
Investigations on the Dual Calculus

Nikos Tzevelekos

nikt@comlab.ox.ac.uk

Abstract

The Dual Calculus, proposed recently by Wadler, is the outcome of two distinct
lines of research in theoretical computer science:
A. Efforts to extend the Curry-Howard isomorphism, established between the
simply-typed lambda calculus and intuitionistic logic, to classical logic.
B. Efforts to establish the tacit conjecture that call-by-value reduction in lambda
calculus is dual to call-by-name reduction.
This paper initially investigates relations of the Dual Calculus to other calculi,
namely the simply-typed lambda calculus and the Symmetric lambda calculus.
Moreover, Church-Rosser and Strong Normalization properties are proven for the
calculus’ call-by-value reduction relation. Finally, extensions of the calculus to
second-order types are briefly introduced.

1 Introduction

1.1 Two lines of research leading to the Dual Calculus

The Dual Calculus, proposed by Wadler in [Wad03], is the outcome of two distinct lines of
research in theoretical computer science:

1. Efforts to extend the Curry-Howard isomorphism, established between the simply-typed
lambda calculus and intuitionistic logic, to classical logic.

2. Efforts to establish the tacit conjecture that call-by-value reduction in lambda calculus
is dual to call-by-name reduction.

Regarding the first line of investigation, the Curry-Howard isomorphism correlates two seem-
ingly diverse scientific fields, namely proof theory and type theory. It states a correspondence
between systems of formal logic and computational calculi: logic formulas are related to types,
and logic proofs are related to typed terms. More than that, proof normalization is related
to term reduction. This correspondence allows to use methods and properties of the one field
for the other, and it leads to a deeper understanding of foundational matters in theoretical
computer science.
Traditionally, classical logic was not taken into account in the Curry-Howard isomorphism
(see, for example, [GTL89, SU98]). The first attempt to add classical constructs to a compu-
tational calculus is present in the work of Griffin [Gri90], who defined a simply-typed lambda
calculus in which the law of double-negation elimination was expressed in the typing rules.
Griffin’s rule would read:

If M is a term of type ¬¬A, then C(M) is a term of type A

C is a control operator1 which adds further expressive power to the simply-typed lambda
calculus by allowing for some non-trivial jumps in computation. For example, using C we
can define the call/cc operator of Scheme language.
After the work of Griffin, the view that classical constructs could be used to extend pro-
gramming control features which would otherwise not be expressible in logical terms became

1In fact, C was introduced by Felleisen; see more, for example, in [FH92].

1

increasingly widespread. Parigot [Par92] refined the idea of Griffin to a more concrete cal-
culus, the λµ-calculus. This calculus is an extension of lambda calculus where one has the
ability to name arbitrary subterms of a term by µ-variables and to abstract on them. Thus,
operations can be applied directly to subterms of a term and control features such as C can
be easily simulated in the λµ-calculus. Using this “naming mechanism”, Parigot was able
to derive a typed λµ-calculus corresponding to a natural deduction system with multiple
conclusions. This latter system, called Classical Natural Deduction, is a system of classical
logic.
A different approach was taken by Barbanera and Berardi [BB96], who proposed the Sym-
metric λ-calculus, a classical simply-typed lambda calculus equipped with the following set
of types:

Type D ::= ⊥ | A , m-Type A, B ::= X | X⊥| A ∨B | A ∧B

with X standing for type variables. Thus, negation is a primitive type constructor in this
calculus, yet constrained only to type variables. Negation is extended to all types by the
usual De Morgan laws, and thus the authors manage to identify any m-type A with A⊥⊥.
Hence, having the law of double negation embedded in the syntax, this calculus corresponds
to propositional classical logic. Nevertheless, it does not follow closely the computational
paradigm, where double negation forms an embedding-projection pair, rather than an iso-
morphism. Further investigation on the Symmetric λ-calculus to second-order types was
done by Parigot [Par00].
Regarding the second line of investigation, the notion of ‘duality’ between call-by-value (CBV)
and call-by-name (CBN) reduction was first suggested by Filinski [Fil89]. Filinski defined a
symmetric lambda-calculus (SLC) in which there exist two distinct syntactic classes: values
and continuations. The notion of a continuation was a well established one at the time:

in any computation being part of a program there is some “rest of the program”
ready to absorb the result of the given computation and continue with execution
of following commands.

This “rest of the program” is called a continuation ([SW74]). Thus, there is some kind of
duality (or symmetry) between values and continuations in programming languages, in that
values yield data whereas continuations absorb data. This duality is part of SLC and Filinski
suggests that a similar kind of duality holds between CBV and CBN reduction (or evaluation)
strategies for SLC.
The suggestions of Filinski were established by Selinger in [Sel01] (first published in 1998),
who worked in the λµ-calculus. Selinger showed categorical duality between CBV and CBN
reduction in the λµ-calculus by use of control categories to model the CBN semantics and
co-control categories to model the CBV semantics.
Finally, Curien and Herbelin [CH00] defined the λ̄µµ̃-calculus, which is an extension of the
λµ-calculus having duals for λ- and µ-abstraction. In order to type these dual abstractions, a
difference (−) type constructor is included in the typed version of the calculus, as difference is
the De Morgan dual of implication –even though the operational interpretation of difference
is not very intuitive. For this calculus it was shown that CBV is dual to CBN in a De Morgan
fashion.

