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Abstract
This paper studies the complexity of languages of finite words using automata theory. To go
beyond the class of regular languages, we consider infinite automata and the notion of state
complexity defined by Karp. We look at alternating automata as introduced by Chandra, Kozen
and Stockmeyer: such machines run independent computations on the word and gather their
answers through boolean combinations.

We devise a lower bound technique relying on boundedly generated lattices of languages,
and give two applications of this technique. The first is a hierarchy theorem, stating that there
are languages of arbitrarily high polynomial alternating state complexity, and the second is a
linear lower bound on the alternating state complexity of the prime numbers written in binary.
This second result strengthens a result of Hartmanis and Shank from 1968, which implies an
exponentially worse lower bound for the same model.
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1 State Complexity

The seminar paper of Karp [10] defines the state complexity of an (infinite) automaton as
a function associating with n the number of states reachable by reading a word of length
at most n. For a function f : N→ N, a language L ⊆ A∗ has state complexity at most f if
there exists an automaton recognising L of state complexity at most f .

For the case of deterministic automata, this notion is fully characterised by the celebrated
Myhill-Nerode theorem [14], which states the existence of a canonical minimal (potentially
infinite) automaton for a given language based on the notion of left quotients. Nevertheless, it
is sometimes complicated to understand the structure of this automaton, as demonstrated by
the case of the language of prime numbers written in binary: a series of papers culminates in
a result of Hartmanis and Shank [9] showing that this language has asymptotically maximal
(i.e., exponential) deterministic state complexity.

In this paper, we initiate the study of alternating state complexity, which uses Karp’s
definition instantiated with (infinite) alternating automata. We first motivate the model
with some examples and later discuss its relevance. Formal definitions are given in the next
section; we stick to intuitive explanations in this introduction.

Consider the language

CountEq3 =
{
w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c

}
,
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23:2 Lower Bounds for Alternating State Complexity

consisting of words having the same number of a’s, b’s and c’s. (We let |w|a denote the
number of letters a in w.) This language is not regular, but we claim that it is recognised by
a deterministic automaton of quadratic state complexity. Indeed, we construct an automaton
whose set of states is Z2, interpreted as two counters. They are initialised to 0 each and
maintain the value (|w|a − |w|b, |w|a − |w|c). To this end, the letter a acts as (+1,+1), the
letter b as (−1, 0), the letter c as (0,−1). The only accepting state is (0, 0). This automaton
is of quadratic state complexity: after reading the word w the automaton is in the state
(|w|a − |w|b, |w|a − |w|c), which means that the set of states reachable by words of length at
most n has size (2n+ 1)2.

Consider now the language

NotEq =
{
u]v | u, v ∈ {0, 1}∗ , u 6= v

}
,

consisting of two words u, v over the alphabet {0, 1}∗ separated by the letter ] such that
u is different from v. One can easily see that this language does not have subexponential
deterministic state complexity: after reading two different words u and u′, any deterministic
automaton recognising NotEq must be in two different states.

However, we claim that it is recognised by a non-deterministic automaton of linear state
complexity. Note that there are three ways to have u 6= v: either v is longer than u, or
v is shorter than u, or there exists a position at which they differ. At the beginning the
automaton guesses which of these three situations occur. We focus on the third possibility
for the informal explanation. The automaton guesses a position in the first word, stores
in the state the position p together with the letter a at this position, and checks whether
the corresponding position in the second word indeed differs. To this end, after reading the
letter ], it decrements the position until reaching 1, and checks whether the letter is indeed
different than the letter stored in the state.

Our third example is the language

Lexicographic =
{
u]v | u, v ∈ {0, 1}∗ , u <lex v

}
,

consisting of two words u, v over the alphabet {0, 1}∗ separated by the letter ] such that u is
lexicographically smaller than v. One can see that this language does not have subexponential
non-deterministic state complexity (we do not substantiate this claim here). However, we
claim that it is recognised by an alternating automaton of linear state complexity.

