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Abstract
Tree-based routing is an energy-efficient technique for

evaluating aggregate queries in sensor networks, since it
enables partial aggregation of results in their way to the
root. Tree construction is currently performed using simple
flooding algorithms, data-centric reinforcement strategies or
energy-aware route selection schemes.

This paper presents a query-driven approach to routing
and processing continuous aggregate queries in sensor net-
works. Given a query workload and a special-purpose gate-
way node where results are expected, the query optimizer
exploits query correlations in order to generate an energy-
efficient distributed evaluation plan. The proposed opti-
mization algorithms identify common query sub-aggregates,
and propose common routing structures to share the sub-
aggregates at an early stage. Moreover, they avoid rout-
ing sub-aggregates of the same query through long-disjoint
paths, thus further reducing the communication cost of result
propagation. The proposed algorithms are fully-distributed,
and are shown to offer significant communication savings
compared to existing tree-based approaches. A thorough
experimental evaluation shows the benefits of the proposed
techniques both in real and simulated sensor networks, for a
variety of query workloads and network topologies.

1 Introduction
Recent advances in micro-electro-mechanical systems

(MEMS) have enabled the inexpensive production and de-
ployment of nodes with communication, computation, stor-
age and sensing capabilities. Sensor nodes can be deployed
in large areas to monitor the ambient environment, and they
communicate their readings to one or more basestations (re-
ferred to as gateways) in a wireless multihop manner. Sensor
network applications range from habitat monitoring, to secu-
rity, surveillance and emergency scenarios. Sensors are also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

envisaged to play an important role in industry, by providing
asset management services and product tracking.

In most of the aforementioned application scenarios, the
typical way of extracting information from a sensor net-
work is to disseminate declarative aggregate queries into the
network, asking nodes to periodically monitor the environ-
ment, and return aggregate results to the gateway in regular
rounds. An example of such long-running queries is “select
avg(temperature) from Sensors where loc in Region every 10
min”.

Since nodes are battery-powered, energy preservation is a
major consideration in system design, as it directly impacts
the lifetime of the network. Recent studies have shown that
radio communication is significantly more expensive than
computation or sensing in most existing sensor node plat-
forms. Hence, the main consideration in designing query
processing algorithms is to minimize the communication
overhead of forwarding query results from the sources to the
gateway node. The cost of disseminating query information
into the network is assumed to have a secondary role for two
reasons: Firstly, it is realistic to assume that the gateway is
equipped with a long-range radio that is able to broadcast
query requests to the entire network. The gateway accumu-
lates queries for a short duration and sends them together
for evaluation during an interval dedicated for query dissem-
ination. During that interval, nodes pause other activities to
avoid causing interference and loss of query request mes-
sages. Secondly, in the case of long-running queries, query
dissemination occurs once, whereas result propagation oc-
curs repeatedly at regular rounds. Moreover, many monitor-
ing scenarios apply a pure push model, in which nodes are
programmed to proactively send specific information to the
gateway. The communication cost of result propagation thus
dominates the communication cost of query dissemination.

Tree-based routing has been proposed as an energy-
efficient mechanism for processing aggregate queries in sen-
sor networks [10, 12]. Tree construction is performed using
simple flooding algorithms [12], data-centric reinforcement
strategies [10] or energy-aware route selection schemes [23,
26]. After a tree is constructed, sensor nodes forward their
readings along the paths of the tree, evaluating partial query
results at intermediate nodes. The aforementioned research
focused on processing a single aggregate query given a rout-
ing tree; the tree is generated using a tree selection scheme
and is thereafter used for result propagation. More recent re-



search has focused on optimizing multiple aggregate queries
given a routing tree [21]. Query commonalities are taken
into account to reduce the communication cost of result prop-
agation, but without making any attempt to select suitable
tree routes [21].

Unlike previous approaches, this paper considers the
more general problem of multi-query optimization lifting the
assumption of an existing aggregation tree. The objective is
to find efficient routes that minimize the communication cost
of executing multiple aggregate queries, by studying the in-
terplay between the processing and routing aspects of query
evaluation. Unlike previous work, there is no limitation for
the selected routes to form a tree structure. The only re-
quirement is that the optimizer must operate in a distributed
manner, and should scale gracefully with the network size.
In summary, the contributions of this paper are as follows:

• A demonstration of the interplay between the process-
ing and routing aspects of single- and multi-query opti-
mization (Section 2)

• A formal definition of the multi-query optimization
problem for aggregate queries (Section 3), which lifts
the assumption of a communication tree used in previ-
ous work [10, 12, 21].

• Complexity results for the routing and processing as-
pects of multi-query optimization (Section 4 and Ap-
pendix A).

• Two novel heuristic algorithms, named SegmentTo-
Gateway (STG) and SegmentToSegment (STS) for op-
timizing multiple aggregate queries (Section 5). Ex-
isting query evaluation algorithms use tree routes con-
structed independent of the query workload. Given a
tree, they focus on in-network partial processing of one
query [12, 10] or multiple queries [21]. STG and STS
are the first algorithms that attempt to select suitable
routes for a workload of multiple queries, and carefully
interweave routing and processing decisions in the op-
timization process.

• A rich set of experimental results that compare the per-
formance of the proposed algorithms with the most
efficient existing algorithm for multi-query optimiza-
tion [21] (Section 6). The benefits of STG and STS
are demonstrated under a variety of query workloads
and network topologies, both in terms of network-wide
communication cost and in terms of local communica-
tion cost in the critical area around the gateway.

2 Illustrative examples
The potential advantages of carefully selecting a rout-

ing and processing plan for executing aggregate queries are
shown in the following examples. Figure 1 shows an exam-
ple of processing a single aggregate query, which asks for
the sum of all readings in the dotted rectangular area. No-
tice that a total number of 15 messages are sent along the left
minimum-hop tree of Figure 1, whereas only 6 messages are
forwarded along the carefully selected right tree of the same
figure. The right routing tree is better not only in terms of to-
tal communication cost, but also in terms of communication
cost in the critical area around the gateway. Informally, the

Figure 1. Example with one query

benefit of the second plan is that it aggregates all readings
of a query early and avoids sending different subaggregates
through disjoint paths.