1.1.1 Summary

This paper investigates on the Dual Calculus of Wadler. In this first section we present the
Dual Calculus and its reduction relations, and examine its relation to other computational
calculi. In the second section we investigate syntactic properties of the Dual Calculus under
CBV reduction, namely the Church-Rosser and Strong Normalization properties. These are
original contributions and, in rough lines, follow and extend standard techniques from the
literature. Finally, in the third section we introduce extensions of the calculus to second-order
types.

2

1.2 The Dual Calculus

The lines of investigation presented above lead to the Dual Calculus ([Wad03]), which epito-
mizes both properties of being the Curry-Howard equivalent of classical logic and of its CBV
and CBN reduction relations being De Morgan duals. More than that, the calculus has the
advantage of simplicity in syntax and operational semantics.

1.2.1 Definitions

The Dual Calculus (DuCa) consists of types and objects, in the same way that the simply-
typed lambda calculus consists of types and terms. The types are the same as the formulas of
propositional logic, whereas the objects are divided into terms, coterms and statements. The
intended computational interpretation is this of terms being objects yielding data, whereas
coterms absorb data . In fact, this is very similar to the notion of values and continuations,
as presented in [Fil89]. The statements of DuCa represent cuts of terms upon coterms, that
is constructions consisting of a term and a coterm, where the term is yielding data to be
absorbed by the coterm.
Below we give the definition of DuCa we will be using throughout this paper.

Definition 1.1 (Dual Calculus. [Wad05])
DuCa consists of Types and Objects. The set of objects is the union of the sets of Terms,
Coterms and Statements:

Type A, B ::= X | A&B | A ∨B | ¬A
Object G, H ::= M | K | S
Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K

The typing rules involve three forms of sequents:

Left Sequent K : A ❙ Γ ➞ Θ

Right Sequent Γ ➞ Θ ❙ M : A

Center Sequent Γ ❙ M •K ❙➞ Θ

where Γ and Θ are antecedent and succedent sets respectively:

Antecedent Γ, ∆ ::= {x1 : A1, . . . , xn : An}
Succecedent Θ, I ::= {α1 : B1, . . . , αm : Bm}

with all xi’s and αi’s disjoint. We will usually omit the outer brackets in succedent and
antecedent sets and use comma notation for disjoint union (e.g. Γ, Γ′ ≡ Γ ⊎ Γ′).
The typing rules of DuCa are:

idL
α : A ❙ Γ ➞ Θ, α : A

idR
x : A, Γ ➞ Θ ❙ x : A

K : A ❙ Γ ➞ Θ

fst[K] : A&B ❙ Γ ➞ Θ

L : B ❙ Γ ➞ Θ
&L

snd[L] : A&B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A Γ ➞ Θ ❙ N : B
&R