The notion of alternating (Turing) machines was introduced by Chandra, Kozen and
Stockmeyer [5, 11, 4]. A non-deterministic automaton makes guesses about the word, and the
computation is accepting if there exists a sequence of correct guesses. In other words, these
guesses are disjunctive choices; the alternating model restores the symmetry by introducing
disjunctive and conjunctive choices. Whenever the automaton makes a choice, we say that it
creates independent copies of itself, one for each alternative; if the choice was disjunctive,
the computation is accepted if some copy accepts, and if the choice was conjunctive, the
computation is accepted if all copies accept.

We illustrate this notion by constructing an alternating automaton for Lexicographic.
We unravel the inductive definition of the lexicographic order: u <lex v if, and only if,

(u0 = 0 ∧ v0 = 1) ∨
(
u0 = v0 ∧ u|≥1 <lex v|≥1

)
.

Here u0 is the first letter of u, and u|≥1 is the word u stripped of its first letter. Upon reading
the first letter u0, the automaton makes a disjunctive guess corresponding to the disjunction
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on the definition: either u0 = 0 and v0 = 1, or u0 = v0 and u|≥1 <lex v|≥1. In the latter case,
the automaton makes a further choice, conjunctive this time, checking with one copy that
u0 = v0 and with another that u|≥1 <lex v|≥1.

Alternating automata are succint. For finite automata, it is well-known that de-
terministic, non-deterministic and alternating automata are equivalent. As hinted by the
examples discussed above, this is not true anymore for infinite automata. Some classical
constructions still apply, for instance the powerset construction to determinise automata,
which increases the state complexity exponentially. Similarly one can transform alternating
automata into deterministic ones, increasing the state complexity by a two-fold exponential.
Hence one can see alternating automata as a class of succintly represented deterministic
automata, whose inner boolean structure is made explicit.

Alternating automata are distributed. Another appeal of alternating automata
is as a model of distributed computation. Indeed, in the course of its computation, an
alternating automaton produces copies of itself that can be run independently on a distributed
architecture. The final output is then computed by boolean combinations of the answers of
each copy. This point of view echoes the recent works of Reiter [16], which combines ideas
from distributed algorithms and alternating automata.

Contributions and organisation of the paper. We study alternating state complex-
ity, i.e., the number of states required to recognise a given language using an alternating
automaton. We devise a generic lower bound technique based on boundedly generated lattices
of languages.

We give the basic definitions and show some examples in the remainder of this section.
We describe our lower bound technique in Section 4, and give two applications:

Hierarchy theorem: in Section 5, we prove a hierarchy theorem: for each natural
number ` greater than or equal to 2, there exists a language having alternating state
complexity n` but not n`−ε for any ε > 0.
Prime numbers: in Section 6, we look at the language of prime numbers written in
binary. The works of Hartmanis and Shank culminated in showing that it does not have
subexponential deterministic state complexity [9]. We consider the stronger model of
alternating automata, and first observe that Hartmanis and Shank’s techniques imply
a logarithmic lower bound on the alternating state complexity. Our contribution is to
strengthen this result by showing a linear lower bound, which is thus an exponential
improvement.

2 Definitions

We fix an alphabet A, which is a finite set of letters. A word is a finite sequence of letters
w = w(0)w(1) · · ·w(n − 1), where the w(i) are letters from the alphabet A, i.e., w(i) ∈ A.
We say that w has length n, and write |w| for the length of w. The empty word is ε. We let
A∗ denote the set of all words and A≤n the set of words of length at most n. A language,
typically denoted by L, is a set of words.

For a set E, we let B+(E) denote the set of positive boolean formulae over E, i.e., using
conjunctions and disjunctions. For instance, if E = {p, q, r}, an element of B+(E) is p∧(q∨r).
A conjunctive formula uses only conjunctions, and a disjunctive formula only disjunctions.

I Definition 1 (Alternating Automata [5, 11, 4]). An alternating automaton is given by a
(potentially infinite) set Q of states, an initial state q0 ∈ Q, a transition function δ : Q×A→

CVIT 2016
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B+(Q) and a set of accepting states F ⊆ Q.

