
Algorithmic nominal game semantics

A. S. Murawski⋆ and N. Tzevelekos⋆⋆

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

2 Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract. We employ automata over infinite alphabets to capture the
semantics of a finitary fragment of ML with ground-type references. Our
approach is founded on game semantics, which allows us to translate
programs into automata in such a way that contextual equivalence is
characterized by a finitary notion of bisimilarity. As a corollary, we derive
a decidability result for a class of first-order programs, including open
ones that contain unspecified first-order procedures.

1 Introduction

Recent years have seen a surge of interest in automata-theoretic models over
infinite alphabets. It stemmed from the realization that finite automata, while
immensely successful, do not lend satisfactory representations of a variety of in-
teresting phenomena. In program verification, for instance, one might want to
consider the interaction of unboundedly many agents, each of which issues re-
quests that have to be traceable. In database theory, in turn, integrity constraints
are often expressed in terms of data values possibly drawn from an infinite set
(as opposed to data labels, which come from a finite one). Since giving automata
too much power in manipulating values from an infinite domain quickly results
in undecidability, decidable models over infinite alphabets have to be restricted
so that the values can only be tested for equality. A number of such formalisms
have been proposed in recent years: register automata [7], pebble automata [14]
and data automata [3], to name a few.

The general goal of our paper is to draw techniques from these developments,
adapt them to use in programming language semantics so that, ultimately, they
can be applied to program verification: in our case, to automated equivalence
checking.

Our results will concern Reduced ML [16], which is a subset of ML with
ground-type references only (neither higher-order functions nor reference names
can be stored in memory). This is a simple fundamental language that combines
functional and imperative programming in a minimal fashion and in the style of
ML. Despite its simplicity, it gives rise to a subtle theory of contextual program

⋆ Supported by an EPSRC Advanced Research Fellowship (EP/C539753/1).
⋆⋆ Supported by EPSRC (EP/F067607/1).

equivalence, which comprises elements of secrecy, freshness, locality and object
identity. Here are several sample (in)equivalences that can be (dis)proved in an
automated fashion using our results.

– Dynamically generated reference names are private3.

⊢ letn = ref(0) in λxint ref .(x =int ref n) ∼= λxint ref .false : int ref → bool

– Intermediate states of computation are invisible.

x : int ref ⊢ x := 0; x := 1 ∼= x := 1 : unit

– Local declarations and function abstraction do not commute in general.

⊢ λxunit.let n = ref(0) inn 6∼= letn = ref(0) in (λxunit.n) : unit → int ref

– But they do sometimes, at the cost of explicit initialization.

f : int ref → int ⊢ λxunit.letn = ref(0) in f(n)
∼= letn = ref(0) in λxunit.n := 0; f(n) : unit → int

– In a similar fashion local variables can be globalized.

guard : unit → int, body : int ref → unit ⊢
while guard() do (let n = ref(0) in body(n))
∼= let n = ref(0) in (while guard() do (n := 0; body(n))) : unit

– Not all differences between names can be picked up by the environment, as
reference names are not storable.

f : int ref → unit ⊢ let n1 = ref(0) in let n2 = ref (0) in f(n1); (n2 := !n1); n2
∼= letn = ref 0 in f(n); n : int ref

In order to derive decidability results for program equivalence, we shall consider
a finitary fragment of Reduced ML: with finite datatypes, no recursion and
restricted higher-order types. To be exact, our approach will be applicable to
terms Γ ⊢ M : θ, where θ as well as the type of each identifier in Γ is of the
form β or β → β, and β stands for any base type (unit, int or int ref), like in all
of the examples given above.

To enable a systematic and computer-aided verification of equivalence be-
tween such terms, we translate them into a special class of automata over infi-
nite alphabets in such a way that languages accepted by the automata will be
faithful representations of their fully abstract game semantics [12].

Game semantics views interaction as an exchange of moves (play) between
two players representing the environment (Opponent) and the program (Propo-
nent) respectively. In our particular game model the moves will contain (refer-
ence) names drawn from a countable set of locations. Each move will also be
equipped with a carefully selected fragment of the current heap, represented as

3 x =int ref r denotes reference equality test.

a set of (name,value) pairs. The involvement of an infinite set of names makes
it very natural to view such plays as words over an infinite alphabet.

The automata we employ are deterministic variants of fresh-register au-
tomata [17], which themselves build upon register automata [7]: each automaton
will be equipped with a finite set of registers in which names can be stored for
future reference. The automata are designed in such a way that, in the spirit of
register automata, they can classify each name coming from the environment as
known (currently stored in one of the registers) or as locally fresh – not present
in current memory. On the other hand, the names that a program can send to its
environment will be either those already in its memory, or globally fresh ones, i.e.
names that have not been encountered thus far, but can be obtained on demand
by invoking a fresh-name generator, in the style of fresh-register automata. We
therefore see that local freshness is inherently a property of Opponent, while
global freshness is specific to Proponent.

Our decision procedure comprises three stages.

– First we construct automata that represent term behaviour (in the sense
of game semantics) under the liberal assumption that the environment is
capable of distinguishing all names created by the program and modifying
the corresponding values at any time.

– Subsequently we refine the automata so that they capture exactly the inter-
actions with contexts of Reduced ML.

– Finally, we introduce a finite notion of bisimilarity on the automata to as-
certain that they represent equivalent interactions. Because the underlying
game model is fully abstract, this relates contextual equivalence to decidable
bisimilarity.

On the whole, our work combines automata-theoretic and semantic insights to
develop a new verification routine.

Related work. We make a notable step towards a full classification of decidable
fragments of Reduced ML. Our results apply to reference types, while all earlier
work [6, 10, 13] on that topic was based on the game model of RML [1], a variant
of Reduced ML with “bad variables” (terms of type int ref with designated meth-
ods for reading and writing). Consequently, when reference types were present in
a typing judgment the induced notion of equivalence was strictly stronger than
in Reduced ML proper. For example, x := !x and () could be distinguished by a
bad variable that crashes on dereferencing. Another drawback of RML was that
reference equality could not be studied, as it did not make sense. RML had a
definite advantage though, as the associated game model was based on a finite
set of moves. Equivalence in Reduced ML turns out much more subtle and the
corresponding fully abstract game model [12] is unsuited to finite-alphabet repre-
sentations. It so happens that the presence of bad variables does not change the
induced observational equivalence in the call-by-name case of Idealized Algol [8],
where a complete map of decidable fragments already exists [11] and increases in
complexity (of deciding equivalence) are tightly linked to type-theoretic order.

θ ::= unit | int | int ref | θ → θ

Γ ⊢ () : unit

i ∈ {0, · · · , max}
Γ ⊢ i : int

Γ ⊢ M : θ
π(Γ) ⊢ M : θ

π ∈ Perm(Γ)

Γ ⊢ M : int Γ ⊢ M0 : θ · · · Γ ⊢ Mmax : θ
Γ ⊢ case(M)[M0, · · · , Mmax] : θ

Γ ⊢ M : int Γ ⊢ N : unit

Γ ⊢ while M doN : unit

Γ ⊢ M : int ref

Γ ⊢ !M : int

Γ ⊢ M : int ref Γ ⊢ N : int

Γ ⊢ M := N : unit

Γ ⊢ M : int

Γ ⊢ ref M : int ref

Γ, x : θ ⊢ x : θ
Γ ⊢ M : θ → θ′ Γ ⊢ N : θ

Γ ⊢ MN : θ′
Γ, x : θ ⊢ M : θ′

Γ ⊢ λxθ.M : θ → θ′

Fig. 1. Syntax of RedMLfin.