Figure 2 illustrates the benefits of building a suitable exe-
cution plan in the case of processing multiple count queries.
For ease of understanding the graphs also include node ids
and messages forwarded through network links. Messages
have the format v(q1, . . . ,qn), which denotes that value v
contributes to queries q1, . . . ,qn. The left plan does not ex-
ploit query commonalities, and therefore fails to aggregate
together readings (of nodes 8 and 9) within the intersection
area. The middle plan incurs smaller communication cost,
because it exploits query commonalities, but still forwards
the subaggregate of the intersection area separately all the
way to the gateway. This behavior is similar to the first
heuristic proposed in this paper called SegmentToGateway
(STG). The right plan has optimal behavior because it ex-
ploits query commonalities and it avoids sending partial ag-
gregates through long disjoint paths. Notice that the optimal
plan does not follow a tree structure, as node 8 sends the par-
tial aggregate of the intersection area to two parents. The in-
tersection partial aggregate is thus merged immediately with
the other two query subaggregates and, eventually, only two
partial results are sent to the gateway. This would be the
plan identified by the second proposed algorithm, called Seg-
mentToSegment (STS).

Although the examples above use a grid topology, both
STG and STS are designed to work well for random topolo-
gies with potential empty areas (or holes). The two algo-
rithms will be explained in detail in Section 5 and they will
be compared with the existing approach of randomly choos-
ing a minimum hop tree.

3 Problem definition
Sensor deployment: Let us consider a set of sensor nodes
S = {s1, . . . ,sn} located at positions {(x1,y1), . . . , (xn,yn)}
respectively. Two nodes capable of bi-directional wireless
communication are referred to as neighbors. Every node
knows its location, as well as the identifiers and locations
of its neighbors.
Query workload: We first define a general class of ag-
gregate queries, and then focus on a subclass that is par-
ticularly useful for many sensor network applications. The
general class includes queries of the form aggr(S′), where
S′ ⊆ S and aggr is a summary aggregate function (e.g.
sum,count,avg,max,min) [12]. A commonly used sub-
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Figure 2. Example with two queries: (i) the left plan is based on a randomly selected tree, (ii) the middle plan is the
output of STG, and (iii) the right plan is the output of STS.

class of aggregate queries consists of spatial range queries
(SRQs); SRQs evaluate the aggregate aggr of all sen-
sors in a rectangular area. They are denoted by a tuple
(aggr,x0,y0,xdim,ydim), where x0 and y0 denote the bot-
tom left coordinates of the rectangular area and xdim and
ydim denote the area’s x and y dimensions respectively. Let
Q = [q1, . . . ,qm] be the vector of SRQ queries that have been
gathered for execution at the gateway G ∈ S. Queries that
evaluate the same aggregate function over different sensor
sets (or regions) are grouped together for periodic evaluation
for a large number of rounds. Each node knows the identi-
fiers (qi) and descriptions of queries that cover itself and its
neighbors.
Computation: Nodes can process values with negligible
cost. A node is aware of its own sensor value, as well as
the partially processed values received from its neighbors.
We refer to these values as input values. A node processes
the input values taking into account how they contribute to
the query results, and converts them into output values. The
contribution of a value (either input or output) to the query
results is referred to as semantics. In this paper, the propaga-
tion of data across an edge will be represented as a directed
edge, labeled with the pair (value, semantics). For unifor-
mity, the generation of a reading locally at a node is also
represented as a directed edge (pointing to the node, but with
a dangling starting point). Such dangling edges are referred
to as initial directed edges and will be drawn in bold.

Let ui be the sensor reading generated locally at a node
si. The semantics of ui consists of the set of queries that ac-
cess the particular node, and is represented as a bit vector of
size m (equal to the number of queries). The j-th entry of
the vector is 1, if query q j accesses node si, and is 0 other-
wise. Vectors that determine the contribution of a value to
the queries are referred to as coefficient vectors (CVs). For
example, in the evaluation plan depicted in figure 3, the ini-
tial directed edge (dangling edge in bold) of node s2, which
holds information about the locally generated reading, is la-
beled (1, [110]) to denote that the local sensor value 1 con-
tributes to the queries q1 and q2, and does not contribute to
the value of q3. The reader should note that the result of
a query q j must be equal to the aggregate of all values of
initial directed edges factored by their j-th coefficients, i.e.
Result(q j) = aggrn

i=1(ui ∗CVui [ j]), where n is the number of
sensor nodes.
Communication: As the initial (value,semantics) pairs are

pushed towards the gateway node, they can be partially pro-
cessed at intermediate nodes through which they are routed.
The intermediate values are also annotated with coefficient
vectors denoting their contribution to the final query results.
In a candidate plan, (i) each output (value,semantics) pair of
a node is computable as some function of the input pairs; and
(ii) it should be possible to evaluate all query results based
on the gateway’s input pairs.

As queries are evaluated periodically over multiple
rounds, the propagated values can potentially change at every
round. Depending on whether we also allow the semantics
of these values to change, we distinguish two different mod-
els of value propagation: static and dynamic. In the static
model, the semantics remains unchanged at each edge, and
it is propagated through the directed edge only once, as op-
posed to the corresponding value, which is propagated at ev-
ery round. In the dynamic model, values must always be
annotated with their semantics, to reflect changes due to net-
work dynamics or variable sensor updates.

The assumption in this paper is a dynamic model in which
a constant number of bits is dedicated to storing the seman-
tics (CV - Coefficient Vector) of a value. For scalability, a
node can use CVs of variable length to mark only queries
affected by the values forwarded through the node. For sim-
plicity, however, we consider a fixed CV length (equal to the
number of queries m) for all nodes, and defer the study of
compressing CVs to future work.
Content Preservation Principle: Let InAnnot =
[(v1,CVv1), . . . ,(vk,CVvk)] be the labels of the input
edges and OutAnnot = [(v′1,CVv′1

), . . . ,(v′`,CVv′`
)] be the

labels of the output edges of a sensor node. In any query
execution plan, there should be no loss of information as
data is routed through a node. Informally, the result of a
query when evaluated based on the input edges must be
equal to its result based on the output edges. Formally,
∀ j = 1, . . . ,m, aggrk

i=1(vi ∗CVvi [ j]) = aggr`
i=1(v

′
i ∗CVv′i

[ j]).