We use acceptance games to define the semantics of alternating automata. Consider an
alternating automaton A and an word w, we define the acceptance game GA,w as follows: it
has two players, Prover and Verifier. The Prover claims that the word w should be accepted,
and the Verifier challenges this claim.

The game starts from the initial state q0, and with each letter of w read from left to right,
a state is chosen through the interaction of the two players. If in a state q and reading a
letter a, Prover and Verifier look at the boolean formula δ(q, a); Prover chooses which clause
is satisfied in a disjunction, and Verifier does the same for conjunctions. This leads to a new
state p, from which the computation continues. A play is won by Prover if it ends up in an
accepting state.

The word w is accepted by A if Prover has a winning strategy in the acceptance game
GA,w. The language recognised by A is the set of words accepted by A.

As special cases, an automaton is
non-deterministic if for all q in Q, a in A, δ(q, a) is a disjunctive formula,
universal if for all q in Q, a in A, δ(q, a) is a conjunctive formula,
deterministic if for all q in Q, a in A, δ(q, a) is an atomic formula, i.e., if δ : Q×A→ Q.

I Definition 2 (State Complexity Classes [10]). Let f : N→ N. The language L is in Alt (f)
if there exists an alternating automaton recognising L and a constant C such that for all n
in N:∣∣{q ∈ Q | ∃w ∈ A≤n, it is possible to reach q in the game GA,w

}∣∣ ≤ C · f(n).

Similarly, we define NonDet (f) for non-deterministic automata and Det (f) for determin-
istic automata.

For the sake of succinctness, the acronym SC will be used in lieu of state complexity. We
write f(n) for the function f : n 7→ f(n), so for instance Alt (n) is the class of languages
having linear alternating SC. We say that L has sublinear (respectively subexponential)
alternating SC if it is recognised by an alternating automaton of state complexity at most f ,
where f = o(n) (respectively f = 2o(n)).

We let Reg denote the class of regular languages, i.e., those recognised by finite automata.
Then Det (1) = NonDet (1) = Alt (1) = Reg, i.e., a language has constant SC if, and only if,
it is regular.

We remark that Det (|A|n) is the class of all languages. Indeed, consider a language L,
we construct a deterministic automaton recognising L of exponential state complexity. Its
set of states is A∗, the initial state is ε and the transition function is defined by δ(w, a) = wa.
The set of accepting states is simply L itself. The number of different states reachable by all
words of length at most n is the number of words of length at most n, i.e., |A|

n+1−1
|A|−1 .

It follows that the maximal SC of a language is exponential, and the state complexity
classes are relevant for functions smaller than exponential.

3 Related Works

The definition of state complexity is due to Karp [10], and the first result proved in that
paper is that non-regular languages have at least linear deterministic SC. Hartmanis and
Shank considered the language of prime numbers written in binary, and showed in [9] that it



N. Fijalkow 23:5

does not have subexponential deterministic SC. We pursue this question in this paper by
considering the alternating SC of the prime numbers. Recently, we investigated the SC of
probabilistic automata; we substantiated a claim by Rabin [15], by exhibiting a probabilistic
automaton which does not have subexponential deterministic SC [6].

Three notions share some features with alternating SC. The first is boolean circuits; as
explained in [6], the resemblance is only superficial, as circuits do not process the input
from left to right. For instance, one can observe that the language Parity, which is hard to
compute with a circuit (not in AC0 for instance), is actually a regular language, so trivial
with respect to SC.

The second notion is automaticity; it has been introduced and studied by Shallit and
Breitbart [19]. The automaticity of a language L is the function which associates with n
the size of the smallest automaton which agrees with L on all words of length at most n.
The essential difference is that automaticity is a non-uniform notion, as there is a different
automaton for each n, whereas SC is uniform, as it considers one infinite automaton. For this
reason, the two measures behave completely differently. As an argument, consider a language
L, and define its exponential padding: Pad(L) =

{
u]2

|u| | u ∈ L
}
. It is easy to see that for

every language L, its exponential padding Pad(L) has linear deterministic automaticity. On
the other hand, the SC of L and of Pad(L) are essentially the same.