Γ ➞ Θ ❙ 〈M, N〉 : A&B

Γ ➞ Θ ❙ M : A

Γ ➞ Θ ❙ 〈M〉inl : A ∨ B

Γ ➞ Θ ❙ N : B
∨R

Γ ➞ Θ ❙ 〈N〉inr : A ∨ B

K : A ❙ Γ ➞ Θ L : B ❙ Γ ➞ Θ
∨L

[K, L] : A ∨ B ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
¬L

not〈M〉 : ¬A ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ
¬R

Γ ➞ Θ ❙ [K]not : ¬A

x : A, Γ ❙ S ❙➞ Θ
LI

x.(S) : A ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ, α : A
RI

Γ ➞ Θ ❙ (S).α : A

Γ ➞ Θ ❙ M : A K : A ❙ Γ ➞ Θ
Cut

Γ ❙ M • K ❙➞ Θ

3

The above rules form the sequent calculus GW.
⊣

Note that there is no need to include rules for Weakening or Contraction, since these can be
derived from the above.
The letters we use to denote components of DuCa are standard in this paper. As above, for
types we use capital letters opening the alphabet (A, B, C, ...); for variables we use x, y, z, ...;
for terms M, N ; for covariables α, β, γ, ...; for coterms K, L; for objects G, H ; for antecedent
sets Γ, ∆; for succedent sets Θ, I.
In DuCa, variable and covariable abstractions are performed by dots ′.′ . For example, the rule
LI introduces the variable abstraction x.(S). Consequently, we have the usual convention
for free and bound occurrences of variables and covariables. For example, in x.(S) all occur-
rences of x inside S are bound, while the occurrence of x right before the dot is transparent.
Similar things hold for covariables.
The intended computational interpretation of objects in DuCa is as aforementioned: terms
stand for computations yielding data, whereas coterms stand for computations absorbing
data. Thus, sequents stand for computational scenarios where one supplies data to all vari-
ables (and coterms) of the sequent, and expects the computation to pass data to some
covariable (or a term to yield data).
Under this interpretation, a term x trivially yields the data supplied to x and a term 〈M, N〉
yields a pair of data of type A&B, consisting of the data yielded by terms M and N . Hence,
the type conjunction A&B corresponds to product of types. Dually, a coterm α absorbs the
data passed to α and a coterm [K, L] absorbs a datum of type A ∨B, which is passed on to
K or L according to this data being a left or right injection. Therefore, A∨B corresponds to
sum of types. For further details on the intended computational interpretation see [Wad03].
Note that the inference rules of GW are very similar to the inference rules of system LK of
Gentzen [Gen35] restricted to propositional logic2. This similarity is in fact a Curry-Howard
isomorphism. We can see this more clearly if we introduce the following abbreviations:

A ⊃ B ≡ ¬(A&¬B)

λx.M ≡ [z.(z • fst[x.(z • snd[not〈M〉])])]not (1)

N@L ≡ not〈〈N, [L]not〉〉

and thus A ⊃ B is a type, λx.M a term, and N@L a coterm of DuCa.
For these constructs we have the following familiar inference rules being derivable in GW:

Γ ➞ Θ ❙ M : A K : B ❙ Γ ➞ Θ
⊃ L

M@K : A ⊃ B ❙ Γ ➞ Θ

x : A, Γ ➞ Θ ❙ M : B
⊃ R

Γ ➞ Θ ❙ λx.M : A ⊃ B

1.2.2 Reduction relations

In [Wad03] two reduction relations are proposed for DuCa, representing call-by-value (CBV)
and call-by-name (CBN) approaches. In fact, both these relations are restrictions of a basic
reduction relation, which we present below.

Definition 1.2 (Basic Reduction Rb)
Rb is the one-step reduction relation yielded by the reduction rules listed below, when these

2One may also note that symbols for logical connectives follow Gentzen’s formulations.

4

are applied on subobjects of DuCa objects.

(β&1) 〈M, N〉 • fst[K] → M •K
(β&2) 〈M, N〉 • snd[L] → N • L
(β∨1) 〈M〉inl • [K, L] → M •K
(β∨2) 〈N〉inr • [K, L] → N • L
(β¬) [K]not • not〈M〉 → M •K
(βL) M • x.(S) → S{M/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α

(ν&1) 〈M, N〉 •K → M • x.(〈x, N〉 •K)
(ν&2) 〈M, N〉 •K → N • y.(〈M, y〉 •K)
(ν∨3) 〈M〉inl •K → M • x.(〈x〉inl •K)
(ν∨4) 〈N〉inr •K → N • y.(〈y〉inr •K)
(ν∨1) M • [K, L] → (M • [α, L]).α •K
(ν∨2) M • [K, L] → (M • [K, β]).β • L
(ν&3) M • fst[K] → (M • fst[α]).α •K
(ν&4) M • snd[L] → (M • snd[β]).β • L

For G, H ∈ DuCa, (G, H) ∈ Rb is usually written as G −→b H .
⊣

In rules βL and βR we notice the introduction of substitutions : the statement S{M/x} is
obtained from S if we substitute3 M for all the free occurrences of x in S, and similarly for
S{K/α}. In η- and ν-rules, x, y, α and β are all fresh.
Note that we will often use explicit notation in reduction arrows to indicate the reduction
rule responsible for a reduction (reduction step). For example, if G −→b H because of some

redex 〈M, N〉 • fst[K] inside G reducing to M •K, we may write G
β&1
−→b H .

The β-reduction rules listed above correspond to familiar cut elimination techniques for
LK (see for example [GTL89]), and demonstrate further the Curry-Howard isomorphism. η-
expansions are used to express the fact that all terms and coterms may be seen as abstractions.
Finally, the utility of ν-rules will be seen clearly later, when we introduce CBV and CBN
reduction relations (e.g. see comment following proposition 1.8).
Note that for a reduction relation R denoted by −→, we will denote

• its reflexive closure by −→=

• its transitive closure by −→+

• its reflexive transitive closure by −→→

Now, due to duality being present in its reduction rules, Rb is not confluent. For example,
(x • α).β • y.(z • γ) reduces both to x • α and to z • γ. Confluent reduction relations can be
obtained by placing restrictions on Rb. In particular, restrictions placed on Rb can lead to
confluent CBV and CBN reduction relations.
Due to the computational interpretation of terms and coterms, values are a subset of terms.
Dually, one defines covalues as coterms of special structure4.

Definition 1.3 (Values and Covalues)

Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not
Covalue P, Q ::= α | [P, Q] | fst[P] | snd[Q] | not〈M〉

⊣

Thus, variable abstractions are not values, and similarly for covariable abstractions. At this
point, the reader is advised to keep in mind the letters used to denote values and covalues
(as well as other syntactic classes), since these are standard in this paper.
Evidently, covalues are in a way the duals of values: covalues are to call-by-name what values
are to call-by-value.

