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1. Abstract
The objective of this work is to investigate empirically the numerical behavior of the analytical target cascading
process and local convergence properties of different coordination strategies. We adopt the χ language to specify
and implement various coordination schemes, and employ a simple analytical example. We examine the effect of
linking variables, subproblem solution accuracy, and amount of significant digits to represent quantities passed
among the subproblems on numerical stability. Four different coordination schemes for a three-level hierarchy
are evaluated in terms of accuracy and computational cost. We believe that the findings of this study aid us
improve our understanding and initiate an effort to study multilevel algorithms and coordination methods for
decomposition-based optimization.
2. Keywords: Multilevel hierarchical optimization, analytical target cascading, coordination strategies, local
convergence properties, χ language.

3. Introduction
Analytical target cascading (ATC) is a methodology for optimal system design by decomposition [1]. A hier-
archical, multilevel, model-based decomposition of the system is defined. Elements at adjacent levels in this
hierarchy are coupled by means of their responses (responses of lower-level elements are inputs to higher-level
elements). Elements at the same level can share so-called linking design variables. Optimization problems asso-
ciated with the elements are formulated to minimize deviations from propagated targets subject to consistency
constraints.

Global convergence properties of the ATC process have been proven theoretically under standard convexity
and smoothness assumptions for a specific class of coordination strategies [2]. However, local convergence prop-
erties have not been studied either theoretically or empirically. Moreover, there exist alternative coordination
schemes that are not supported yet by convergence theory but work quite well in practice.

In previous work [3], we demonstrated that the computer science language χ, originally developed to model
manufacturing systems by means of discrete-event simulation, is an appropriate and useful tool to specify and
implement precisely alternative coordination schemes of ATC in a rapid and efficient manner. An analytical
example was used to illustrate how χ can be used to enable empirical local convergence studies.

Preliminary computations exhibited inconsistent results and trends that could not be interpreted systemat-
ically. Therefore, in this paper we use the same analytical example to study the numerical behavior of the ATC
process. We investigate two possible causes for this inconsistent numerical behavior: a) the presence of linking
variables and b) the accuracy of the subproblems in relation to the amount of significant digits to represent
the quantities communicated among the subproblems. In addition, we evaluate the performance of the four
different coordination schemes that can be employed in the case of a three-level hierarchy.

4. Brief overview of analytical target cascading
The analytical target cascading process is outlined in detail in [1,2,3]. Here, we present the formulation briefly.
Assuming a multilevel, hierarchical decomposition of the original design problem, a deviation minimization
problem is formulated and solved for each element j at a level i in the hierarchy. The vector of optimization
variables x̄ij consists of local design variables xij , linking design variables yij , and response variables R̂ij ,

where R̂ij =
[
R̃t

ij ,R
t
ij

]t

= rij(R̂(i+1)k1 , . . . , R̂(i+1)kcij
,xij ,yij) with cij being the number of “children” of this

element, and t denoting transpose. Responses R̃ij are associated with local targets Tij , and responses Rij are
associated with targets RU

ij that are cascaded down to the element from its parent. Furthermore, RL
(i+1)k are

response values passed up to the element from its k-th child, and yU
ij and yL

(i+1)k are linking design variable
values cascaded down and passed up from the parent and children elements, respectively. Finally, we define



tolerance optimization variables εR
ij and εy

ij for coordinating responses and linking variables, respectively. The
mathematical problem formulation is then

min
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ij∑
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2
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ij (1)

gij(R̂ij ,xij ,yij) ≤ 0,

hij(R̂ij ,xij ,yij) = 0,

where gij and hij are vector functions representing inequality and equality design constraints, respectively.

5. Example
We use the geometric programming problem we presented in [3]:
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The solution of problem (2) is z∗ = [2.84 3.09 2.36 0.76 0.87 2.81 0.94 0.97 0.87 0.80 1.30 0.84 1.76 1.55]. We
decompose the original problem into three levels as shown in Fig. 1.
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Figure 1: Hierarchical structure of decomposed problem

The subproblems are formulated following the notation presented in the previous section; the index j is
dropped at the top-level problem since there is only one element.