The third notion is alternating communication complexity, developed by Babai, Frankl
and Simon [3]. In this setting, Alice has an input x in A, Bob an input y in B, and they
want to determine h(x, y) for a given boolean function h : A × B → {0, 1} known by all.
Alice and Bob are referees in a game involving two players, Prover and Verifier, who both
know the two inputs. Prover and Verifier exchange messages, whose conformity to the inputs
is checked by Alice and Bob. The cost of the protocol is the number of bits exchanged.

One can obtain lower bounds for state complexity problems by a classical reduction to
deterministic communication complexity; it it thus tempting to extend this to the alternating
setting. We defer this discussion to Subsection 4.3 as the point we want to make here is that
our lower bound technique will be stronger than the one obtained with this approach.

4 A Lower Bound Technique

In this section, we develop a generic lower bound technique for alternating state complexity.
It is based on the size of generating families for some lattices of languages; we describe it in
Subsection 4.1, and a concrete approach to use it, based on query tables, is developed in
Subsection 4.2. We apply it to an example in Subsection 4.3.

4.1 Boundedly Generated Lattices of Languages
Let L be a language and u a word. The left quotient of L with respect to u is

u−1L = {v | uv ∈ L} .

If u has length at most n, we say that u−1L is a left quotient of L of order n.
The notion of left quotients stems from the notion of left Myhill-Nerode equivalence

relation [14], which allows us to define a canonical minimal deterministic automaton. We
use the notion of left quotients to derive lower bounds for alternating automata.

A lattice of languages is a set of languages closed under union and intersection. Given a
family of languages, the lattice it generates is the smallest lattice containing this family.

CVIT 2016
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I Theorem 3. If L is in Alt (f), then there exists a constant C such that for all n ∈ N,
there exists a family of at most C · f(n) languages whose generated lattice contains all the
left quotients of L of order n.

To some extent, Theorem 3 draws from the classical Myhill-Nerode theorem [14]. However,
since there is no notion of minimal alternating automaton, the situation is more complicated
here. In particular, this suggests that the converse of Theorem 3 may not hold.

Proof. Let A be an alternating automaton recognising L of state complexity at most f .
Fix n. Let Qn denote the set of states reachable by some word of length at most n;

by assumption |Qn| is at most C · f(n) for some constant C. For q in Qn, let L(q) be the
language recognised by A taking q as initial state, and Ln the family of these languages.

We prove by induction over n that all left quotients of L of order n can be obtained as
boolean combinations of languages in Ln.

The case n = 0 is clear, as ε−1L = L = L(q0).
Consider a word w of length n+1, write w = ua. We are interested in w−1L = a−1(u−1L),

so let us start by considering u−1L. By the induction hypothesis, u−1L can be obtained as a
boolean combination of languages in Ln: write u−1L = φ(Ln), meaning that φ is a boolean
formula whose atoms are languages in Ln.

Now consider a−1φ(Ln). Observe that the left quotient operation respects both unions
and intersections, i.e., a−1(L1 ∪ L2) = a−1L1 ∪ a−1L2 and a−1(L1 ∩ L2) = a−1L1 ∩ a−1L2.
It follows that w−1L = a−1(φ(Ln)) = φ(a−1Ln); this notation means that the atoms are
languages of the form a−1M for M in Ln, i.e., a−1L(q) for q in Sn.

To finish the proof, we remark that a−1L(q) can be obtained as a boolean combination
of the languages L(p), where p are the states that appear in δ(q, a). To be more precise,
we introduce the notation ψ(L(·)), on an example: if ψ = p ∧ (r ∨ s), then ψ(L(·)) =
L(p) ∧ (L(r) ∨ L(s)). With this notation, a−1L(q) = δ(a, q)(L(·)). Thus, for q in Qn, we
have that a−1L(q) can be obtained as a boolean combination of languages in Ln+1.