We call aggrk
i=1(vi ∗CVvi [ j]) the projection of query q j onto

[(v1,CVv1), . . . ,(vk,CVvk)]. The projection of a query onto
the input edges of a node must be equal to its projection onto
the output edges. This principle is satisfied in the network
of Figure 3.
THEOREM 1. If every node in the graph satisfies the con-
tent preservation principle except for the gateway, then the
values of all queries in the workload are given by the an-
notated input edges of the gateway node. More specifi-



cally, if the gateway has k input edges labeled with the
pairs (v1,CVv1), . . . ,(vk,CVvk), then the value of a query q j is
Result(q j) = aggrk

i=1(vi ∗CVvi [ j]). The proof is omitted for
space reasons1.
Optimization goal: Based on the observation about content
preservation, the problem at hand is defined as follows: Start
with a graph that consists of all sensor nodes and one di-
rected dangling edge per node, carrying its source value.
Minimize the number of directed edges that we need to add
in the graph (excluding the initial dangling edges) such that
the content preservation principle is satisfied at each node.

4 Processing and Routing: Complexity
The previous definition reveals two important aspects of

the problem, processing and routing, and it suggests a strong
interaction between the two. Regarding the processing as-
pect, every node with given input (value,CV) pairs must de-
cide how to select output (value,CV) pairs whilst satisfying
the content preservation property. The goal is to minimize
the number of directed edges overall in the graph. This does
not mean that we must necessarily minimize the number of
output edges at every node. For example, node s8 in Figure 5
selects more output edges than input edges in the optimal so-
lution (counting input edges with distinct CVs). Regarding
the routing aspect, each node with given output (value,CV)
pairs must decide where to send them, i.e. where to direct
the corresponding output edges.

Appendix A includes complexity results about the pro-
cessing and routing aspects, when the two aspects are viewed
independently, and ignoring their interaction. It summarizes
the previous result that, given fixed tree routes, the pro-
cessing aspect has polynomial cost for algebraic aggregate
(sum, avg and count) queries, but is NP-hard for min (max)
queries [21]. In addition, it presents a new proof that the
routing aspect is NP-hard for both classes of aggregates. The
problem of jointly making processing and routing decisions
to minimize communication cost is therefore also NP-hard.

5 Algorithms
Given the problem complexity, the next step is to study

the existing approach for processing aggregate queries, and
attempt to improve its performance by proposing two novel
energy-efficient algorithms. All three algorithms consist of
two phases: (i) a network configuration phase and (ii) a result
propagation phase. The role of the network configuration
phase is not to propagate queries, but to prepare the ground
for routing query results (although the two tasks are often
combined by piggybacking queries to network configuration
messages). This paper does not focus on query propagation
as discussed in Section 1. The result propagation phase is
divided into regular rounds, the frequency of which is indi-
cated by the query definitions.

Before presenting the three algorithms in detail, it is
worth providing some intuition about their main differences.
The existing state-of-the-art in optimizing multiple aggregate
queries is the ECReduced algorithm proposed in [21]; it out-
performs Tag [12] and Cougar [24] in the context of multi-

1The 2-paragraph proof will be included at the reviewers’ re-
quest

ple queries, since these approaches were originally designed
to process a single query, as shown in [21]. ECReduced is
therefore a good basis for comparing the two proposed al-
gorithms. In this paper, it is hereafter referred to as NoOp-
timization, to denote that it does not jointly optimize rout-
ing and processing taking into account the query workload.
NoOptimization uses a predefined tree, and only optimizes
the processing aspect of query execution.

The first proposed heuristic, named SegmentToGateway
(STG) exploits query commonalities, by identifying common
query sub-aggregates and building common routing struc-
tures to share the sub-aggregates at an early stage. The sec-
ond proposed heuristic, named SegmentToSegment (STS) fur-
ther exploits query knowledge by ensuring that subaggregate
values of the same query are merged early, instead of being
dispersed towards the gateway through disjoint paths. The
remainder of this section presents in detail the network con-
figuration and result propagation phases of the three algo-
rithms.
5.1 The NoOptimization algorithm

Existing approaches to processing aggregate queries first
build a spanning tree, which links each node to the gateway
through the best-quality path, and then partially aggregate
query results at intermediate nodes of the tree. Path quality
can be determined in different ways, the simplest of which
is to select the shortest (minimum-hop) path to the gateway
([12, 21]). Directed diffusion uses data-centric reinforce-
ment strategies, that can be tuned to choose paths based on
their delay or consistency [10]. Energy-aware algorithms
suggest the use of paths that avoid nodes with low energy
reserves [23, 26].

This subsection includes a description of the ECReduced
algorithm, which is proposed in [21] and is referred to as
NoOptimization in this paper. Details of how it selects a
communication tree and how it processes and propagates
query results are given below:
Network Configuration Phase: Control messages are first
flooded into the network, and every node selects as its parent
the neighbor in the shortest path to the gateway node. If there
are more than one candidate parents, the node selects its par-
ent in either of the following ways: (i) randomly, (ii) the first
node from which it received a query request, (iii) the node
with which it consistently maintains better communication.
In the experimental evaluation of Section 6, NoOptimization
is implemented as in [21], i.e. breaking ties by random par-
ent selection. Dynamic node or link failures are handled by
a local flooding phase to repair affected tree routes, as in
AODV [1].
Result Propagation Phase: The routes of query results are
predefined in the network configuration phase, and the only
decision that a node needs to make in this phase is how to
convert its input (value,CV) pairs into output pairs. All out-
put pairs, irrespective of their content, are forwarded to the
node’s parent. A naive application of the in-network aggre-
gation technique to processing multiple queries would be to
forward one partial aggregate value per query, and denote the
query identifier in the coefficient vector.