Contextual equivalence in ML-like languages, also those richer than Reduced
ML, has also been studied extensively using relational techniques [15, 2, 4], albeit
without decidability results.

2 Finitary Reduced ML

Finitary Reduced ML (RedMLfin) is the (call-by-value) λ-calculus over the ground
types unit, int, int ref augmented with (finitely many) integer constants 0, · · · ,max ,
branching, looping and reference manipulation. Its typing rules are given in Fig-
ure 1. Note that we have not included reference equality testing, as it is express-
ible [15] (assuming max > 0). For instance, one can define eqint ref : int ref →
int ref → int to be

λxint ref .λyint ref . let vx = ref !x in

let vy = ref !y in

let b = ref 0 in

(x := 0; y := 1; (if !x = 1 then b := 1 else ()); x := !vx; y := !vy ; !b).

In the above and in what follows, we write

– let x = M in N for the term (λxθ .N)M ;
– M ; N for the term (λxθ.N)M , if x is not free in N ;
– if M then M1 elseM0 for case(M)[M0, M1, · · · , M1];
– and M =int ref N for eq

int ref
M N .

We refer the reader to [16] for a detailed exposition of the operational semantics.

Definition 1. Two terms-in-context Γ ⊢ M : θ and Γ ⊢ N : θ are contex-
tually equivalent if, and only if, for any RedMLfin-context C[−] such that ⊢
C[M], C[N] : unit, C[M] evaluates to () iff C[N] does. Then we write Γ ⊢
M ∼= N : θ.

In this paper we show that contextual equivalence is decidable for a fragment of
RedMLfin, called RedML

β→β
fin , to be defined next.

Definition 2. Suppose Γ = [x1 : θ1, · · · , xm : θm]. The term-in-context Γ ⊢

M : θ belongs to RedML
β→β
fin provided each of θ1, · · · , θm, θ is generated by the

grammar
θ ::= β | β → β

in which β stands for any base type (unit, int or int ref).

In Section 4 we shall define a class of automata over infinite alphabets to which
terms of RedML

β→β
fin will be translated in Sections 5 and 6. In order to make the

translation more concise, we are going to focus on translating terms in canonical
form only. The canonical shapes are defined as follows.

C ::= () | i | xint ref | case(xint)[C, · · · ,C] | (while (!xint ref) doC);C |
(xint ref := i);C | let yint =!xint ref inC | letxint ref = ref (0) inC |
λxβ .C | let yβ = z() inC | let yβ = z i inC | let yβ = z xint ref inC

Lemma 3. Let Γ ⊢ M : θ be an RedML
β→β
fin -term. There exists a RedML

β→β
fin -

term Γ ⊢ CM : θ in canonical form, effectively constructible from M , such that
Γ ⊢ M ∼= CM .

Proof. CM can be obtained via a series of η-expansions, β-reductions and com-
muting conversions involving let and case. ⊓⊔

3 Game Semantics

In this section we briefly recapitulate the game semantics of Reduced ML [12],

insofar as it concerns modelling RedML
β→β
fin . We present it in a more concrete

way, specialized to the types of RedML
β→β
fin , along with examples that motivate

the respective technical conditions.
Game semantics views computation as a dialogue between the environment

(Opponent, O) and the program (Proponent, P). The game model we are go-
ing to sketch falls into the realm of nominal game semantics : moves may in-
volve names drawn from an infinite set A. Consequently, we can apply name-
permutations to moves, plays and strategies. Put otherwise, they form nominal
sets [5]. We begin with some auxiliary definitions before specifying what it means
to play our games.

Definition 4. – For every type θ let us define the associated set of labels Lθ

as follows: Lunit = {⋆}, Lint = {0, · · · ,max}, Lint ref = A, Lβ→β′ = {⋆}. We
shall write L for the set of all labels.

– Given a RedML
β→β
fin typing judgment Γ ⊢ M : θ we write TΓ⊢θ for the set of

associated tags, defined to be

{cx, rx | (x : θx) ∈ Γ, θx 6≡ β} ∪ {r↓} ∪ {c, r | θ 6≡ β}

.

Thus, for each function-type identifier x in Γ , we have introduced tags cx and rx.
They can be viewed as calls and returns related to that identifier. Similarly, r↓
can be taken to correspond to the fact that M was successfully evaluated, and, if
θ is a function type, c and r refer respectively to calling the corresponding value
and obtaining a result.

Given Γ ⊢ M : θ, ℓ ∈ L and t ∈ TΓ⊢θ, we shall say that the pair (ℓ, t) is
consistent if the following conditions are satisfied.

– If t = r↓ then ℓ ∈ Lθ.

– If t = cx then θx ≡ β → β′ and ℓ ∈ Lβ .

– If t = rx then θx ≡ β → β′ and ℓ ∈ Lβ′ .

– If t = c then θ ≡ β → β′ and ℓ ∈ Lβ .

– If t = r then θ ≡ β → β′ and ℓ ∈ Lβ′ .

Suppose Γ = [x1 : θ1, · · · , xm : θm]. The set of initial moves IΓ is defined to be
{(ℓ1, · · · , ℓm) | ℓi ∈ Lθi

, 1 ≤ i ≤ m}.

Definition 5. A play4 over Γ ⊢ θ is a (possibly empty) sequence of the form
ι(ℓ1, t1) · · · (ℓk, tk) such that ι ∈ IΓ , all pairs (ℓi, ti) are consistent and t1 · · · tk
is a prefix of a word matching Xr↓(cXr)∗, where X = (

∑
(x:θx)∈Γ

θx 6≡β

(cx rx))∗. We

assume that Xr↓(cXr)∗ degenerates to Xr↓ if c, r are not available (i.e. θ is a base
type). A play is complete whenever t1 · · · tk matches a word from Xr↓(cXr)∗.

The shape of plays can be thought of as a record of computation. First, calls are
being made to the free identifiers of function type (expression X), then a value
is reached (r↓) and, if the type of the value is a function type, we have a series
of calls and returns with external calls in-between ((cXr)∗).

We shall refer to ι and (ℓi, ti) as moves. Moves are assigned ownership as
follows: ι and those with tags rx, c belong to O (environment) and the rest (tags
cx, r↓, r) belong to P (program). We shall write o and p to range over O- and
P -moves respectively. We shall say that ℓ ∈ A is an O-name (resp. P -name) in a
given play s, provided the first occurrence of ℓ was in an O-move (resp. P -move).
The set of O- and P -names in s will be denoted by O(s) and P (s) respectively.

The fully abstract game model of Reduced ML [12] is based on a more com-
plicated notion of plays, in which each move can contain a store. Since we are
considering a language with ground-type references only, i.e. references names
themselves cannot be stored, programs will not be able, in general, to remember
all names obtained from the environment. Accordingly, we shall not insist that
the stores contain values for all names introduced by O, but only those that are
potentially available to the program. Intuitively, these are environment names
that the program has managed to bind. The notion of P -view helps to capture
this concept.

4 Readers familiar with game semantics will notice that we omit justification pointers
in plays. This is because they are uniquely recoverable with the help of tags.

Definition 6. Given a play s, we define its P -view psq as follows.

pιq = ι
ps (ℓr, rx)q = psq (ℓr, rx)
ps (ℓc, c)q = ps′q (ℓr↓

, r↓) (ℓc, c) s = s′(ℓr↓
, r↓)s

′′

ps pq = psq p

It can be checked that the P -view of a play is also a play. Given a play s, the
set AvP(s) of P -available names is defined as P (s)∪O(psq). We can now define
a new notion of play, in which players can play moves equipped with stores
(moves-with-store, for short).