The top-level problem P0 is formulated as

min
R11,R12,y0,εy

0 ,εR
0
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0 + sεR
0
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where R11 := z1, R12 := z2, y0 := z5, R0 = r0(R11,R12) = z2
1 + z2

2 , and T0 = 0. Note that z1, z2, and
z5, correspond to the formulation of the original problem, and that z5 is a linking variable computed at the
problems of the intermediate level and coordinated at the top level. Also note that we have introduced a scaling
parameter s to scale the tolerance optimization variables.

There are two problems at the intermediate level. Problem P11 is formulated as
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where R21 := z3, x11 := z4, y11 := z5, R11 = r11(R21,x11,y11) =
√
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Problem P12 is stated as
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Finally, there are two problems at the bottom level. Note that z11 should be treated as a linking variable
coupling the two problems of the bottom level. However, the ATC formulation presented in [1,2,3] does not allow
subproblems to share variables unless they are children of the same parent. Although we have implemented
“non-traditional” schemes in which the variable coupling the two problems at the bottom level can be treated as
a linking variable that is coordinated either at the grandparent level or at the parent level by the introduction
of an additional process, we do not present results here since this is out of the scope of this paper. Instead, we
treat z11 as a parameter p using its known optimal value. Problem P21 is given then by

min
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and problem P22 is
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6. Coordination strategies
The possible coordination schemes for a three-level hierarchy are depicted on Figure 2. Schemes I and II are
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Figure 2: Possible coordination strategies for three-level hierarchy

not supported by the convergence theory presented in [2], which requires convergence between adjacent levels
(as in schemes III and IV) before proceeding to the next level. The χ language has been used to specify and
implement the four coordination schemes as discussed in [3]. This language has been developed originally to
model manufacturing systems by means of discrete-event simulation, and is based on communicating parallel
processes. In [4] we demonstrate that such a language is highly suitable to specify the coordination in decom-
posed multidisciplinary optimization problems. In [3] we show how the ATC decomposition framework can be



modelled using χ. Each ATC optimization subproblem is viewed as a process. The various processes may be
executed in parallel; however, they require data from other processes before they can proceed. Using χ, we are
able to specify and implement different coordination schemes for solving the subproblems. Note that scheme
IV was not implemented in [3].

We have employed the Matlab 6.0 implementation (fmincon) of the sequential quadratic programming
(SQP) algorithm for the solution of all the subproblems. The optimization solver accuracy (represented by the
three fmincon termination criteria TolX, TolFun, and TolCon) was set to 10−7. We performed numerical exper-
iments by varying both the tolerance associated with the termination criterion of the ATC process (defined by
the change in the solution between two successive ATC iterations, i.e. ‖x̄k+1 − x̄k‖2

2 ≤ tol for all subproblems)
and the scaling parameter values of the tolerance optimization variables. We used both finite differences and
analytical expressions to compute gradients. We measured accuracy by comparing the ATC solution to the
known solution of the original problem. Computational cost was determined as a function of ATC iterations
n. For scheme I, total computational cost is 3n + 1 (the top-level problem is solved n + 1 times, and each
intermediate-level and bottom-level problem is solved n times). Similarly, for scheme II the total computa-
tional cost is given by 4n + 1. For scheme III the total computational cost is given by n + 2max(nl, nr) + 1,
where nl and nr are the numbers of total iterations required for the left and right branches of the hierarchy
tree. Finally, for scheme IV the computational cost is given by 2nt + nb + 1, where nt and nb are the numbers
of total problems solved for the top and bottom problems, respectively. Note that the ATC process starts at
the bottom level for scheme IV, as opposed to the the other three schemes.

7. Preliminary observations
The following observations were made based on obtained preliminary results: a) the termination tolerance did
not affect accuracy (although it obviously affected computational cost), b) no scaling parameter value could be
identified for which accuracy was consistently high, c) using finite differences to compute gradients sometimes
yielded more accurate solutions (although no systematic trend could be identified), and d) different Matlab
versions (5.3, 6.0, and 6.1) yielded slightly different results. Figure 3 illustrates observations a) and b), while
Figure 4 illustrates observation c).