The NoOptimization algorithm uses a more elaborate
technique to reduce the number of propagated (value, CV)
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Figure 3. NoOptimization: Node 2 linearly reduces the
three input (value,CV) pairs into two output pairs

pairs. In the case of algebraic aggregate functions, like sum,
count or avg, a node running NoOptimization computes a
basis of its input coefficient vectors and sends to its par-
ent the basis vectors as output CVs [21] (along with cor-
responding values). An example of the effect of linear re-
duction is shown in Figure 3, where node 2 receives three
input (value,CV) pairs and reduces them to two output pairs.
The linear reduction technique yields the optimal solution for
these aggregates in terms of communication cost. The im-
plementation of NoOptimization in Section 6 is identical to
that of ECReduced in [21]. The NoOptimization algorithm,
which is used as a basis for comparison, is to our knowledge
the most sophisticated existing approach to processing mul-
tiple algebraic aggregate queries.

5.2 The SegmentToGateway (STG) algorithm
The first proposed heuristic algorithm exploits the fact

that the intersecting query rectangles naturally divide the net-
work into smaller segments. A definition of segment and of
other important concepts for the understanding of STG are
given below:

• A segment (abbreviated SG) S is a maximal set of
nodes, s.t. ∀si ∈ S,s j ∈ S, si and s j are covered by the
same set of queries and they are internally connected,
i.e. there exists path from si to s j consisting only of
nodes in S. The queries in Figure 5 form five segments
{s1,s4}, {s2}, {s3,s5,s6}, {s7} and {s8,s9}.

• The SGVector of a segment is a bit vector that denotes
which queries cover the segment nodes, e.g. SGVec-
tor({s3,s5,s6}) = [010]. The SGVector of a node s ∈ S
is equal to the SGVector of S, e.g. SGVector(s3) = [010].

• The SGLeader of a segment S is selected to be the node
in S with the minimum-hop path to the gateway node.
Ties are broken by selecting the node with the smallest
x coordinate, and if those are equal the node with the
smallest y coordinate (e.g., SGLeader({s3,s5,s6}) =
s5). The SGLeader of a node s ∈ S is equal to the
SGLeader of S.

• The SGDistance of S denotes the number of hops
from the SGLeader of S to the gateway (e.g., SGDis-
tance({s3,s5,s6}) = 2). The SGDistance of a node s∈ S
is equal to the SGDistance of S.

• The distToSGLeader of a node in S denotes the num-
ber of hops from this node to the SGLeader of S (e.g.,

distToSGLeader(s6) = 1).

event TOS MsgPtr RcvBeacon.rcv(TOSMsgPtr m)
{
bool mustRebroadcastBeacon = FALSE;
BeaconMsg∗ b = (BeaconMsg∗)m→ data;
addBeaconSenderToNeighbors(b);
if (b→ hopCount+1 < hopCount) {

mustRebroadcastBeacon = TRUE;
hopCount = b→ hopCount+1;
parent = b→ source;

}
if (equalVectors(SG,b→ SG)) {
if ((SGDistance > b→ SGDistance)
|| (SGDistance == b → SGDistance &&
b → distToSGLeader+1 < distToSGLeader)
|| (SGDistance == b→ SGDistance &&
strictlyCloser(b→ leaderLoc,leaderLoc)){

mustRebroadcastBeacon = TRUE;
SGParent = b→ source;
SGDistance = b→ SGDistance;
distToSGLeader = b → distToSGLeader+1;
leaderLoc = b→ leaderLoc;

}} else {// not equal vectors

if ((b→ SGDistance > hopCount)
|| (b→ SGDistance == hopCount &&
b→ source == parent &&
b→ source! = SGParent &&
closer(myLoc,b→ leaderLoc))){

mustRebroadcastBeacon = TRUE;
SGParent = b→ source;
SGDistance = hopCount;
distToSGLeader = 0;
leaderLoc = myLoc;

}}}

Figure 4. NesC code for the network configuration phase
of STG (excl. lines in bold) and STS (incl. lines in bold)

Network Configuration Phase: This is similar to the cor-
responding phase of the NoOptimization algorithm. Bea-
con messages are flooded to establish the shortest path from
each node to the gateway. In addition to the hopCount value
beacon messages include the following state information of
the sender node: (i) the SGVector, (ii) the location of the
currently known SGLeader, and (iii) the currently known
SGDistance. The reason for flooding such beacons is for
each node to identify a parent node (as in NoOptimization),
and, in addition, a SGParent (i.e. a neighbor in a path to the
SGLeader). The path to the SGLeader does not need to be
the shortest one, as long as it has no cycles and all interme-
diate nodes are in the same segment.

The implementation of the network configuration phase is
depicted in Figure 4. The reader should ignore the lines in
bold that are only pertinent to the description of STS. Upon
receiving a beacon message, a node updates the local list of
neighbors and, if necessary, the hopCount value (as in NoOp-
timization). The next step depends on whether the beacon is
sent from a node in the same or in a different segment. In the
former case, the node compares the local knowledge about
the SGLeader with that in the beacon. If the beacon knows
of a SGLeader closer to the gateway (with smaller SGDis-
tance), the local SGDistance value is updated and the sender
node is selected to be the local SGParent. In the latter case



where a node receives a beacon from a node in a different
segment, it realizes that it is on the border of the segment
and thus it is eligible to become a SGLeader. It elects itself
to be a SGLeader if its hopCount is smaller than the local
SGDistance. The beacon message is updated accordingly
and is rebroadcasted.

Experiments showed that the difference between the cost
of the network configuration phase of STG and that of
NoOptimization is negligible (Section 6). An advantage of
STG is that insertion (or deletion) of queries has a local effect
on segment formation, and does not require global network
reconfiguration. Dynamic network failures can be handled
by adjusting the local repair mechanism used by NoOpti-
mization to also update the segment-related state variables
of nodes.
Result Propagation Phase: The goal of this phase is to par-
tially aggregate all nodes within the same segment, gather
the partial aggregate at the SGLeader node and forward it
to the gateway through the shortest path. This works as fol-
lows: By the end of the network configuration phase, every
node knows its parent and SGParent. In the result propa-
gation phase, a node merges duplicate input CVs into the
same output CV, aggregating values accordingly. An output
(value,CV) pair is sent to the SGParent if and only if the CV
is equal to the current node’s SGVector. The remaining out-
put (value,CV) pairs are forwarded to the parent node (after
they have been linearly reduced in the case of algebraic ag-
gregates). The neighbors of the gateway send all their mes-
sages without exception directly to the gateway.
Discussion: To summarize, STG identifies query common-
alities (segments) and aggregates the values of all nodes
within each segment separately following a mini-tree rooted
at the SGLeader. The remaining values (whose CVs are
not equal to the SGVector) are forwarded through the par-
ent node (instead of the SGParent) and reach the gateway
through the shortest path. By definition, STG performs better
than NoOptimization. Although STG performs well in terms
of merging readings of the same segment, it takes no ac-
tion towards efficiently merging sub-aggregates of the same
query that come from different segments. In the worst case,
these sub-aggregates may be propagated from the SGLeader
nodes to the gateway through long disjoint paths.
5.3 The SegmentToSegment (STS) algorithm