Definition 1.4 (CBV Reduction Rv and CBN Reduction Rn. [Wad03])
The call-by-value (CBV) reduction relation Rv [resp. call-by-name (CBN) reduction relation
Rn] is the one-step reduction relation yielded by the CBV [CBN] reduction rules listed be-
low, when these are applied to subobjects of DuCa objects. For G, H ∈ DuCa, (G, H) ∈ Rv

3Note that we assume a tacit variable convention, in the style of [Bar84], so that such substitutions don’t
bound free variables inside M .

4The intuition behind these definitions can be found in [Wad03].

5

[(G, H) ∈ Rn] is usually written as G −→v H [G −→n H].

CBV rules CBN rules

(β&1) 〈V, W 〉 • fst[K] → V • K 〈M, N〉 • fst[P] → M • P

(β&2) 〈V, W 〉 • snd[L] → W • L 〈M, N〉 • snd[Q] → N • Q

(β∨1) 〈V 〉inl • [K, L] → V • K 〈M〉inl • [P, Q] → M • P

(β∨2) 〈W 〉inr • [K, L] → W • L 〈N〉inr • [P, Q] → N • Q

(β¬) [K]not • not〈M〉 → M • K [K]not • not〈M〉 → M • K

(βL) V • x.(S) → S{V/x} M • x.(S) → S{M/x}

(βR) (S).α • K → S{K/α} (S).α • P → S{P/α}

(ηL) K → x.(x • K) K → x.(x • K)

(ηR) M → (M • α).α M → (M • α).α

(ν&1) 〈M, N〉 • K → M • x.(〈x,N〉 • K) M • fst[K] → (M • fst[α]).α • K

(ν&2) 〈V, N〉 • K → N • y.(〈V, y〉 • K) M • snd[L] → (M • snd[β]).β • L

(ν∨1) 〈M〉inl • K → M • x.(〈x〉inl • K) M • [K, L] → (M • [α, L]).α • K

(ν∨2) 〈N〉inr • K → N • y.(〈y〉inr • K) M • [P, L] → (M • [P, β]).β • L

One clearly notes the duality in the definitions of Rv and Rn, which proposes that sums are
treated as ‘duals’ of products. This duality is manifested in [Wad03], a paper titled “CBV is
Dual to CBN”.
Another property to be discussed further ahead is this of confluence, or Church-Rosser prop-
erty (CR). Though it is clear that the case of the critical pair (x • α).β • y.(z • γ) is now
resolved in CBV or CBN, it is not clear that CR holds for these reduction relations. This is
studied in section 2, and it is shown that it holds indeed.

1.3 Relation to other calculi

We briefly examine how DuCa is related to some standard computational calculi. In [Wad03]
Wadler introduces CPS translations taking objects of DuCa to a restriction of the simply-typed
lambda calculus with sums and products. Inverse CPS translations are also introduced, and
it is shown that the CPS translation is a reflection. In [Wad05] translations to and from the
λµ-calculus are introduced, and it is shown that these form an equational correspondence.
Below we introduce a simple β-reduction-preserving embedding of the simply-typed lambda
calculus in the Dual Calculus (DuCa), which clarifies the fact that DuCa is an extension of the
lambda calculus. Afterwards, we examine a possible translation from DuCa to the Symmetric
λ-calculus and viceversa.

1.3.1 Embedding the lambda calculus

The three forms of reduction relations in DuCa, namely basic, call-by-value and call-by-
name reduction, are also present in the simply-typed lambda calculus. Here we will use
the call-by-value versions of both calculi. Moreover, we will use, for space economy, the
abbreviations of lambda abstraction and application for DuCa defined in (1). Note that
under these abbreviations we have the following simulation of common β-reduction:

λx.M • V @K
β
−→→v V • x.(M •K)

Now, the definition of the simply-typed lambda calculus is standard ([Bar84]).

Definition 1.5
The simply-typed lambda calculus consists of Types and Terms:

Type A, B ::= X | A ⊃ B
Term M, N ::= V | MN
Value V ::= x | λx.M

6

The set of terms is denoted by Λ. The typing rules for this calculus are:

Ax
x : A, Γ ⊢ x : A

Γ ⊢M : A ⊃ B Γ ⊢ N : A
App

Γ ⊢MN : B

Γ, x : A ⊢M : B
Abs

Γ ⊢ λx.M : A ⊃ B

where Γ is some set of assumptions x1 : B1, . . . , xn : Bn.
The call-by-value reduction relation Rλ

v is yielded by the reduction rule

(λx.M)V →M{V/x}

being applied to subterms of terms. For M, N ∈ Λ, we usually write M −→v N instead of
(M, N) ∈ Rλ

v . ⊣

The translation of the simply-typed lambda calculus is defined below. Note that all elements
(terms) of the source calculus are translated to terms of DuCa.