Putting everything together, it implies that w−1L can be obtained as a boolean combina-
tion of languages in Ln+1, finishing the inductive proof. J

4.2 The Query Table Method
I Definition 4 (Query Table). Consider a family of languages L. Given a word w, its profile
with respect to L, or L-profile, is the boolean vector stating whether w belongs to L, for
each L in L. The size of the query table of L is the number of different L-profiles, when
considering all words.

For a language L, its query table of order n is the query table of the left quotients of L
of order n.

The name query table comes from the following image: the query table of L is the infinite
table whose columns are indexed by languages in L and rows by words (so, there are infinitely
many rows). The cell corresponding to a word w and a language L in L is the boolean
indicating whether w is in L. Thus the L-profile of w is the row corresponding to w in the
query table of L.

I Lemma 5. Consider a lattice of languages L generated by k languages. The query table of
L has size at most 2k.

Indeed, there are at most 2k different profiles with respect to L.
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I Theorem 6. Let L in Alt (f). There exists a constant C such that for all n ∈ N, the query
table of L of order n has size at most 2C·f(n).

The proof of Theorem 6 relies on the following lemma.

I Lemma 7. Consider two lattices of languages L andM. IfM⊆ L, then the size of the
query table ofM is smaller than or equal to the size of the query table of L.

Proof. It suffices to observe that the query table ofM is “included” in the query table of
L. More formally, consider in the query table of L the sub-table which consists of columns
corresponding to languages inM: this is the query table ofM. This implies the claim. J

We now prove Theorem 6. Thanks to Theorem 3, the family of left quotients of L of
order n is contained in a lattice generated by a family of size at most C · f(n). It follows
from Lemma 7 that the size of the query table of L of order n is smaller than or equal to
the size of the query table of a lattice generated by at most C · f(n) languages, which by
Lemma 5 is at most 2C·f(n).

4.3 A First Application of the Query Table Method
As a first application of our technique, we exhibit a language which has maximal (i.e.,
exponential) alternating SC. Surprisingly, this language is simple in the sense that it is
context-free and definable in Presburger arithmetic, i.e., in first-order logic with the addition
predicate.

We say that L has subexponential alternating SC if L ∈ Alt (f) for some f such that
f = o(Cn) for all C > 1. Thanks to Theorem 6, to prove that L does not have subexponential
alternating SC, it is enough to exhibit a constant C > 1 such that for infinitely many n, the
query table of the left quotients of L of order n has size at least 2Cn .

I Theorem 8. There exists a language which does not have subexponential alternating SC,
yet is both context-free and definable in Presburger arithmetic.

Proof. Let
L =

{
u]u1]u2] · · · ]uk

∣∣∣∣ u, u1, . . . , uk ∈ {0, 1}∗ ,
∃j ∈ {1, . . . , k} , u = uR

j

}
.

The notation uR stands for the reverse of u: formally, uR = u(n− 1) · · ·u(0).
It is easy to see that L is both context-free and definable in Presburger arithmetic, i.e.,

in first-order logic with the addition predicate (the use of reversed words in the definition of
L is only there to make L context-free).

We show that L does not have subexponential alternating SC. We prove that for all n, the
query table of the left quotients of L of order n has size at least 22n . Thanks to Theorem 6,
this implies the result.

Fix n. Let U be the set of all words u in {0, 1}n. It has cardinality 2n. Consider a
subset S of U . We argue that there exists a word w such that if u is in U , then the following
equivalence holds:

w ∈ u−1L⇐⇒ u ∈ S.

This shows the existence of 22n different profiles with respect to the left quotients of order n,
as claimed.

Let u1, . . . , u|S| be the words in S. Consider

w = ]uR
1 ]u

R
2 ] · · · ]uR

|S|.

The word w clearly satisfies the claim above. J

CVIT 2016
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Comparison to Alternating Communication Complexity. We continue the com-
parison to alternating communication complexity, started in Section 3.

Using folklore ideas, one can show that if L is in Det (f), then the deterministic commu-
nication complexity problem above where Alice gets the first part of the word and Bob the
second part can be solved by exchanging at most log(f) bits. Similarly, one can show that
if L is in Alt (f), then the alternating communication complexity problem above with the
same inputs for Alice and Bob can be solved by exchanging at most f log(f) bits.