STS addresses the weakness of STG by sending messages
towards neighbors that are likely to reduce them. STS man-
ages to combine segment-based aggregation (introduced in
STG), with merging of CVs from different segments, into a
uniform mechanism.
Network Configuration Phase: The configuration phase of
STS is similar to the corresponding phase of STG with one
additional feature. In the flooding process, a node aims to
select as its SGParent the node in the shortest path to the
SGLeader. The number of hops from a node to its SGLeader
is recorded in the local variable distToSGLeader. When a
SGLeader broadcasts a message it sets the value of distToS-
GLeader to 0. Upon receiving a beacon, a node compares its
local distToSGLeader with the corresponding beacon value
(incremented by one). If the local value is greater than the
incremented beacon value, then the SGParent becomes the

sender of the beacon and the local distToSGLeader is up-
dated with the beacon value plus one (see lines in bold in
Figure 4). Query workload updates and network failures are
handled as in STG.
Result Propagation Phase: STS aggregates values within
each segment first (like STG) using a uniform routing mech-
anism, instead of forwarding segment-related messages to a
special-purpose SGParent node. STS takes one step further
to ensure that the segment aggregates are not propagated to
the gateway through disjoint paths, but they are efficiently
merged at an early stage. The steps of STS are described
below:
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Figure 5. Value-semantic pairs in the evaluation plan of
the sum queries q1, q2 and q3

Step 1: Convert input to output (value,CV) pairs, by merg-
ing duplicate CVs and aggregating corresponding values -
or by means of linear reduction in the case of algebraic ag-
gregates. For example, in Figure 5 the input messages of
s8 are merged into the pair (2,[110]). This processing step
is also part of NoOptimization and STG. In the latter algo-
rithms it is followed by a well-defined routing step, namely
NoOptimization forwards all output pairs to the parent node,
whereas STG forwards them to either the SGParent or the
parent node. The distinctive feature of STS is that it continu-
ously interweaves processing and routing decisions as shown
in the following steps.
Step 2: Sort the output (value,CV) pairs, based on the num-
ber of queries (1-bits) in their CVs in descending order. Ties
are broken by ordering CVs in lexicographic order.
Step 3: Neighbor-message matching: Pop the first
(value,CV) pair p from the ordered list (the one contribut-
ing to most queries) and select the best neighbor to forward
it. The selection process is an elaborate algorithm described
later on in the section.
Step 4: Message splitting: Split the pair p into two pairs
p1 and p2, based on the SGVector of the selected neighbor.
Assume that node s8 chooses s7 to forward p = (2, [110]) in
Step 3. Notice that the CV of p has more queries (q1 and q2)
than the SGVector of the selected neighbor (SGVector(s7) =
[100] denotes that s7 is covered only by q1). In this case, p is
split into two pairs, one contributing to the common queries
p1 = (2, [100]), and another contributing to the remaining
queries p2 = (2, [010]).
Step 5: Message dispatching: Send p1 to the selected neigh-
bor and re-insert p2 into the ordered list of output pairs. In-
sert p2 only if it has a non-zero CV vector. During insertion,
preserve order (Step 2) and merge pairs with equal CVs. If



the ordered list of (value,CV) pairs is not empty go back to
Step 3.

It now remains to describe the neighbor-message match-
ing process, in which a node selects the best neighbor for a
(value,CV) pair. It consists of three steps.
Step 3.1: To ensure that messages are not forwarded away
from the gateway, only neighbors closer to the gateway than
the current node are considered, i.e. with lexicographically
smaller (hopCount, SGDistance, distToSGLeader, xCoord,
yCoord). For instance, node s3 considers sending mes-
sages to s2 (Figure 5). As an exception, a node also con-
siders neighbors in the same segment that are not closer
to the gateway, if (i) they are closer to their SGLeader
and (ii) their SGVectors are sub-vectors of the message
CV (i.e. queries marked in their SGVectors are also
marked in the message CV). For instance, s3 also consid-
ers s6 to forward its initial data (1, [010]), because distToS-
GLeader(s6)<distToSGLeader(s3) and the SGVector(s6) =
[010] marks queries {q2} that are all marked in the message
CV [010]. This exception cannot result in sending messages
in cycles or away from the gateway, because the message
is merged immediately with the receiving node’s local data
(input pairs of s6 have equal CVs).
Step 3.2: Among neighbors selected in Step 3.1, consider
only those that best match the message CV, i.e. which are
covered by the maximum number of common queries with
the message CV. If this number is 0, or the node is next to the
gateway, it sends the message to its parent. Node s3 has two
candidate neighbors, s2 and s6, to send (1,[010]) (from Step
3.1). The SGVectors [011] and [010] of s2 and s6 both have
one common query with the message CV ([010]). Among
neighbors with equal number of common queries, select the
one with the minimum number of queries (s6).
Step 3.3: Among neighbors selected in Step 2, se-
lect the one with the lexicographically smaller (SGDis-
tance,distToSGLeader,xCoord,yCoord). For instance, s8 has
two candidate neighbors s5 and s7 to send the output pair
(2,[110]). Both have SGDistance equal to 2 and distToS-
GLeader equal to 0 (both nodes are segment leaders), so s7
is selected because it has a smaller x coordinate.
Discussion: Although STS is tailored specifically for opti-
mizing spatial aggregate queries, two if its features - namely
neighbor-message matching and message splitting - have
broader applicability. The idea behind the first feature is to
forward messages towards nodes that are most likely to re-
duce them (i.e. to merge them with their local or route-thru
data). The principle is applicable to other scenarios, for ex-
ample in the context of optimizing GROUP-BY queries [18],
where data is preferentially routed towards nodes that hold
data belonging to the same group. The second noteworthy
feature of STS is message splitting. Most recent research
efforts have focused on merging data to reduce their size.
STS’s novelty lies in offering further communication savings
by means of data splitting. It is often beneficial to divide data
into its components in order to give it greater potential for
later merging.