Definition 7. A play-with-store over Γ ⊢ θ is a sequence mΣ1
1 · · ·mΣk

k of moves-
with-store satisfying the conditions below.

– m1 · · ·mk is a play over Γ ⊢ θ.
– For any P -move m2i = (ℓ2i, t2i), if ℓ2i ∈ O(m1 · · ·m2i) then ℓ2i ∈ pm1 · · ·m2i−1q.
– For any 1 ≤ i ≤ k, Σi is a partial function from A to {0, · · · ,max} such

that dom(Σi) = AvP(m1 · · ·mi).

Using the richer notion of play we define strategies.

Definition 8. A strategy σ is a non-empty, even-prefix closed set of plays-with-
store closed under name-permutation. Given a play s, let us write [s] for its
equivalence class with respect to name-permutation. A deterministic strategy is

also required to satisfy the following condition: whenever s1o
Σ1
1 p

Σ′
1

1 , s2o
Σ2
2 p

Σ′
2

2 ∈

σ, [s1o
Σ1
1] = [s2o

Σ2
2], then [s1o

Σ1
1 p

Σ′
1

1] = [s2o
Σ2
2 p

Σ′
2

2].

We have shown how to assign deterministic strategies to programs of Reduced
ML in [12]. Let us write JΓ ⊢ M : θK0 for the deterministic strategy correspond-

ing to the RedML
β→β
fin -term Γ ⊢ M : θ.

Example 9. – J ⊢ λxunit.let n = ref(0) inn : unit → int refK0 consists of plays of
the following shape

ι∅ (⋆, r↓)
∅ (⋆, c)Σ′

0 (n1, r)
Σ1 (⋆, c)Σ′

1 (n2, r)
Σ2 · · · (⋆, c)Σ′

i−1 (ni, r)
Σi (⋆, c)Σ′

i · · ·

O P O P O P O P O

where Σ′
0 = ∅ and, for all i > 0, Σi = Σ′

i−1 ∪ {(ni, 0)}, dom(Σ′
i) = dom(Σi).

Moreover, for any i 6= j we have ni 6= nj . Note that Σ′
i can be different

from Σi, i.e. the environment is free to change the values stored at all of the
locations that have been revealed to it. Here the stores keep on growing as
the names are being generated by the program.

– J ⊢ λxint ref .case(!x)[1, 0, 0, · · · , 0] : int ref → intK0 generates, among others,
the play

ι∅ (⋆, r↓)
∅ (n, c)(n,2) (0, r)(n,2) (n′, c)(n

′,0) (1, r)(n
′,0) (n, c)(n,0) (1, r)(n,0).

Note that in the play above the store does not grow as the names are being
played by the environment and they disappear from P -view after each call.

By comparing strategies corresponding to terms we cannot yet prove all equiv-
alences. This is because strategies do not take into account the fact that the
environment (O) must also be subjected to restrictions concerning recognizabil-
ity and visibility of names.

Example 10. The following equivalences hold. Yet, strategies corresponding to
the terms on the left contain plays-with-store, given below, that seem to contra-
dict this.

1. f : int ref → unit ⊢ letn = ref(0) in fn; (λxint ref .eqint ref xn)
∼= let n = ref(0) in fn; (λxint ref .0) : int ref → int

⋆∅ (n, cf)(n,0) (⋆, rf)(n,2) (⋆, r↓)
(n,2) (n, c)(n,2) (1, r)(n,2)

O P O P O P

2. f : int ref → unit ⊢ let n = ref(0) in fn; n := 0; (λxunit.case(!n)[1, 0, 0, · · ·]) ∼=
let n = ref(0) in fn; (λxunit.1) : unit → int

⋆ (n, cf)(n,0) (⋆, rf)(n,k) (⋆, r↓)
(n,0) (⋆, c)(n,1) (0, r)(n,1)

In 1. O played a P -name that could not possibly be remembered by a context
with ground-type references. In 2. O changes the value stored at such a location.
This mismatch motivates further restrictions on the shape of strategies that are
dual to those already imposed on P .

Definition 11. Given a play s, we define its O-view (xsy) as follows.

xǫy = ǫ
xι s (ℓcx

, cx)y = ι (ℓcx
, cx)

xι s (ℓr↓
, r↓)y = ι (ℓr↓

, r↓)
xs (ℓr, r)y = xs′y (ℓc, c) (ℓr, r) s = s′ (ℓc, c)s

′′ and c 6∈ s′′

xs oy = xsy o

The side condition in the last but one case stipulates that (ℓc, c) be the last move
in s with tag c (i.e. c matches r).

Returning to our examples, we can now see that in the fifth move O was play-
ing/modifying a location from outside the current O-view.

Definition 12. – A play-with-store mΣ1
1 · · ·mΣk

k is relevant if, for all O-moves
(ℓ2i+1, t2i+1)

Σ2i+1 (1 < 2i + 1 ≤ k) the following conditions hold.
• If ℓ2i+1 ∈ P (m1 · · ·m2i+1) then ℓ2i+1 ∈ xm1 · · ·m2iy.
• For any n ∈ P (m1 · · ·m2i), if n 6∈ xm1 · · ·m2iy then Σ2i+1(n) = Σ2i(n).

– A protoplay is a sequence of moves-with-stores mΣ1
1 · · ·mΣk

k such that m1 · · ·mk

is a play and, for any 1 ≤ i ≤ k,
• n ∈ dom(Σi) ∩ P (m1 · · ·mi) iff n ∈ xm1 · · ·miy;
• n ∈ dom(Σi) ∩ O(m1 · · ·mi) iff n ∈ pm1 · · ·miq.

Let us write JΓ ⊢ M : θK1 for the set of protoplays obtained by restricting JΓ ⊢
M : θK0 to relevant plays and subsequently constraining stores to contain only
P -names occurring in the suitable O-view. Protoplays are still not sufficient to
prove all equivalences, because they do not convey the idea that the environment
might not be able to recognize all different P -names.

Example 13. The following terms are equivalent, yet they induce different pro-
toplays.

f : int ref → unit ⊢ letn1 = ref(0) in letn2 = ref (0) in f(n1); (n2 := !n1); n2
∼= let n = ref (0) in f(n); n : int ref

⋆∅ (n1, cf)(n1,0) (⋆, rf)(n1,k) (n2, r↓)
(n2,k) ⋆∅ (n, cf)(n,0) (⋆, rf)(n,k) (n, r↓)

(n,k)

In an interaction the environment will only be able to detect a difference between
two P -names if they occur in the same O-view. Consequently, if P repeats a name
introduced by himself, but none of the previous occurrences are present in the
O-view, the name should present itself to the environment as if it were fresh.
This motivates the last definitions.

Definition 14. Given a protoplay s, let us subject it to the following refreshment
routine: as long as s = s1(ℓ, t)

Σs2, where (ℓ, t) is a P -move, ℓ ∈ P (s), ℓ occurs
in s1, but its only occurrence in xs1(ℓ, t)y is in the final move, apply the following
to s

– if t = r↓ then replace ℓ with a fresh name.

– if t = cx then replace ℓ with a fresh name and, provided ℓ occurs there, also
in the following O-move;

– if t = r then replace ℓ with a fresh name and, provided ℓ occurs there, in all
the following moves with tags c and r.

Definition 15. Let JΓ ⊢ M : θK2 consist of protoplays from JΓ ⊢ M : θK1 re-
freshed according to Definition 14.

A play-with-store or a protoplay will be called complete, if the underlying play is
complete. Given a set S of plays-with-store or protoplays, let us write comp(S)
for the subset of S consisting of complete elements only.