Definition 1.6
We define the following translation from simply-typed lambda calculus to DuCa:

(A)D ≡ A
(x)D ≡ x
(λx.M)D ≡ λx.(M)d

(V)d ≡ ((V)D • α).α
(MN)d ≡ ((M)d • (N)d@α).α ⊣

Note that the α’s in the last two lines above are fresh.
The reason for using this two-step definition for (M)d is mainly that thus, for every value V ,
(V)D is a value in DuCa. We can prove the following proposition.

Proposition 1.7

1. For any x, M, V, γ, L ∈ DuCa: λx.M • (V • γ).γ@L
βν
−→→v V • x.(M • L)

2. For any M, V, x ∈ Λ: (M)d{(V)D/x} ≡ (M{V/x})d

3. For any M ∈ Λ and α ∈ DuCa: ((M)d • α).α
βR
−→v (M)d.

Proof: The first claim is straightforward; the other two are proven by induction. �

Thus, we can prove that the translation defined produces the desired embedding.

Proposition 1.8 (Embedding of CBV simply-typed lambda calculus)

1. If M ∈ Λ and Γ ⊢M : A is derivable, then (Γ)D ➞ ❙ (M)d : (A)D is derivable.

2. For any x, M, V ∈ Λ: ((λx.M)V)d βν
−→→v (M{V/x})d.

Proof: 1 is proven by induction on the derivation of the former sequent in the simply-typed
lambda calculus. For 2, we have:

((λx.M)V)d ≡ ((λx.M)d • (V)d@α).α ≡ ((λx.(M)d • β).β • ((V)D • γ).γ@α).α

βR
−→v (λx.(M)d • ((V)D • γ).γ@α).α

βν
−→→v

prop.1.7(1)
((V)D • x.((M)d • α)).α

βL
−→v ((M)d{(V)D/x} • α).α

≡
prop.1.7(2)

((M{V/x})d • α).α
βR
−→v

prop.1.7(3)
(M{V/x})d

�

It is important to note that, under the defined translation, we need to use ν-reductions
in DuCa in order to preserve β-reductions of the simply-typed lambda calculus. Indeed, ν-
reductions are needed in proposition 1.7, and, in particular, the ν&1 rule is used (in the
omitted proof). This fact gives us a hint on the role of ν-rules in DuCa: they are rather
complementary to β-rules, facilitating some β-reductions otherwise forbidden by CBV (or
CBN) restrictions, than entirely novel rules.

7

1.3.2 Translating to and from the Symmetric Lambda Calculus

The Symmetric λ-calculus (Sλ-calculus) of Barbanera and Berardi ([BB96]) is similar to DuCa

in that it is a “classical” λ-calculus with symmetric abstractions. In fact, the two calculi are
even more similar: below we will define typing- and reduction-preserving translations between
them.

Definition 1.9
The terms of the Sλ-calculus are defined by

Terms u, v, w ::= x | µx.u | u • v | 〈u, v〉 | σ1(u) | σ2(u)

The types are given by

Type D ::= ⊥ | A

m-Type A, B, C ::= X | X⊥ | A&B | A ∨B

For each m-type A we define A⊥ by the usual De Morgan rules pushing negations inside
propositional connectives, and using double-negation elimination for type variables.
The typing rules of the Sλ-calculus are listed below. These involve sequents of the form
Γ ⊢ u : A , where Γ is some context set {x1 : A1, x2 : A2, ..., xn : An} .

id

Γ, x : A ⊢ x : A

Γ ⊢ u : A Γ ⊢ v : B
&I

Γ ⊢ 〈u, v〉 : A&B

Γ ⊢ ui : Ai

∨I (i = 1, 2)
Γ ⊢ σi(ui) : A1 ∨ A2

Γ, x : A ⊢ u : ⊥
¬I

Γ ⊢ µx.u : A⊥

Γ ⊢ u : A⊥ Γ ⊢ v : A
¬E

Γ ⊢ u • v : ⊥

The reduction relation R is the one-step reduction relation yielded by the reduction rules
listed below, when these are applied on subterms of terms.

(βL) µx.u • v → u{v/x}
(βR) u • µx.v → v{u/x}
(β&i) 〈u1, u2〉 • σiv → ui • v
(β∨i) σiu • 〈v1, v2〉 → u • vi

(ηL) µx.(u • x) → u
(ηR) µx.(x • u) → u

with x taken fresh in the η rules, and i = 1, 2. For (u, v) ∈ R we simply write u −→ v.
⊣

Below we define a translation of DuCa into the Sλ-calculus.

Definition 1.10
The translation ()o from objects of DuCa to terms of the Sλ-calculus is given by induction
on the syntax, given some fixed interpretation from covariables (and variables) of DuCa to
variables in the Sλ-calculus. It is accompanied by a types translation.