By means of careful message routing, merging and split-
ting, STS ensures that all query subaggregates are merged
together before they leave the query area, thus offering sig-

nificant benefits wrt STG and NoOptimization. The bene-
fits of STS are more pronounced in the critical area around
the gateway and increase with the number of nodes ensuring
scalability (Section 6).

6 Experimental evaluation
A thorough experimental evaluation was performed to

compare the proposed heuristic algorithms with the existing
NoOptimization approach under a variety of network topolo-
gies and query workloads. The implementation was done
initially on TinyOS’s TOSSIM, but a home-grown simulator
was later developed to run many repetitions of large-scale ex-
periments. The conversion from NesC to C++ was relatively
easy, as the code performed on Berkeley nodes was trans-
fered to a Node class in C++, and a new Simulator class was
developed to pass messages from one node to another, and
monitor network traffic. We first present our experiments on
our home-grown simulator and then on a real sensor network
testbed.

6.1 Simulation experiments
The experimental results below show the performance of

the three algorithms varying: (i) the number of queries, (ii)
the type of queries, (iii) the number of nodes, (iv) the net-
work area (keeping node density constant), (iv) the radio
communication range, and (v) the number of holes (unpopu-
lated areas in the network).

A variety of performance metrics are considered.
Most graphs illustrate the communication benefits of
STG and STS compared to the existing approach.
The benefit of STG is (cost(NoOptimization) −
cost(ST G))/cost(NoOptimization) and the benefit of
STS is defined similarly. It remains to define how the cost of
an algorithm is calculated. In each graph two costs per algo-
rithm are considered, the number of messages sent and the
number of messages received during result propagation, thus
resulting in four different measures of benefit (ST G Send,
ST S Send, ST G Receive and ST S Receive). Depending
on which nodes are monitored, we provide three different
types of graphs, those based on counts of messages sent
(or received) (i) by all nodes in the network (right), (ii) by
nodes at most one hop away from the gateway (left) and (iii)
by nodes at most two hops away from the gateway (middle).
The figure position and caption indicate whether global or
local communication savings are considered.

The default simulation settings are as follows: We deploy
100 nodes uniformly at random in a 300m×300m network
area. The radio communication range is set to 60m. The
default query workload consists of five rectangular queries
with randomly chosen dimensions (x,y ∈ [30,300]). In our
experiments below we vary the values of one parameter at
a time, keeping the default values for the remaining parame-
ters. Each point in a plot is drawn by averaging 40 repetitions
in which we vary the query workload and network topologies
within the scope of the experiment’s settings.

In the experiments below, the cost of the network config-
uration phase is very similar for the three algorithms, with
NoOptimization sending 4%-10% less messages than STG
and STS. This overhead is paid infrequently, and is counter-
balanced by the benefits offered by STG and STS during the
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Figure 6. Vary rect. quer. 1h
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Figure 9. Vary circ. quer. 1h
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Figure 12. Vary nodes 1h
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frequent result propagation phase.
Vary number of queries: The first experiment illustrates the
effect of the number of rectangular queries (sent together to
the network for evaluation) on the communication benefits
of STG and STS compared to NoOptimization. Figures 6,
7 and 8 concern traffic monitored within 1-hop, 2-hops, and
max-hops (entire network) respectively. Notice that the two
proposed algorithms perform similarly in the context of the
entire network (Figure 8) obtaining a relative benefit of up
to 20% compared to the NoOptimization algorithm. How-
ever, STS outperforms STG if we take into account only the
traffic near the gateway (Figures 6 and 7). Notice in Fig-
ure 6 how STS saves up to 60% receive messages compared
to NoOptimization when the number of queries is 1, and the
gap between the benefits of STS and the benefits of STG
increases as we increase the number of queries. The perfor-
mance of STG for 10 queries falls considerably whereas STS
continues to have a 42% advantage (for receive messages)
and a 20% advantage (for send messages) over NoOptimiza-
tion (Figure 6).
Vary query type: The performance benefits of the proposed
heuristic algorithms were also measured using a different
query type in Figures 9, 10 and 11. The queries are now
circular with radius ranging between 30 and 60. After ran-
domly selecting their radius, their center is chosen so that the
entire query is within the boundaries of the network. Notice
that we observe similar trends as in the case of rectangular
queries. The benefits of STG and STS are almost identi-
cal in the entire network, but STS clearly outperforms STG
in the critical nodes around the gateway. As in the case of
rectangular queries, both algorithms have a significant ad-
vantage over NoOptimization in the hotspot areas around
the gateway. Similar trends were observed by trying rect-

angular queries of different sizes than the default rectangular
query workload, and located at various parts of the network.
Given that the advantages of STG and STS pertain for differ-
ent query shapes, the experiments that follow use the default
rectangular query workload.
Vary number of nodes: Another experiment was done to
measure the effect of the node cardinality in the performance
of the proposed heuristic algorithms. Figures 12, 13 and
14 clearly show that as the number of nodes increases, and
the network density increases, STG and STS demonstrate
greater benefits compared to NoOptimization. Intuitively,
when the number of nodes is very small (less than 60) the
number of disjoing paths from a node to the gateway be-
comes small, leaving no flexibility for further reducing the
communication cost. As the number of nodes increases,
NoOptimization routes data through a large number of dis-
joint paths, whereas STG and STS manage to aggregate re-
sults earlier by selecting suitable common paths.
Vary network area: Besides the default network size of
300m by 300m, the performance of the three algorithms was
tested on a 400m by 400m network (Figures 15, 16 and 17).
The number of nodes is increased to 180 nodes (from 100
nodes) in order to keep the node density equal in both set-
tings. The dimensions of rectangular queries are kept in the
range [30,300]. Figure 17 shows that the benefits of STS and
STG in terms of the global communication cost increased
slightly. The performance of the two algorithms was not
considerably affected near the gateway, with a very small
improvement of STG and an almost stable performance of
STS.
Vary communication range: The next step is to monitor the
role of the radio communication range in the performance of
the three algorithms (Figures 18, 19 and 20). The increase
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in network connectivity (without increasing the number of
nodes) initially increases the benefits of STS and STG com-
pared to NoOptimization. Figure 18 shows that, for a com-
munication range of 100m to 120m, nodes within one hop
from the gateway receive up to 80% less messages with STS
than with NoOptimization. STG also outperforms NoOpti-
mization, but it remains significantly inferior to STS.