Theorem 16 (Lemma 17 [12]). For any RedML
β→β
fin -terms Γ ⊢ M1, M2 : θ,

Γ ⊢ M1
∼= M2 : θ if, and only if, comp(JΓ ⊢ M1 : θK2) = comp(JΓ ⊢ M2 : θK2).

In Section 5, for a given term Γ ⊢ M : θ of RedML
β→β
fin in canonical form, we

shall construct a family of automata representing JΓ ⊢ M : θK0. It will be refined
in Section 6 to represent JΓ ⊢ M : θK2. Section 7 will be devoted to crafting a
bisimulation relation that will enable us to implement the equivalence test from
Theorem 16.

4 Automata

As Example 9 demonstrates, the stores present in plays can grow indefinitely
and, even though we shall work with infinite alphabets, we cannot afford to
represent them literally, as this would amount to being able to memorize an
unbounded supply of names. Instead we shall skip store information in O-moves
on the understanding that, whenever this is done, the omitted value could be
arbitrary. Similarly, if store values are omitted for P -moves, it will be the case
that P does not change them, i.e. they remain the same as in the previous
O-move. According to this convention the first play from Example 9 can be
faithfully represented by ι∅ (⋆, r↓)

∅ (⋆, c)∅ (n1, r)
(n1,0) (⋆, c)∅ (n2, r)

(n2,0) · · · .
Next we introduce the kind of automata that will be used as acceptors of

(representatives of) plays. In a single transition step they will be able to read
a (representation of a) single move-with-store (ℓ, t)Σ (subject to the condition
that Σ is a subset of the actual store). On the technical level, the automata are
a variant of fresh-register automata [17], adapted to process plays-with-stores.
Their sets of states will be partitioned into O- and P -states, which correspond
to the stages of play when O and P respectively are about to make a move. The
machines will be equipped with a finite number of registers for storing names.
At O-states they will be able to recognize whether the currently read name is
present in one of the registers. At P states they will be able to process a currently
stored name or a fresh one (one that has not been processed so far).

To enable a finite specification of the automata and to describe their seman-
tics we introduce the following definitions. Recall that A is the set of names. Let
C = {⋆, 0, · · · ,max} be the set of constants. Let us also fix a finite set T of tags
and a positive integer n.

Definition 17. – L = C ∪ { fr(i), kn(i) | 1 ≤ i ≤ n } is the set of symbolic
labels. We use ℓ to range over its elements.

– Reg is the set of all ρ : {1, · · · , n} → A ∪ {♯} such that ρ(i) = ρ(j) ∈ A

implies i = j. Its elements will be called register assignments and, from now
on, we shall use ρ to range over them.

– Stos = {1, . . . , n} → {♯, 0, . . . ,max} is the set of symbolic stores, which will
be ranged over by S.

– Sto is the set of partial functions Σ : A ⇀ {0, . . . ,max} such that dom(Σ)
contains at most n elements. Its elements will be referred to as stores and
ranged over by Σ.

– LT = L× T× Stos is the set of transition labels, ranged over by (ℓ, t)S .

We shall abuse notation somewhat and write dom(ρ) for the set ρ−1(A), and
similarly for dom(S). Given a pair (ρ, S) ∈ Reg × Stos such that dom(ρ) =
dom(S), we can derive the store Sto(ρ, S) = { (ρ(i), S(i)) | i ∈ dom(ρ) }.

We can now define (nr, n)-automata, which will be used for representing
game semantics. An (nr, n)-automaton is equipped with n registers, the first nr

of which will be read-only.

Definition 18. An (nr, n)-automaton of type θ is given as a quintuple A =
〈Q, q0, ρ0, δ, F 〉 where:

– Q is a finite set of states, partitioned into QO (O-states) and QP (P -states);
– q0 ∈ QP is the initial state;
– ρ0 ∈ Reg is the initial register assignment such that dom(ρ0) = {1, · · · , nr};
– δ ⊆ (QO × LT×QP)∪ (QP × LT×QO)∪ (QO ×P({nr + 1, . . . , n})×QO)∪

(QP × P({nr + 1, . . . , n}) × QP) is the transition relation;
– F ⊆ QO is the set of final states.

Additionally, the following properties must hold.

– if (q, (ℓ, t)S , q′) ∈ δ and ℓ = fr(i) then i > nr and i ∈ dom(S).
– if θ is a base type then there is a unique final state qF , and δ ↾ {qF } = ∅ (no

outgoing transition).

Our automata operate on words over the infinite alphabet (C ∪ A) × T × Sto.
We shall write (ℓ, t)Σ to refer to its elements. We first explain the meaning of
the transition function informally. Suppose A is at state q1 and ρ is the current
register assignment.

– If (q1, (ℓ
′, t)S , q2) ∈ δ , A can move to state q2 on the input symbol (ℓ, t)Σ if

one of the following conditions is satisfied.
• ℓ ∈ C, ℓ′ = ℓ, dom(S) ⊆ dom(ρ) and Σ = Sto(ρ, S).
• ℓ ∈ A, ℓ′ = kn(i), ρ(i) = ℓ, dom(S) ⊆ dom(ρ) and Σ = Sto(ρ, S).
• ℓ ∈ A, ℓ′ = fr(i), dom(S) ⊆ dom(ρ) ∪ {i}, Σ = Sto(ρ[i 7→ ℓ], S) and

∗ either q1 ∈ QO and ℓ does not belong to ρ({1, · · · , n}) (locally fresh),
∗ or q1 ∈ QP and ℓ has not appeared in the current run of A (globally

fresh).
In this case the automaton also sets ρ(i) to ℓ.

– If (q1, N, q2) ∈ δ, where N is a subset of writable register indices, A can clear
all registers in N (i.e. set ρ(i) = ♯ for all i ∈ N) and move to q2 without
reading any input symbol (ǫ-transition).

The above is formalized next. A configuration of A is a triple (q, ρ, H) ∈ Q̂,
where Q̂ = Q × Reg × Pfn(A) and Pfn(A) is the set of finite subsets of A.

Definition 19. Let A = 〈Q, q0, ρ0, δ, F 〉 be an (nr, n)-automaton. The configu-
ration graph (Q̂,−→δ) of A is defined as follows (transitions are labelled by ǫ or
elements of (C ∪ A) × T× Sto). For all (q, ρ, H) ∈ Q̂ and (q, (ℓ, t)S , q′) ∈ δ:

– if ℓ ∈ C and dom(S) ⊆ dom(ρ) then (q, ρ, H)
(ℓ,t)Σ

−→ δ (q′, ρ, H) where Σ =
Sto(ρ, S),

– if ℓ 6∈ C and dom(S) ⊆ dom(ρ′) then (q, ρ, H)
(ℓ,t)Σ

−→ δ (q′, ρ′, H ′) where Σ =
Sto(ρ′, S), H ′ = H ∪ {ℓ}, and
• if ℓ = kn(i) then ℓ = ρ(i) and ρ′ = ρ,
• if ℓ = fr(i) and q ∈ QO then ℓ /∈ ρ({1, · · · , n}) and ρ′ = ρ[i 7→ ℓ],
• if ℓ = fr(i) and q ∈ QP then ℓ /∈ ρ({1, · · · , nr}) ∪ H and ρ′ = ρ[i 7→ ℓ].

Moreover, for all (q, ρ, H) ∈ Q̂ and (q, N, q′) ∈ δ we have (q, ρ, H)
ǫ

−→δ (q′, ρ′, H),
where ρ′ = ρ[N 7→ ♯]. The set of strings accepted by A is defined to be

L(A) = { ~ℓ ∈ ((C ∪ A) × T× Sto)∗ | (q0, ρ0, ∅)
~ℓ

−→−→δ (q, ρ, H), q ∈ F }.