However, this gives very loose lower bounds, and our lower bound technique is much
stronger than this approach. Consider the language L above; our lower bound technique
shows that if L is in Alt (f), then f(n) ≥ 2n. We now look at the reduction to alternating
communication complexity; in this problem Alice has a word u of length n as input, Bob has
a word v = u1] · · · ]uk, and they want to determine whether u]v is in L. The best protocol
we can think of uses roughly log(k)+ log(n) bits, as follows: Prover first produces the number
j in {1, . . . , k}, then Verifier enquires about a position i in {1, . . . , n}, and Prover replies
with the letter in this position for both u and uj . At the end of this interaction, Alice and
Bob each check that the declared letter is correct. Since k is at most 2n, this protocol uses
roughly n+ log(n) bits. Assuming we can prove a lower bound matching this upper bound,
this would imply a lower bound on f , namely f(n) log(f(n)) ≥ n+ log(n), from which we
would deduce that f(n) ≥ n

log(n) . This is still exponentially worse than the lower bound we
obtain using our technique, which states that f(n) ≥ 2n.

5 A Hierarchy Theorem for Languages of Polynomial Alternating
State Complexity

I Theorem 9. For each ` ≥ 2, there exists a language L` such that:
L` is in Alt

(
n`
)
,

L` is not in Alt
(
n`−ε

)
for any ε > 0.

Consider the alphabet {0, 1} ∪ {♦, ]}.
Let ` ≥ 2, and

L` =
{
♦pu]u1]u2] · · · ]uk

∣∣∣∣ u, u1, . . . , uk ∈ {0, 1}∗ ,
j ≤ p` and u = uj

}
.

Proof.
The automaton has three consecutive phases:
1. First, a non-deterministic guessing phase while reading ♦p, which passes onto the

second phase a number j in
{

1, . . . , p`
}
.

Formally, the set of states for this phase is N, the initial state is 0 and the transitions
are

δ(0,♦) = 1
δ(k`,♦) =

∨
j∈{1,...,(k+1)`} j

δ(p,♦) = p.

This requires n` state complexity.
2. Second, a universal phase while reading u. For each i in {1, . . . , |u|}, the automaton

launches one copy storing the position i, the letter u(i) and the number j guessed in
the first phase.
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Formally, the set of states for this phase is N× ({0, 1}∪{⊥})×N. The first component
is the length of the word read so far (in this phase), the second component stores the
letter read, where the letter ⊥ stands for undeclared, and the last component is the
number j.
The initial state is (0,⊥, j). The transitions are

δ((q,⊥, j), a) = (q + 1,⊥, j) ∧ (q, a, j)
δ((q, a, j), b) = (q, a, j).

This requires quadratic state complexity.
3. Third, a deterministic phase while reading ]u1]u2] · · · ]uk. It starts from a state of

the form (q, a, j). It checks whether uj(q) = a. The localisation of the uj is achieved
by decrementing the number j by one each time a letter ] is read. While in the
corresponding uj , the localisation of the position q in uj as achieved by decrementing
one position at a time.
This requires quadratic state complexity.

We now prove the lower bound.
We prove that for all n, the size of the query table of L` of order n+ 2 n

` is at least 22n .
Thanks to Theorem 6, this implies that L` is not in Alt

(
n`−ε

)
for any ε > 0.

Fix n. Let U be the set of all words u in {0, 1}n. It has cardinality 2n.
Observe that ♦2

n
` u]u1]u2] · · · ]u2n belongs to L` if, and only if, there exists j in {1, . . . , 2n}

such that u = uj .
Consider any subset S of U , we argue that there exists a word w which satisfies that if u
is in U , then the following equivalence holds:

w ∈
(
♦2

n
` u
)−1

L⇐⇒ u ∈ S.

This shows the existence of 22n different profiles with respect to the left quotients of order
n+ 2 n

` , as claimed.
Let u1, . . . , u|S| be the words in S. Consider

w = ]u1]u2] · · · ]u|S|.

