.

7 Conclusions

The results of this paper suggest that we have arrived at a deeper understanding of the interplay
of modal logic and probabilistic transition structure. Variations of the logic can also be used for
logical characterization of bisimulation, for example, with the modal construct and just disjunction
instead of just conjunction, as studied in [2]. The arguments are minor variations of the proofs given
in Section 3sec:bisim. The earlier proof of logical characterization of simulation [8] emerged as a
by-product of the theory of approximation; the proof of the present paper is direct. It is particularly
pleasing that the two logical characterization proofs have the same general shape and also resemble
the overall strategy of the Hennessy-Milner proof.

The game characterization, though elementary, is both pleasing and intriguing. As suggested
earlier, there might be interesting links to metrics and the number of moves it takes for Spoiler to win
a game. The connection between metrics and bisimulation is well understood but it is possible that
via the game one might gain a more quantitative understanding of the numerical significance of the
metric.
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