Definition 20. We say that A is deterministic if, for any reachable configura-

tion q̂ and any q̂
ℓ1−→δ q̂1, q̂

ℓ2−→δ q̂2, if ℓ1 = ℓ2 then q̂1 = q̂2.

Here is a structural constraint that guarantees determinacy.

Definition 21. A is strongly deterministic if:

– for each q ∈ QP there exists at most one transition out of q: | δ ↾ {q}| ≤ 1;
– for each q ∈ QO and (q, (ℓ1, t)

S1 , q1), (q, (ℓ2, t)
S2 , q2) ∈ δ:

• if ℓ1 = fr(i1) and ℓ2 = fr(i2) then i1 = i2,
• if ℓ1 = ℓ2 and S1 = S2 then q1 = q2,
• dom(S1) \ { i | ℓ1 = fr(i)} = dom(S2) \ { i | ℓ2 = fr(i)}.

– for any q1 ∈ QO, if there exists q2 ∈ QO such that (q1, N, q2) ∈ δ, then this
is the only outgoing transition from q1: | δ ↾ {q1}| = 1.

Definition 22. Let A = 〈Q, q0, ρ0, δ, qF 〉 be a strongly deterministic automa-
ton of base type. We define the set of quasi-final states E to be the set of
states that reach qF in one step. Then E is canonically partitioned as E =⊎

(ℓ,t)S E(ℓ,t)S where E(ℓ,t)S = { q ∈ Q | (q, (ℓ, t)S , qF) ∈ δ } and A is uniquely

determined by the structure A− = 〈Q, q0, ρ0, δ, E〉.

The following remark sheds some light on the formal nominal setting underlying
our constructions. It can be safely skipped by readers not familiar with nominal
sets [5].

Remark 23. Note that the initial register assignments of our automata contain
names. One can view the automata as elements of nominal sets where name-
permutation works as follows: for any name-permutation π, π · 〈Q, q0, ρ0, δ, F 〉 =
〈Q, q0, π · ρ0, δ, F 〉, where π · ρ = π ◦ ρ. Note that then L(π · A) = π · L(A).

Moreover, the indexed families of automata to be used in the next definition
are of nominal nature. Let X be a nominal set. By an X-indexed family of
automata of type θ we mean a set {Ax | x ∈ X } such that each Ax is an (nx

r , nx)-
automaton of type θ and, moreover, for any name-permutation π, Aπ·x = π ·Ax.

5 From terms to plays-with-stores

Let Γ = [x1 : θ1, · · · , xm : θm] and Γ ⊢ C : θ be a RedML
β→β
fin -term in canonical

form. Let us write I+
Γ⊢θ for the set of plays-with-store of length 1 over Γ ⊢

θ. Recall that each of them will have the form ιΣ0 , where ι ∈ IΓ , i.e. ι =
(ℓ1, · · · , ℓm), where ℓi ∈ Lθi

. Let Lι = {ℓi | θi ≡ int ref} and nι = |Lι|. Then
dom(Σ0) = Lι. Let idx : {1, · · · , nι} → {1, · · · , m} be defined by idx(i) = j if
ℓj ∈ Lι, there are i−1 different names in ι to the left of ℓj (|{ℓ1, · · · , ℓj−1}∩Lι| =
i − 1) and ℓj is not among them (ℓj 6∈ {ℓ1, · · · , ℓj−1}).

We now instantiate the automata defined in the previous section by using the
finite set of tags T = TΓ⊢θ . A canonical form of RedML

β→β
fin will be translated

into a family of automata indexed by I+
Γ⊢θ. For each ιΣ0 ∈ I+

Γ⊢θ , the correspond-
ing automaton will accept exactly the words w such that ιΣ0w is a complete
play induced by the canonical form. The family will be infinite, but finite when
considered up to name-permutability.

Definition 24. For any RedML
β→β
fin -term Γ ⊢ C : θ in canonical form we define

an I+
Γ⊢θ-indexed family of automata LC M = { LC MιΣ0 | ιΣ0 ∈ I+

Γ⊢θ } by induction

on the shape of C. In all cases LC MιΣ0 will have nιΣ0

r = nι read-only registers and

the initial assignment will be ριΣ0

0 (i) = ℓidx(i). The precise number of registers
can be calculated easily by reference to the constituent automata. Let us write S0

for the function S0 : {1, · · · , n} → {♯, 0, · · · ,max} defined by S0(i) = Σ0(ℓidx(i))
(1 ≤ i ≤ nι) and S0(i) = ♯ (i > nι). The base and inductive cases are as follows.5

– L () MιΣ0 = q0
(⋆,r↓)S0

// qF

– L j MιΣ0 = q0
(j,r↓)S0

// qF

– Lxint ref MιΣ0 = q0
(kn(j),r↓)S0

// qF , where x ≡ xk and ℓidx(j) = ℓk

– L case(x)[C0, · · · ,Cmax] MιΣ0 = LCj MιΣ0 , where x ≡ xk and ℓk = j
– L (x := i);C MιΣ0 = LC M

ιΣ′
0
, where x ≡ xk and Σ′

0 = Σ0[ℓk 7→ i]
– L let y =!x inC MιΣ0 = LC M(ι Σ0(ℓk))Σ0 , where x ≡ xk

– L let yunit = z() inC MιΣ0 is given by q0
(⋆,cz)S0

// q1
(⋆,rz)S

// LC M(ι ⋆)ΣS , where S

ranges over all symbolic stores with domain {1, . . . , nι} and ΣS(ℓidx(i)) =
S(i).

– L let yint = z() inC MιΣ0 = q0
(⋆,cz)S0

// q1
(j,rz)S

// LC M(ι j)ΣS with S as above

and 0 ≤ j ≤ max.

– L let yint ref = z() inC MιΣ0 = q0
(⋆,cz)S0

// q1
(kn(j),rz)S

//

(fr(nι+1),rz)S′ ++WWWWWWWWWWWWWWW LC M(ι ρ0(j))ΣS

LC M(ι a)Σ
S′

where

1 ≤ j ≤ nι, S is as above, a is a name that does not occur in ι,6 S′

ranges over symbolic stores with domain {1, · · · , nι + 1}, ΣS′(ℓidx(i)) = S′(i)
(1 ≤ i ≤ nι) and ΣS′(a) = S′(nι + 1)

– L let yβ = z i inC MιΣ0 and L let yβ = z xint ref inC MιΣ0 are defined similarly to
the above.

– Lλxunit.C MιΣ0 = q0
(⋆,r↓)S0

// q1
(⋆,c)S

// (LC M(ι ⋆)ΣS [r/r↓])

{nι+1,...,n}

zz
, where the

loopback connects the final state of LC M(ι ⋆)ΣS [r/r↓] to q1. Note that S ranges
over all symbolic stores with domain {1, . . . , nι} and ΣS(ℓidx(i)) = S(i) (1 ≤
i ≤ nι). The other cases of λ-abstraction are dealt with in a similar way.

– Case of let xint ref = ref (0) inC. Let a be a name not in ι, let Σ′
0 = Σ0[a 7→ 0]

and consider the (nι + 1, n)-automaton LC M
(ι a)Σ′

0
. For each 0 ≤ j ≤ max

define an (nι, n)-automaton LC M
(j)

ιΣ0
to be a copy of LC M

(ι a)Σ′
0

in which

5 Note that we ignore initial register assignments of automata that do not appear in
starting positions in the diagrams.

6 Any such choice of a yields the same automaton LC M
(ι a)

Σ
S′ after its initial register

assignment is removed.

• all transitions with label kn(nι + 1) are removed,
• all transitions with symbolic store S such that S(nι+1) 6= j are removed,
• and nι + 1 is removed from all symbolic stores in remaining transitions.