(X)o ≡ X (¬A)o ≡ ((A)o)⊥ (A&B)o ≡ (A)o&(B)o (A ∨B)o ≡ (A)o ∨ (B)o

(x)o ≡ x (α)o ≡ xα

(〈M, N〉)o ≡ 〈(M)o, (N)o〉 ([K, L])o ≡ 〈(K)o, (L)o〉

(〈M〉inl)o ≡ σ1((M)o) (fst[K])o ≡ σ1((K)o)

(〈N〉inr)o ≡ σ2((N)o) (snd[L])o ≡ σ2((L)o)

([K]not)o ≡ µx.x • (K)o (not〈M〉)o ≡ (M)o

((S).α)o ≡ µxα.(S)o (x.(S))o ≡ µx.(S)o

(M •K)o ≡ (M)o • (K)o

Finally, let (M : A)o ≡ (M)o : (A)o and (K : A)o ≡ (K)o : ((A)o)⊥ .

8

⊣

The translation defined above exploits duality of the calculus by identifying dual constructions
for sum and product, and ignoring constructions for negation. One may notice a redundancy
in translating [K]not to µx.x•(K)o, instead of (K)o. We include this redundancy on purpose,
in order to strongly preserve the β¬ reductions of DuCa.
It is not difficult to show that typing is preserved.

Proposition 1.11 Typing is preserved under the above defined translation:

Γ ➞ Θ ❙ M : A =⇒ (Γ)o, (Θ)o ⊢ (M : A)o

K : A ❙ Γ ➞ Θ =⇒ (Γ)o, (Θ)o ⊢ (K : A)o

Γ ❙ S ❙➞ Θ =⇒ (Γ)o, (Θ)o ⊢ (S)o : ⊥

Proof: By induction on DuCa derivations. �

Now, consider the reduction relation Rβη′

b yielded by restricting Rb to β-and η-rules, the
latter turned to η-contractions instead of η-expansions.

Definition 1.12
Rβη′

b is the reduction relation yielded by the same β-rules as Rb (definition 1.2), plus the
altered η-rules:

(ηL′) x.(x •K)→ K , (ηR′) (M • α).α→M

For G, H ∈ DuCa, (G, H) ∈ Rβη′

b may be written as G
βη′

−→b H .
⊣

Then Rβη′

b reductions are preserved by our translation.

Proposition 1.13 For G, H ∈ DuCa, if G
βη′

−→b H then (G)o −→ (H)o.

Proof: First we show by induction that for any G, M, K, x, α ∈ DuCa,

(G{M/x})o ≡ (G)o{(M)o/x} and (G{K/α})o ≡ (G)o{(K)o/xα}

whence the statement straightforwardly follows. �

To devise a translation from the Sλ-calculus to DuCa is a more complicated task. This is
mainly because of the identity A ≡ A⊥⊥ on m-types of the former calculus not being pre-
served in the latter. Therefore, amongst other specifications, we have to ‘encode’ somehow
the double-negation rule inside our translation. Moreover, we need some extra η-reduction

rules to be added to Rβη′

b in order to preserve reductions.

Definition 1.14
Rβη+

b is the reduction relation yielded by the same rules as Rβη′

b plus the η-rules:

(η¬) not〈([β]not • α).β〉 → α
(η&) 〈(x • fst[α]).α, (x • snd[β]).β〉 → x
(η∨) [x.(〈x〉inl • α), y.(〈y〉inr • α)] → α

For G, H ∈ DuCa, (G, H) ∈ Rβη+
b may be written as G

βη+
−→b H .

⊣

Below we define the translation from the Sλ-calculus to DuCa. Since DuCa is not symmetric
we necessarily need type-information for Sλ-terms. Therefore, the translation is from typed
Sλ-terms to typed DuCa objects, although in the definition we indicate types explicitly only
when necessary.

9

Definition 1.15
The translation ()p from typed terms of the Sλ-calculus to typed objects of DuCa is defined
by induction, given some fixed such translation for variables.

(X)p ≡ X (X⊥)p ≡ ¬X
(A1&A2)

p ≡ (A1)
p&(A2)

p (A1 ∨A2)
p ≡ (A1)

p ∨ (A2)
p

(x)p ≡ x (〈u, v〉)p ≡ 〈(u)p, (v)p〉
(σ1(u))p ≡ 〈(u)p〉inl (σ2(v))p ≡ 〈(v)p〉inr

(uA • vA⊥

)p ≡ (u)p • ((v)p)d when A ≡ X or A ≡ A1&A2

(uA • vA⊥

)p ≡ (v)p • ((u)p)d when A ≡ X⊥ or A ≡ A1 ∨A2

(µx.u)p ≡ (x.(u)p)d

()d is a partial internal translation in DuCa from typed terms to typed coterms, and viceversa,
which demorganly negates types. ()d is defined for terms typed with types

A, B ::= X | ¬X | A ∨B | A&B (2)

i.e. images of m-types under ()p. On variables and covariables it is defined by induction on
types; on other terms and coterms by use of ()d on variables and covariables.