Vary no of network holes: We also measured the ability
of STG and STS to cope well with network holes, i.e. ar-
eas completely void of sensors. Figures 21, 22 and 23 show
that the number of holes (rectangles of dimension in the
range [40,80]) have a minor effect in the benefits of STS and
STG over the NoOptimization algorithm. In the case of no
holes, 48% less messages are received by the immediate 1-
hop neighbors of the gateway (from the 2-hop nodes) in STS
compared to NoOptimization, and this benefit decreases to
35% for 10 holes. The effect of holes is almost the same as
the effect of decrease of nodes from 100 to 80 in Figure 12.
Holes do not cause the proposed algorithms performance to
deteriorate dramatically in unexpected ways.

Experiment with dynamic failures: It is critical to show
that the proposed algorithms also work well in the context
of dynamic failures. The previous experiment considered
static holes, i.e. unpopulated areas in the network, whereas
this experiment studies the effect of dynamic holes as a re-
sult of nodes depleting their energy and becoming inactive.
All three algorithms rely either on localized route repair or
on repetition of the network configuration phase in the oc-
curence of a node or link failure. For ease of implementa-
tion, the latter solution was chosen to monitoring the impact
of dynamic failures on the result propagation cost. After the
initial network configuration phase, the simulator measures
the number of epochs until the first node dies (say e1); the
network configuration phase is repeated and the network op-
eration is resumed say for another e2 epochs until the next
node dies. The lifetime of the network is evaluated as the
sum of ei-s until more than 25% of the nodes become discon-
nected. Figures 24, 25 and 26 show the increase of the net-
work lifetime by using STG or STS instead of NoOptimiza-
tion. The communication ranges 60, 80 and 100 are tested
respectively. As shown in the previous experiments, STS and
STG are more effective than NoOptimization in the critical
hotspot area around the gateway, which results in immediate
lifetime increase for all communication ranges considered.
Depending on the communication range used, the lifetime

benefits are affected differently by the number of queries.
The benefits of STS and STG increase with the number of
queries given high connectivity networks, whereas a slight
decrease is observed in networks with low node connectiv-
ity. In the future it would be interesting to study the effect of
dynamic failures on the network lifetime by applying local
repair mechanisms.

6.2 Experiments on a real sensor network
We implemented all three algorithms (NoOptimization,

STG and STS) in NesC and run experiments in a network
of Tmote Sky nodes. Tmote Sky is a wireless sensor plat-
form featuring a low power 4MHz microcontroller, a 2.4GHz
IEEE 802.15.4-compliant radio, and a suite of sensors2. The
communication range indoors is up to 50m, but for the pur-
pose of deploying a sensor network in our lab, we reduced
the transmission power of the nodes, in order to set the com-
munication range to a maximum of 2m. The MAC layer used
throughout the tests is a light version of B-MAC. Among the
main features of the original B-MAC [17], clear channel as-
sessment (CCA) and low power listening (LPL), only CCA is
used in our implementation. This has no effect on our experi-
mental results since packet count is used as a way of measur-
ing power consumption. Our network consists of 25 sensor
nodes deployed in a 5m x 5m area according to Fig. 27. The
gateway node is chosen to be at the bottom left-hand corner
of the area.

In order to obtain accurate results over an unreliable
medium, the tree construction algorithm was designed care-
fully to only use high quality links. In an initial phase, all
nodes exchange control messages. A node selects as its
neighbours only nodes with which it can exchange success-
fully a high percentage of its control messages, that is, with
which it can establish high-quality symmetric links. A short-
est path tree is subsequently built. Such a tree is shown on
Fig. 27. In the experiments that follow, nodes are up to three
reliable symmetric hops away from the gateway.

We used randomly generated query workloads for our ex-
periments. Each query covers a rectangular area with one
dimension ranging from 1 to 2m, and the other ranging from
1 to 5m. We varied the size of the query workload from 1 to
10 queries. The same set of query workloads has been reused
for all three algorithms. The result propagation phase is set
to 30 epochs. We use two performance metrics: (i) accuracy

2http://www.moteiv.com/
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Figure 27. Our 5m x 5m deployment. Nodes 3, 4 and 20
are three hops away from the gateway.

of query results and (ii) communication cost of result prop-
agation. In order to capture congestion, the communication
cost is measured in the critical area around the gateway (as
well as for the entire network).
Accuracy of query results: Result accuracy is computed as
follows: Let e be the expected result for a query and o be the
result obtained during the result propagation phase, averaged
over 30 epochs. The accuracy for the specific query would
then be equal to

100(1−
|e−o|

e
).

The overall accuracy for a multi-query experiment is com-
puted as the average of all individual query accuracies.
Throughout our experimental results, we observed a very
good accuracy, averaging over 93% (see Fig. 28). This can
be largely attributed to the tree construction algorithm, since
a node can only choose to propagate results over reliable
links. No significant difference can be observed between the
three algorithms; STG and STS perform similarly to NoOp-
timization.
Communication cost of result propagation: In order to il-
lustrate the benefits of using STG or STS over NoOptimiza-
tion, we used our testbed to compare the number of pack-
ets sent and received by the three algorithms in the entire
network (Fig. 29) and in the critical area around the gate-
way where congestion occurs (Fig. 30). Network-wide, the
STG algorithm generates approximately 10% less packets
than NoOptimization, while STS reduces traffic by an extra
5%.

The benefits of STG and STS are amplified for nodes one
hop away from the gateway. Both algorithms reduce the
number of packets received by 30% compared to NoOpti-
mization. The STG algorithm sends up to 25% fewer packets
than NoOptimization, whereas STS yields further savings of
up to 35%.

In conclusion:
• our approach yields significant energy savings, without

impacting the overall accuracy,

• STG and STS further reduce the energy spent by nodes,
especially in the critical area around the gateway,

• using STG and STS eases the congestion around the
gateway.