We define L let xint ref = ref (0) inC M as an (nι, n)-automaton obtained by in-

terconnecting LC M
(0)

ιΣ0
, · · · , LC M

(max)

ιΣ0
and LC M

(ι a)Σ′
0
.

// LC M
(0)

ιΣ0

((

,,

// LC M
ιΣ′

0

LC M
(1)

ιΣ0

hh

))

22eeeeeeeeeeeeeeeeeeee

. . .

LC M
(max)

ιΣ0

gg

mm
BB

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

The transitions between the copies (arrows in the figure) are as follows. For

each q1
(ℓ,t)S

−−−→ q2 in LC M
ιΣ′

0
, where q1 is a P -state:

• if ℓ 6= kn(nι+1) then, for each j 6= S(nι+1), we add a transition from the

state q1 of LC M
(j)

ιΣ0
to state q2 of LC M

(S(nι+1))

ιΣ0
, with label (ℓ, t)S↾(dom(S)\{nι+1});

• if ℓ = kn(nι + 1) then, for each 0 ≤ j ≤ max, we add a transition from

the state q1 of LC M
(j)

ιΣ0
to state q2 of LC M

ιΣ′
0
, with label (fr(nr + 1), t)S.

– For (while (!x) doC);C′, let Σ0, . . . , Σh be all the stores with the same domain
as Σ0. Assume x ≡ xk. Recall the presentation of an automaton given in
Definition 22. We define L (while (!x) doC);C′ MιΣ0 to be LC′ MιΣ0 if Σ0(ℓk) =
0. Otherwise it is defined to be a combination of LC M−

ιΣ0
, · · · , LC M−

ιΣh
and

LC′ MιΣ0 , · · · , LC′ MιΣh connected together as explained below.

// LC M−
ιΣ0

))

--

//

--\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

++WWW
II

LC′ MιΣ0

LC M−
ιΣ1

ii

**

22eeeeeeeeeeeeeeeeee //

,,YY
II

LC′ MιΣ1

. . .
. . .

LC M−
ιΣh

gg

mm
BB

�
�

�
�

�
�

�
�

�
�

�
�

�
�

77nnnnnnnnnnnnnnn

//
II

LC′ MιΣh

For each quasi-final state q ∈ E(⋆,r↓)S of each LC M−
ιΣi

let i be such that
ℓidx(i) = ℓk. Add transitions labelled {nι + 1, . . . , n} in the following cases.
• If S(i) = 0, add one from q to the initial state of LC′ MιΣS ,
• if S(i) 6= 0 add one from q to the initial state of LC M−

ιΣS
.

We shall now formalize in what sense the automata defined above can be taken
to represent strategies.

Definition 25. Let s = mΣ1
1 · · ·mΣk

k be a play over Γ ⊢ θ and t = mΘ1
1 · · ·mΘk

k

be a sequence of moves-with-store. We say that s is an extension of t if the
following conditions are satisfied.

– Θi ⊆ Σi (1 ≤ i ≤ k)
– For any 1 ≤ i ≤ ⌊k/2⌋, if a ∈ dom(Σ2i) \ dom(Θ2i) then Σ2i−1(a) is defined

and Σ2i(a) = Σ2i−1(a).

Note that, because s is a play, the clause about Σ2i−1(a) being defined amounts
to stipulating that Θ2i(a) be defined if the first occurrence of a in m1 · · ·mk is in
m2i. Observe that this is always the case for words accepted by automata from
Definition 24, as the store values are always printed out for fresh labels. Let us
write ext(t) for the set of all extensions of t.

Lemma 26. For any ιΣ0 ∈ I+
Γ⊢θ, the automaton LC MιΣ0 is strongly determin-

istic and
⋃

t∈L(LC M
ιΣ0) ext(ιΣ0t) = { ιΣ0t | ιΣ0t ∈ comp(JΓ ⊢ C : θK0) }.

Proof. Strong determinacy follows from the shape of the automata. For the latter
part, the non-trivial cases are:

let x = ref (0) inC : The role of LC M
(j)

ιΣ0
(0 ≤ j ≤ max) is to mimic the strategy

corresponding to letx = ref (0) inC before the name a (corresponding to the
reference name x) is revealed. Accordingly, O is not allowed to play the name
for the first time (as in the definition of composition [12]) or change store-
values associated with a. P can still change them, though, and the current
value at a is represented by the superscript (j). If P reveals the name for
the first time, a fresh name is generated, written to register nι + 1, and
computation proceeds to LC M

ιΣ′
0
.

λxβ .C : Correctness follows from the fact that the strategy corresponding to
λxβ .C is single-threaded, i.e., following (⋆, r↓), it is an interleaving of inde-
pendent copies of strategies for C.

(while (!x) doC);C′ : Observe that the strategy for (while (!x) doC) can be viewed
as a subset of the single-threaded strategy for λyunit.if !x thenC else (), where
the final values of free variables are communicated to the next thread and on
reaching 0 by x control is transferred to the strategy for C′. This is precisely
what the construction achieves. ⊓⊔

6 Automata for protoplays

In this section we shall transform the automata representing JΓ ⊢ CK0 to rep-
resent JΓ ⊢ CK2. To that end, we need to focus on protoplays that have been
refreshed according to Definition 14. Such protoplays adhere to a specific pat-
tern with respect to P -names: any P -name that appears in the O-view for the
first time has not appeared earlier. This implies that in each such protoplay
s = s1(ℓ, t)

Σ with ℓ ∈ P (s):

– if t = cx or t = r↓ then ℓ is fresh for s1,
– if t = r then either ℓ is fresh for s1 or it has been introduced by some move

with tag r.

The moral is that P -names introduced with tag cx or r↓ are played only once.
In the former case, O may play them in his next move, but then they will not

reappear in the protoplay. In the latter case, no moves can be made after the
P -name (θ ≡ int ref). Hence, we can safely replace P -names introduced with
tags cx and r↓ by dummy labels (⊛) and still have a faithful representation, pro-
vided their values are remembered. We shall accommodate them in special labels
so that the representation is still a protoplay, albeit in the following extended
syntax.

Remark 27. Using ⊛ will also let us see that for terms Γ ⊢ C : β one does not
need globally fresh transitions. Hence the corresponding automata will then be
variants of register automata [7] rather than fresh-register automata [17].

Definition 28. – For every base type β we define the set of extended labels
L+

β = Lβ ∪ { ℓ〈i〉 | ℓ ∈ Lβ ∪ {⊛}, 0 ≤ i ≤ max }.

– We define the set of transition labels L
+ = L ∪ { ℓ〈i〉 | ℓ ∈ L∪ {⊛}, 0 ≤ i ≤

max }.

We proceed to define a translation from an automaton A in the original syntax to
an automaton A+ in the extended one, following the intuitions described above.
As a first step, we are going to enrich A with information about ownership of
the names that are currently stored in the registers. This is concretely achieved
as follows.

Definition 29. For each automaton A = 〈Q, q0, ρ0, δ, F 〉 construct the automa-
ton A+ = 〈Q′, q′0, ρ

′
0, δ

′, F ′〉 by setting

Q′ = { (q, NO, NP) ∈ Q × P({1, . . . , n})2 | NO ∩ NP = ∅, {1, . . . , nr} ⊆ NO },

q′0 = (q0, {1, . . . , nr}, ∅), ρ′0 = ρ0, F ′ = Q′ ↾ F , and defining δ′ as follows.