(X)d ≡ ¬X (A1&A2)
d ≡ (A1)

d ∨ (A2)
d

(¬X)d ≡ X (A1 ∨A2)
d ≡ (A1)

d&(A2)
d

(x : X)d ≡ not〈x〉 : ¬X
(x : A1&A2)

d ≡ [x1.(x • fst[K1]), x2.(x • snd[K2])] : (A1)
d ∨ (A2)

d

where Ki : Ai ≡ (xi : (Ai)
d)d

(α : ¬X)d ≡ ([β]not • α).β : X
(α : A1 ∨A2)

d ≡ 〈(〈M1〉inl • α).α1, (〈M2〉inr • α).α2〉 : (A1)
d&(A2)

d

where Mi : Ai ≡ (αi : (Ai)
d)d

(M : A)d ≡ x′.(M •K ′) where K ′ : A ≡ (x′ : (A)d)d

(K : A)d ≡ (M ′ •K).α′ where M ′ : A ≡ (α′ : (A)d)d

Note that the cases for α : X and α : A1&A2 are given by the last line above, and similarly
for x : ¬X and x : A1 ∨A2.

⊣

In the above definition we explicitly use the fact that for any type A defined by (2) we have
((A)d)d ≡ A. The internal DuCa translation has several useful properties.

Lemma 1.16 Let x, y, M, N, α, K, L,Γ, Θ ∈ DuCa , A a be type as in (2) and B be an m-type,

1. (B)p belongs to the types in (2) and (B⊥)p ≡ ((B)p)d

2. Γ ➞ Θ ❙ M : A =⇒ (M : A)d ❙ Γ ➞ Θ

K : A ❙ Γ ➞ Θ =⇒ Γ ➞ Θ ❙ (K : A)d

3. (A ≡ ¬X
∨

A ≡ A1 ∨A2) =⇒ (M : A)d ≡ (x : A)d{M/x}

(M : A)d{N/y} ≡ (M{N/y})d

4.
(

(x : A)d ≡ K : (A)d ∧ (α : (A)d)d ≡M : A
)

=⇒
(

K{M/x}
βη+
−→→b α ∧ M{K/x}

βη+
−→→b x

)

5. ((M : A)d)d ≡ N : A =⇒ N
βη+
−→→b M

((K : A)d)d ≡ L : A =⇒ L
βη+
−→→b K

Proof: Item 1 is straightforward.
2 is shown by induction on the measures (|M |, |A|&∨, κM) and (|K|, |A|&∨, κK), where |A|&∨

is the (&∨)-complexity of type A and κM = 0 if M : A is x : X or x : A1&A2, otherwise

10

κM = 1 (symmetrically for κK).
The first statement of 3 is straightforward by definition. The second statement follows:

(M : A)d{N/y} ≡ (x : A)d{M/x}{N/y} ≡ (x : A)d{M{N/y}/x} ≡ (M{N/y})d

4 is shown by induction on (the (&∨)-complexity of) A using the added η-reduction rules.
5 is shown by a long computation using (among others) 4. �

Now, we can show that typing is preserved.

Proposition 1.17 Typing is preserved under the above defined translation:

Γ ⊢ u : A =⇒ (Γ)p ➞ ❙ (u : A)p

Γ ⊢ u : ⊥ =⇒ (Γ)p ❙ (u)p ❙➞

Proof: By straightforward induction on Sλ-derivations using the first two items of the pre-
vious lemma. �

Reductions are also preserved (note that
βη+

−→b
+ is the transitive closure of

βη+

−→b).

Proposition 1.18 Let uD, vD be typed Sλ-terms, if u −→ v then (uD)p βη+

−→b
+ (vD)p.

Proof: First we show that, for any Sλ-terms u and v, (u)p{(v)p/x} ≡ (u{v/x})p. We proceed

by induction on u; the interesting case is of u being a cut, u ≡ uA
1 • uA⊥

2 with A ≡ X or
A ≡ A1&A2 (the case of A ≡ X⊥ or A ≡ A1 ∨A2 is treated symmetrically):

(u)p{(v)p/x} ≡ (uA
1 • uA⊥

2)p{(v)p/x} ≡ ((u1)
p • ((u2)

p)d){(v)p/x}

≡ (u1)
p{(v)p/x} • ((u2)

p)d{(v)p/x}
lem1.16(3)
≡ (u1)

p{(v)p/x} • ((u2)
p{(v)p/x})d

IH
≡ (u1{v/x})p • ((u2{v/x})p)d ≡ (u1{v/x} • u2{v/x})p ≡ (u{v/x})p

Next, it suffices to show that reduction rules are preserved. Note that below we use plain
arrows for βη+ reductions. The cases of rules βL and βR follow from the above result on
substitution. Regarding β&1, we have that, if A ≡ A1&A2 and (x′ : (A)p)d ≡ K ′ : ((A)p)d

then,

(〈u1, u2〉
A • σ1(v)A⊥

)p ≡ 〈(u1)
p, (u2)

p〉 • x′.(〈(v)p〉inl •K ′)