The word w clearly satisfies the claim above.
J

6 The Alternating State Complexity of Prime Numbers

In this section, we give lower bounds on the alternating state complexity of the language of
prime numbers written in binary:

Primes =
{
u ∈ {0, 1}∗ | bin(u) is prime

}
.

By definition bin(w) =
∑

i∈{0,...,n−1} w(i)2i; note that the least significant digit is on the
left.

The complexity of this language has long been investigated; many efforts have been put
in finding upper and lower bounds. In 1976, Miller gave a first conditional polynomial time
algorithm, assuming the generalised Riemann hypothesis [13]. In 2002, Agrawal, Kayal and
Saxena obtained the same results, but non-conditional, i.e., not predicated on unproven
number-theoretic conjectures [1].

CVIT 2016
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The first lower bounds were obtained by Hartmanis and Shank in 1968, who proved
that checking primality requires at least logarithmic deterministic space [8], conditional on
number-theoretic assumptions. It was shown by Hartmanis and Berman in 1976 that if
the number is presented in unary, then logarithmic deterministic space is necessary and
sufficient [7]. The best lower bound we know from circuit complexity is due to Allender, Saks
and Shparlinski: they proved unconditionally in 2001 that Primes is not in AC0[p] for any
prime p [2].

The results above are incomparable to our setting, as we are here interested in state
complexity. The first and only result to date about the SC of Primes is due to Hartmanis
and Shank in 1969:

I Theorem 10 ([9]). The set of prime numbers written in binary does not have subexponential
deterministic state complexity.

Their result is unconditional, and makes use of Dirichlet’s theorem on arithmetic progres-
sions of prime numbers. A related and stronger result has been proved by Shallit [18], which
says proves that the deterministic automaticity of the prime numbers is not subexponential.

Hartmanis and Shank proved the following result.

I Lemma 11 ([9]). Fix n > 1, and consider u and v two different words of length n starting
with a 1. Then the left quotients u−1Primes and v−1Primes are different.

Lemma 11 directly implies Theorem 10 [9]. It also yields a lower bound of n− 1 on the
size of the query table of Primes of order n. Thus, together with Theorem 6, this proves
that Primes does not have sublogarithmic alternating SC.

I Corollary 12. The set of prime numbers written in binary does not have sublogarithmic
alternating state complexity.

Our contribution in this section is to extend this result by showing that Primes does not
have sublinear alternating SC, which is an exponential improvement.

I Theorem 13. The set of prime numbers written in binary does not have sublinear altern-
ating state complexity.

Our result is unconditional, but it relies on the following advanced theorem from number
theory, which can be derived from the results obtained by Maier and Pomerance [12]. Note
that their results are more general; we state a simple corollary fitting our needs. Simply put,
this result says that in any (reasonable) arithmetic progression and for any d, there exists a
prime number in this progression at distance at least d from all other prime numbers.

I Theorem 14 ([12]). For every arithmetic progression a+ bN such that a and b are coprime,
for every N , there exists a number k such that p = a + b · k is the only prime number in
[p−N, p+N ].

We proceed to the proof of Theorem 13.

Proof. We show that for all n > 1, the query table of Primes of order n has size at least
2n−1. Thanks to Theorem 6, this implies the result.

Fix n > 1. Let U be the set of all words u of length n starting with a 1. Equivalently, we
see U as a set of numbers; it contains all the odd numbers smaller than 2n. It has cardinality
2n−1.
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We argue that for all u in U , there exists a word w such that for all v in U , w is in
v−1Primes if, and only if, u = v. In other words the profile of w is 0 everywhere but on
the column u−1Primes. Let u in U ; write a = bin(u). Consider the arithmetic progression
a+ 2nN; note that a and 2n are coprime. Thanks to Theorem 14, for N = 2n, there exists a
number k such that p = a+ 2n · k is the only prime number in [p−N, p+N ]. Let w be a
word such that bin(w) = k. We show that for all v in U , we have the following equivalence:
w is in v−1Primes if, and only if, u = v.