7 Related work
Routing: Several routing protocols for ad-hoc networks
have been proposed in the literature [1]. There has also
been a plethora of work on energy-aware routing [2, 23,
22, 26] but without considering the interplay of routing and
query processing. Pearlman et al. [16] propose an energy-
dependent scheme, where a node periodically re-evaluates
its participation in the network based on the residual energy
in its battery. The integration of their approach with our al-
gorithms will be studied in future work.
Query Processing: The TinyDB Project investigates tree-
based routing and scheduling techniques for processing ag-
gregate queries in sensor networks [9, 12]. Tiny aggregation
trees are built by considering jointly the routing and the pro-
cessing aspects of processing a single query. Madden et al.
consider the problem of managing multiple queries in [13],
but without focusing on the routing aspect; they propose
query plan data structures (Fjords) that handle both push-
based and pull-based extraction of sensor data. An energy-
efficient aggregation tree using data-centric reinforcement
strategies is proposed in [10]. Sharaf et al. propose a query-
aware tree selection scheme to process a single GROUP-BY
query [18]. Existing multi-query optimization techniques
for sensor networks assume a fixed tree routing structure
[20, 21].
Approximate queries and answers: An approximation al-
gorithm for finding an aggregation tree that simultaneously
applies to a large class of aggregation functions is proposed
in [6]. Duplicate insensitive skethches for approximate ag-
gregate queries are discussed in [4, 14]. A compressing tech-
nique that exploits correlations and redundancies in histori-
cal data is described in [5]. Greenwald et al. propose tech-
niques for power-conserving computation of approximate or-
der statistics [8]. Time-decaying aggregates of stream data
for scenarios where the significance of data decreases over
time are in [3].
Distributed query processing: Although there has been a
lot of work on query processing and optimization in dis-
tributed database systems [11, 15, 25], there are major dif-
ferences between sensor networks and traditional distributed
database systems. Most related is work on distributed aggre-
gation, but existing approaches do not consider the physical
limitations of sensor networks [19]. Aggregate operators are
classified by their properties in [7]; an extended classifica-
tion for sensor networks is proposed in [12].

8 Conclusions and Future Work
This paper shows the interplay of routing and process-

ing in evaluating aggregate queries in sensor networks, and
proposes two novel algorithms that significantly outperform
the existing approach. STG exploits the new concept of
segment-based aggregation, and offers up to 60% energy
savings compared to NoOptimization. STS, which avoids
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Figure 30. Vary rect. queries 1h

sending query sub-aggregates through disjoint paths, offers
even higher savings (up to 80%). It consistently behaves bet-
ter than STG, especially in the presence of many queries.
The greatest savings of STG and STS are observed in the
critical area around the gateway, which means that these sav-
ings directly reflect an increase in the network lifetime. In
the future, we plan to extend STS to become energy-aware,
i.e. to optimize aggregate query evaluation taking into ac-
count the nodes’ residual energy. The effect of local route
repairs on the cost of STS is also worth exploring. An ex-
citing direction for future work is also to investigate multi-
query optimization techniques for non-summary aggregates
(e.g. MEDIAN), other query types that are not geographi-
cally local (e.g. GROUP-BY queries), and approximate ag-
gregate queries.

A Processing and Routing: Complexity
A.1 Processing aspect

Consider a fixed tree that connects all sensor nodes and is
rooted at the gateway node. Consider a set of long-running
spatial range queries (SRQ) that are sent together to the net-
work for evaluation. For simplicity, assume that all queries
require results with the same frequency (e.g. every 2 min-
utes) and for a large number of rounds (e.g. for 60 rounds,
i.e. for the next 2 hours). Each node can only forward re-
sult values to its parent in the fixed tree. The goal is to
minimize the number of result values forwarded up the tree
edges, such that all queries can be evaluated at the gateway
node. The following results summarize a complexity analy-
sis drawn from [21] for the centralized version of the prob-
lem.
THEOREM 2. Given a fixed tree, the problem of finding the
execution plan that minimizes the number of result values
forwarded up the tree is NP-hard for min and max queries.
The proof includes a reduction from the Set Basis problem
and can be found in [21].
THEOREM 3. Given a fixed tree, the problem of finding the
execution plan that minimizes the number of result values
sent up the tree can be solved in linear time for sum, count
and avg queries (moments and linear combinations).

The optimal solution for sum (count and avg) queries is
obtained by means of linear reduction. The underlying idea
is that if a query value can be derived as a linear combi-
nation of other query values, it is redundant for a node to
forward this value to its parent. A node should forward up
only the values of a maximal subset of (linearly) independent
queries. Linear dependency among queries is considered in

the context of the node’s subtree. For instance, all queries
that access a leaf node are identical when projected to the
(singleton) subtree rooted at the leaf node, and therefore the
leaf node forwards to its parent only one value.

A.2 Routing aspect
The next theorem states the hardness of the routing as-

pect. The proof relates the routing problem to that of finding
an optimal multicast tree (which is NP-hard) using a sim-
ple example in which the processing aspect presents no opti-
mization challenges.
THEOREM 4. The problem of finding the routes of the exe-
cution plan that minimizes the number of propagated values
is NP-hard.

Proof. Finding a multicast tree that connects n nodes with
a minimum number of edges can be modeled as the NP-
complete Steiner problem in networks. Note that the Steiner
problem is NP-complete even for grid topologies. Let N be
a set of nodes organized in a grid, such that each node has
four edges connecting it with its neighbors on the north, east,
south and west. Each edge has weight 1. The goal is to re-
duce the problem of finding an optimal multicast tree for a
subset M of these nodes to an instance of our problem, namely
to the problem of determining an optimal result propagation
plan for a query workload instance. Set the query workload
to consist of singleton queries for all nodes in N−M. Add to
the workload a query defined as the sum of all nodes in N.
The gateway is selected to be one of the nodes in M. The op-
timal solution for the result propagation problem requires all
results of the singleton queries to follow the shortest paths to
the gateway. The optimal solution always determines an op-
timal multicast tree that connects all nodes in M. This implies
that the problem of finding an execution plan that minimizes
the result propagation cost is NP-hard.
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