– If q
(ℓ,t)S

−−−→ q′ in A then (q, NO, NP)
(ℓ,t)S

−−−→ (q′, NO, NP), provided dom(S) =
NO ∪ NP and ℓ ∈ C ∪ {kn(i) | i ∈ NO ∪ NP }.

– If qO
(fr(i),t)S

−−−−−→ qP in A then (qO, NO, NP)
(fr(i),t)S

−−−−−→ (qP , NO ∪ {i}, NP \ {i}),
provided dom(S) = NO ∪ NP . If the transition is from qP to qO, the dual
holds.

– If q
N
−→ q′ in A then (q, NO, NP)

N
−→ (q′, NO \ N, NP \ N).

For each q ∈ Q′ we shall write O(q) and P (q) for its second and third components

respectively. We say A+ is non-overwriting if, for any q
(fr(i),t)S

−−−−−→ q′, we have that
i 6∈ O(q)∪P (q). Observe that the constructions presented in Definition 24 always
yield non-overwriting automata. We can show that the new automaton reaches
state q only if its non-empty registers are those in NO(q)∪NP (q) and, moreover,
each register in NO(q) (resp. NP (q)) is filled with an O-name (a P -name). Note
also that A+ is strongly deterministic, if A was.

For the next step, recall that we are using a finite set of tags T = TΓ⊢θ,
for some Γ, θ. The new automaton will feature states augmented with an extra
component N to record those P -names that were originally introduced by cx-
moves but have been replaced by ⊛. For O-states we need an extra component

S which records the symbolic store prior to hiding, and also an index i ∈ N ∪
{-} reporting whether the preceding move was a name replaced now by ⊛ (by
convention, if the preceding move was not such then the index is set to ‘-’).

Definition 30. Let A+ = 〈Q, q0, ρ0, δ, F 〉 be non-overwriting. We define an au-
tomaton A+ = 〈Q′, q′0, ρ

′
0, δ

′, F ′〉 with labels from L+ by setting

Q′ = { (q, N) | q ∈ QP , N ⊆ P (q) } ∪
{ (q, N, S, i) | q ∈ QO, N ⊆ P (q), S ∈ Stos, i ∈ N ∪ {-} }

q′0 = (q0, ∅), ρ′0 = ρ0, F ′ = Q′ ↾ F and by defining δ′ as follows.

qP
(ℓ,cx)S

−−−−→ q ℓ ∈ C ∪ {kn(j) | j ∈ O(q)}

(qP , N)
(ℓ,cx)S↾O(q)

−−−−−−−−→ (q, N, S, -)

qO
(ℓ,rx)S

−−−−→ q ℓ /∈ {kn(j) | j ∈ P (q)}

(qO , N, S′, i)
(ℓ〈S(i)〉,rx)S↾O(q)

−−−−−−−−−−−→ (q, N)

S↾(N\{i})=S′↾(N\{i})

i∈N

qP
(kn(j),cx)S

−−−−−−−→ q j ∈ P (q)

(qP , N)
(⊛〈S(j)〉,cx)S↾O(q)

−−−−−−−−−−−−→ (q, N, S, j)

qO
(kn(j),rx)S

−−−−−−−→ q j ∈ P (q)

(qO , N, S′, j)
(⊛〈S(j)〉,rx)S↾O(q)

−−−−−−−−−−−−→ (q, N)

S↾(N\{j})=S′↾(N\{j})

qP
(fr(j),cx)S

−−−−−−→ q

(qP , N)
(⊛〈S(j)〉,cx)S↾O(q)

−−−−−−−−−−−−→ (q, N ∪ {j}, S, j)

qO
(ℓ,rx)S

−−−−→ q ℓ /∈ {kn(j) | j ∈ P (q)}

(qO, N, S′, -)
(ℓ,rx)S↾O(q)

−−−−−−−−→ (q, N)

S↾N=S′↾N

qP
(ℓ,r)S

−−−→ q ℓ /∈ {kn(j) | j ∈ N}

(qP , N)
(ℓ,r)S↾O(q)∪(P (q)\N)

−−−−−−−−−−−−−→ (q, N, S, -)

qO
(ℓ,c)S

−−−−→ q ℓ /∈ {kn(j) | j ∈ N}

(qO , N, S′, -)
(ℓ,c)S↾O(q)∪(P (q)\N)

−−−−−−−−−−−−−−→ (q, N)

S↾N=S′↾N

qP
(kn(j),r)S

−−−−−−→ q j ∈ N

(qP , N)
(fr(j),r)S↾O(q)∪{j}∪(P (q)\N)

−−−−−−−−−−−−−−−−−−→ (q, N \ {j}, S, -)

q
N′

−−→ q′

(q, N, . . .)
N′

−−→ (q′, N \ N ′, . . .)

qP

(kn(j)/fr(j),r↓)S

−−−−−−−−−−→ q

(qP , N)
(⊛〈S(j)〉,r↓)S↾(O(q)\{j})

−−−−−−−−−−−−−−−−→ (q, N, S, j)

qP

(ℓ,r↓)S

−−−−→ q ℓ ∈ C

(qP , N)
(ℓ,r↓)S↾O(q)

−−−−−−−−→ (q, N, S, -)

Let us write JΓ ⊢ C : θK
ιΣ0
2 for all the protoplays from JΓ ⊢ C : θK2 that

begin with ιΣ0 .

Lemma 31. For any ιΣ0 ∈ I+
Γ⊢θ, the automaton LC M+

ιΣ0
is non-blocking, strongly

deterministic, non-overwriting and7
⋃

t∈L(LC M+
ιΣ0

)
ext(ιΣ0t) = comp(JΓ ⊢ C : θK

ιΣ0

2).

Proof. Note that the computation histories of the new automata have been ob-
tained by restricting the automata obtained from Lemma 26 so that they trace
out relevant plays only:

– O never uses P -names invisible to him thanks to rules8 4 (j in kn(j) has to
match (qO, N, S′, j)) and 6 (ℓ /∈ {kn(j) | j ∈ N}),

7 Here ext(· · ·) will stand for the set of extensions with respect to protoplays.
8 Counting from left to right, top to bottom.

– O will not change values referred to by P -names not available to him, because
restrictions of the form S ↾ · · · = S′ ↾ · · · forbid that.

The labels generate protoplays, because of the S ↾ · · · restrictions on symbolic
stores. The refreshments of Definition 14 are performed via rules 9 and 11 (as
well as introducing ⊛ in rules 3 and 5, if the P -names were introduced with cx

tags). Consequently, the lemma follows from Lemma 26. ⊓⊔

From now on we shall assume that from each non-initial state of LC M+
ιΣ0

it
is possible to reach a final state (if this is not the case, states violating this
reachability requirement can be removed without affecting the above lemma).
Note that because of strong determinacy, this implies that the automata will
not have ǫ-cycles. This technical assumption will allow us to relate language
equivalence to bisimulation in the next section.

7 Bisimulation

Here we define a notion of (weak) bisimilarity that will allow us to carry out
the test from Theorem 16. Note that, given a term, our second translation to
automata yields representatives for each complete protoplay in J· · ·K2. These
representatives are by no means canonical, as can be seen below.

Example 32. The following terms are equivalent.

f : unit → int ref ⊢ f(); f() ∼=
let z = ref (2) inwhile (!z) do (f(); z := case(!z)[0, 0, 1, · · ·]) : unit

The corresponding automata for J· · ·K0 (and J· · ·K2, which coincides with J· · ·K0
in this case) accept respectively the words given below.