Indeed, bin(vw) = bin(v) + 2n · bin(w). Observe that

|bin(vw)− bin(uw)| = |bin(v)− bin(u)| < 2n.

Since p is the only prime number in [p− 2n, p+ 2n], the equivalence follows.
We constructed 2n−1 words each having a different profile, implying the claimed lower

bound. J

Theorem 13 proves a linear lower bound on the alternating SC of Primes. We do not
know of any non-trivial upper bound, and believe that there are none, meaning that Primes
does not have subexponential alternating SC.

An evidence for this is the following probabilistic argument. Consider the distribution of
languages over {0, 1}∗ such that a word u in thrown into the language with probability 1

|u| .
It is a common (yet flawed) assumption that the prime numbers satisfy this distribution,
as witnessed for instance by the prime number theorem. One can show that with high
probability such a language does not have subexponential alternating SC, the reason being
that two different words are very likely to induce different profiles in the query table. Thus
it is reasonable to expect that Primes does not have subexponential alternating SC.

We dwell on the possibility of proving stronger lower bounds for the alternating SC of
Primes. Theorem 14 fleshes out the sparsity of prime numbers: it constructs isolated prime
numbers in any arithmetic progression, and allows us to show that the query table of Primes
contains all profiles with all but one boolean value set to false.

To populate the query table of Primes further, one needs results witnessing the density
of prime numbers, i.e., to prove the existence of clusters of prime numbers. This is in essence
the contents of the Twin Prime conjecture, or more generally of Dickson’s conjecture, which
are both long-standing open problems in number theory, suggesting that proving better lower
bounds is a very challenging objective. Dickson’s conjecture reads (we use the equivalent
statement given by Ribenboim in [17], called D1):

I Conjecture 1 (Dickson’s Conjecture). Fix b and S = {1 ≤ a1 < · · · < as < b} such that there
exists no prime number p which divides

∏
a∈S(b · k + a) for every k in N. Then there exists

a number k such that b · k + a1, b · k + a2, . . . , b · k + as are consecutive prime numbers.

I Theorem 15. Assuming Conjecture 1 holds true, the set of prime numbers written in
binary does not have subexponential alternating state complexity.

Proof. We show that for infinitely many n > 1, the query table of Primes of order n has
size doubly-exponential in n. Thanks to Theorem 6, this implies the result.

Fix n > 1. As above, let U be the set of all words u of length n starting with a 1, i.e.,
odd numbers. For a subset S = {1 ≤ a1 < · · · < as < b} of U , let (♦) denote the property
that there exists no prime number p which divides

∏
a∈S(b · k + a) for every k in N.

Let S be a subset of U satisfying (♦). Thanks to Conjecture 1, there exists a number k
such that for a1 ≤ a ≤ as, the number 2n · k + a is prime if, and only if, a is in S. Let w be
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a word such that bin(w) = k. It clearly satisfies the condition above. In other words the
profile of w for the columns between a1 and as is 1 on the columns corresponding to S, and
0 everywhere else. For each subset S satisfying (♦) with the same extremal elements (a1 and
as) we constructed a word such that these words have pairwise different profiles.

To finish the proof, we need to explain why this induces doubly-exponentially many
different profiles. For any n, the set S of odd numbers a ∈ U such that 2n + a is a prime
number satisfies (♦). This follows from the remark that no prime number can divide both∏

a∈S a and
∏

a∈S(2n + a). Thanks to the prime number theorem estimating the proportion
of prime numbers, we know that for infinitely many n the set S contains a number a1 smaller
than 2n−2 and a number as larger than 2n − 2n−2. Now, each subset of S gives rise to a
different profile, which yields doubly-exponentially many of them. J

Conclusion

We have developed a generic lower bound technique for alternating state complexity, and
applied it to two problems. The first result is to give languages of arbitrary high polynomial
alternating state complexity. The second result is to give lower bounds on the alternating
state complexity of the language of prime numbers; we show that it is not sublinear, which
is an exponential improvement over the previous result. However, the exact complexity is
left open; we conjecture that it is not subexponential, but obtaining this result may require
major advances in number theory.
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