Figure 3: Preliminary accuracy results using analytical gradients

Figure 4: Preliminary accuracy results sometimes differ significantly when using finite differences instead of
analytical gradients (with ATC termination tolerance tol = 10−6)

8. Investigations, experimentations, and final results
Based on the above observations, we decided to investigate two possible reasons for these numerical discrepan-
cies: the presence of linking variables and the numerical inaccuracies of the quantities communicated among
the subproblems. We found that scheme I fails to converge when the linking variables are removed and large



values of the scaling parameters are used, while schemes II, III, and IV yielded accurate results after few ATC
iterations. Although we cannot explain why scheme I failed in this case while it did converge at the presence
of linking variables, this may indicate that it is not appropriate for general use on other problems. Note that
scheme I is not supported by the convergence theory of [2]. The fast ATC convergence without linking variables
implies that the presence of the latter is indeed the basic cause for the significant increase of ATC iterations.
The more tightly coupled the subproblems are the more difficulties the ATC process will probably have to
quickly converge to an accurate solution.

A less expected finding is associated with the accuracy of the subproblem solutions and the inaccuracies
of the communicated data. We should not have obtained different ATC results when using finite difference
gradients instead of analytical expressions, or different Matlab versions. Therefore, we have experimented with
the amount of significant digits used to represent the quantities passed among the subproblems. The plot on the
left of Figure 5 shows the accuracy obtained for different significant digits using Scheme I. We can see how the
accuracy deteriorates as more digits are used while keeping the optimizer tolerance fixed at 10−7. Furthermore,
we can see from the plot in the middle of Figure 5 that if the optimization tolerance is tightened (in this case
from 10−7 to 10−9), i.e., the subproblem solution accuracy is higher, we can achieve same ATC solution accu-
racy using more significant digits. This relation between subproblem solution accuracy and significant digits
is illustrated in the right plot of Figure 5. Similar results were obtained for all schemes. We conclude that we

Figure 5: Accuracy results obtained using different number of significant digits to represent quantities passed
among subproblems (with ATC termination tolerance tol = 10−8 and scaling parameter value for the plot at
the right s = 104)

must use an appropriate amount of significant digits that is related to the accuracy of the subproblem solutions.
Doing this, the ATC process indeed yields results that follow systematic trends. Specifically, a) tightening the
ATC termination tolerance does improve accuracy, b) a scaling parameter value (s = 104) is identified for which
accuracy is highest, and c) analytical and finite difference gradients yield consistent results. Using more signif-
icant digits than the available accuracy of the subproblem solutions to represent the communicated quantities
causes numerical instabilities within the ATC process. This is the case both when using finite differences and
analytical expressions to compute gradients.

Figures 6 and 7 depict the accuracy and computational cost, respectively, for all four schemes using analyt-
ical gradients, optimization tolerance tol = 10−7, and 6 significant digits to represent quantities passed among
subproblems. It can be seen that all four schemes exhibit almost identical qualitative and quantitative behavior.
Scheme IV seems to require the lowest number of ATC iterations (note the logarithmic scale). On the other
hand, Scheme IV is more difficult to implement and one may prefer a more simple scheme. As expected, the
results obtained using finite differences differ only slightly. Based on the observed trends, one can not predict
that a certain scheme will outperform the others when using finite differences. Scheme I failed for certain
scaling values when the linking variables were removed from this example. We must also note that measuring
the computational cost in terms of ATC iterations may not be the best way. It may be more appropriate to
record total number of iterations and/or function evaluations of all subproblems. This is an issue that we will
address in future work.

9. Conclusions
The ATC process is highly sensitive to numerical inaccuracies in the data communicated among the subprob-
lems. It is imperative to use only as many significant digits as necessary to represent the accuracy of the
subproblem solutions. Only after this is ensured can one compare accuracy and computational cost of different
coordination schemes. For the particular problem, all four schemes have similar local convergence properties.



Figure 6: Accuracy results for all four schemes

Figure 7: Computational cost for all four schemes

In such a case, it is suggested to use the simplest or most inexpensive alternative. The latter would indicate a
slight preference for Scheme IV. Here we “measured” computational cost in terms of ATC iterations or total
number of subproblems solved. However, there are alternative ways (e.g., record the total number of SQP
iterations and/or function evaluations) to assess the computational cost. As expected, the presence of linking
variables affects the performance of the coordination schemes. The required number of ATC iterations may
increase significantly when a higher solution accuracy is required. An interesting finding was that coordination
scheme I converges in the presence of linking variables, while it fails when these are removed. However, the fact
that this coordination scheme is not supported by convergence theory indicates that such schemes will only
work for some problems.
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