(⋆, cf)∅(n1, rf)(n1,k1)(⋆, cf)(n1,k1)(n2, rf){(n1,k′
1),(n2,k2)}(⋆, r↓)

{(n1,k′
1),(n2,k2)}

(⋆, cf)∅(n1, rf)(n1,k1)(⋆, cf)(n2, rf)(n2,k2)(⋆, r↓)
∅

The notion of bisimulation to be introduced aims to identify different represen-
tatives of identical protoplays by checking that they represent consistent store
histories. First we define it on configuration graphs of automata. Let us say that
that stores Σ1, Σ2 are compatible, written Σ1 ≍ Σ2, if Σ1 ∪ Σ2 is a valid store
(i.e. for all a ∈ dom(Σ1) ∩ dom(Σ2), Σ1(a) = Σ2(a)).

Definition 33. Let Ai = 〈Qi, q0i, ρ0i, δi, Fi〉 be automata of type θ, for i = 1, 2,
and let us write F ǫ

i for the set of states that can reach some final state by means

of empty transitions. We call a relation R ⊆ Q̂1 × Ston1+n2 × Q̂2 a simulation
on A1 and A2 if, for all (q̂1, Σ, q̂2) ∈ R,

– if π1(q̂1) ∈ F1 then π1(q̂2) ∈ F ǫ
2 , (π1 the first-projection function);

– if q̂1
(ℓ,t)Σ1

−−−−→δ1 q̂′1 and π1(q̂1) ∈ Q1O then either q̂2
ǫ

−→δ2 q̂′2 and (q̂1, Σ, q̂′2) ∈
R, or there is a finite D ⊆ A such that, for all Σ2 ≍ Σ1 with dom(Σ2) = D,

there is some q̂2
(ℓ,t)Σ2

−−−−→δ2 q̂′2 with (q̂′1, Σ1 ∪ Σ2, q̂
′
2) ∈ R;

– if q̂1
(ℓ,t)Σ1

−−−−→δ1 q̂′1 and π(q̂1) ∈ Q1P then either q̂2
ǫ

−→δ2 q̂′2 and (q̂1, Σ, q̂′2) ∈

R, or there is some q̂2
(ℓ,t)Σ2

−−−−→δ2 q̂′2 with (q̂′1, Σ1 ∪ Σ2, q̂
′
2) ∈ R and Σ2 ≍

Σ1 ∪ (Σ ↾ (dom(Σ) \ dom(Σ1)));

– if q̂1
ǫ

−→δ1 q̂′1 then (q̂′1, Σ, q̂2) ∈ R.

We call R a bisimulation if both R and R−1 are simulations. We say that A1

and A2 are bisimilar, written A1 ∼ A2, if there is a bisimulation R such that
((q01, ρ01, ∅), ∅, (q02, ρ02, ∅)) ∈ R.

Although bisimilarity is an infinite notion, we can capture it with a finite (and,
hence, decidable) notion of symbolic bisimilarity, which relates states of the au-
tomata augmented with auxiliary finite structure, rather than configurations.
This can be achieved by keeping a log of how the registers of the two automata
are dynamically related, that is, which of their registers contain common names
and which contain private ones. Transitions can then be simulated by referring
to that log and updating it. For example, at the symbolic level, a transition

of the form q1
(kn(i),t)S1

−−−−−−→ q′1 of automaton A1 can be matched by A2 with

q2
(kn(j),t)S2

−−−−−−−→ q′2 if we know that registers i and j are related, and symbolic
stores S1 and S2 are equal at their related registers. If, however, our log tells us

that i is private to A1, then A2 can only simulate it by q2
(fr(j),t)S2

−−−−−−→ q′2 if q1, q2

are O-states.

Lemma 34. LC1 M+
ιΣ0

∼ LC2 M+
ιΣ0

iff comp(JΓ ⊢ C1K
ιΣ0

2) = comp(JΓ ⊢ C2K
ιΣ0

2).

Proof. L2R: Take s ∈ comp(JΓ ⊢ C1K
ιΣ0

2). By Lemma 31 there exists t1 ∈

L(LC1 M+
ιΣ0

) such that s ∈ ext(ιΣ0t1). Because LC1 M+
ιΣ0

∼ LC2 M+
ιΣ0

we can find

t2 ∈ L(LC2 M+
ιΣ0

) such that s ∈ ext(ιΣ0t2) by using s to resolve choices of missing
store values in the corresponding bisimulation game. Hence s ∈ comp(JΓ ⊢

C2K
ιΣ0

2). The other inclusion is symmetric.

R2L: Suppose LC1 M+
ιΣ0

6∼ LC2 M+
ιΣ0

. Because the automata are deterministic,
accept the same sets of extensions with respect to protoplays and final states

can always be reached, there must exist s ∈ comp(JΓ ⊢ C1K
ιΣ0

2) = comp(JΓ ⊢

C2K
Σ0
2) and j ∈ {1, 2} such that s ∈ ext(ιΣ0tj), where tj ∈ L(LCj M+

ιΣ0
), but

s 6∈ ext(ιΣ0t3−j) for any t3−j ∈ L(LC3−j M+
ιΣ0

), which contradicts Lemma 31. ⊓⊔

Theorem 35. Program equivalence for RedML
β→β
fin terms is decidable.

Proof. Let k be the number of equivalence classes of initial moves IΓ with regard
to name-permutability and let ι0, · · · , ιk be their representatives. Then it suffices

to verify LC1 M+
ιΣ0

∼ LC2 M+
ιΣ0

for all ι = ι0, · · · , ιk and all possible stores Σ0 with
domain Lι. Altogether only finitely many bisimulation queries need to be made.

⊓⊔

8 Further work

It would be desirable to understand what other models over infinite alphabets
are suitable for representing RedMLfin-terms featuring more complicated types.
For instance, it seems that a variant of pushdown automata would be needed
to capture terms of type ⊢ (unit → unit) → unit. Another interesting avenue for
future work concerns investigating relationships between automata over infinite
alphabets and history-dependent automata [9].

References

1. S. Abramsky and G. McCusker. Call-by-value games. In Proc. of CSL, LNCS
1414, pp 1–17. Springer-Verlag, 1997.

2. A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation indepen-
dence. In Proc. of POPL, pp 340–353. ACM, 2009.

3. M. Bojańczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proceedings of LICS, pp 7–16, 2006.

4. D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control
effects on local relational reasoning. In Proc. of ICFP, pp 143–156. ACM, 2010.

5. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

6. D. R. Ghica. Regular-language semantics for a call-by-value programming lan-
guage. In Proc. of MFPS, ENTCS 45. Elsevier, 2001.

7. M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

8. G. McCusker. On the semantics of Idealized Algol without the bad-variable con-
structor. In Proc. of MFPS, ENTCS 83. Elsevier, 2003.

9. U. Montanari and M. Pistore. An introduction to history dependent automata.
ENTCS 10, 1997.

10. A. S. Murawski. Functions with local state: regularity and undecidability. Theor.

Comput. Sci., 338(1/3):315–349, 2005.
11. A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground

recursion and DPDA equivalence. In Proc. of ICALP, LNCS 3580, pp. 917–929.
Springer, 2005.

12. A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML. In Proc. of

FOSSACS, LNCS 5504, pp 32–47. Springer-Verlag, 2009.
13. A. S. Murawski and N. Tzevelekos. Block structure vs scope extrusion: between

innocence and omniscience. In Proc. of FOSSACS, LNCS 6014, pp 33–47. Springer-
Verlag, 2010.

14. F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

15. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local state.
In A. D. Gordon and A. M. Pitts, editors, Higher-Order Operational Techniques

in Semantics, pages 227–273. Cambridge University Press, 1998.
16. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, University of

Cambridge Computing Laboratory, 1995. Technical Report No. 363.
17. N. Tzevelekos. Fresh-register automata. In Proceedings of POPL. ACM, 2011.