K′≡...
−→ 〈(u1)

p, (u2)
p〉 • x′.((v)p • x1.(x

′ • fst[K1]))

−→→ (v)p • x1.((u1)
p •K1)

where (x1 : ((A1)
p)d)d ≡ K1 : (A1)

p.
If A1 ≡ X⊥ or A1 ≡ B1∨B2 then (v)p •x1.((u1)

p •K1) ≡ (u1 •v)p, since u1 : A1. Otherwise,
if A1 ≡ X or A1 ≡ B1&B2 then (v)p • x1.((u1)

p •K1) −→ (u1)
p •K1{(v)p/x1} ≡ (u1 • v)p.

The case of β∨1 is treated similarly.

Regarding ηL, (µx.(uA • xA⊥

))p ≡ (x.(uA • xA⊥

)p)d ≡ (M ′ • x.(uA • xA⊥

)p).α′ , with
(α′ : (A)p)d ≡M ′ : ((A)p)d. Now, if A ≡ X or A ≡ B1&B2 then,

(µx.(uA • xA⊥

))p ≡ (M ′ • x.((u)p • (x)d)).α′ −→ ((u)p • (x)d{M ′/x}).α′

lem1.16(4)
−→→ ((u)p • α′).α′ −→ (u)p

Otherwise, if A ≡ ¬X or A ≡ B1 ∨B2 then, taking (x′ : ((A)p)d)d ≡ K ′ : (A)p,

(µx.(uA • xA⊥

))p ≡ (M ′ • x.(x • ((u)p)d)).α′ −→ (M ′ • ((u)p)d).α′ ≡ (M ′ • x′.((u)p •K ′)).α′

−→ ((u)p •K ′{M ′/x′})).α′ lem1.16(4)
−→→ ((u)p • α′).α′ −→ (u)p

11

The case of ηR is similar. �

Finally, we note that the defined translations between types in DuCa and the Sλ-calculus
form a projection-embedding pair. That is, for any m-type A, ((A)p)o ≡ A holds5, while the
reverse direction, from DuCa into Sλ into DuCa, does not have this property: for A ≡ ¬(X&Y)
we have ((A)o)p ≡ (¬X∨¬Y) ≡/ A. The key point is that in DuCa we don’t have an involutive
negation.

2 Syntactic investigations

In this section we investigate some syntactic properties of the Dual Calculus (DuCa) un-
der call-by-value (CBV) reduction. Because of duality with call-by-name (CBN), all results
proven here have analogs for the call-by-name case.
First, we examine the untyped DuCa and prove confluence, or Church-Rosser property, under
CBV. The proof follows, in rough lines, the proof of βη-reduction being Church-Rosser (CR)
in the lambda calculus, as it is presented in [Bar84].
Another important syntactic property to examine is Strong Normalization (SN). For this, we
investigate the typed version of DuCa under call-by-value reduction, with certain restrictions
applied on reduction rules to avoid reduction loops. The proof of SN involves using transla-
tions of DuCa to other calculi, known to be SN, notably the call-by-value CPS translation of
[Wad03] and a translation to a simplified version of DuCa (called DuCa*), which we show to
be SN.
The section ends with a consideration of a restricted version of call-by-value reduction which
satisfies both the CR and SN properties.

2.1 Investigation of the Church-Rosser property

In this section we are interested in the untyped version of DuCa under call-by-value reduction.
The untyped DuCa consists solely of Objects. The set of objects is the union of the set of
Terms, Coterms and Statements:

Object G, H ::= M | K | S
Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S)
Statement S, T ::= M •K
Value V, W ::= x | 〈V, W 〉 | 〈V 〉inl | 〈W 〉inr | [K]not

Recall also that the call-by-value (CBV) reduction relation Rv is the one-step reduction
relation yielded by the CBV reduction rules listed below, when these are applied to subobjects
of DuCa objects (for G, H ∈ DuCa, (G, H) ∈ Rv is denoted by G −→v H).

(β&1) 〈V, W 〉 • fst[K] → V •K
(β&2) 〈V, W 〉 • snd[L] → W • L
(β∨1) 〈V 〉inl • [K, L] → V •K
(β∨2) 〈W 〉inr • [K, L] → W • L
(β¬) [K]not • not〈M〉 → M •K
(βL) V • x.(S) → S{V/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α

(ν&1) 〈M, N〉 •K → M • x.(〈x, N〉 •K)
(ν&2) 〈V, N〉 •K → N • y.(〈V, y〉 •K)
(ν∨1) 〈M〉inl •K → M • x.(〈x〉inl •K)
(ν∨2) 〈N〉inr •K → N • y.(〈y〉inr •K)

For the rest of this section, the restriction of Rv to βν-rules (i.e. β-rules and ν-rules) will

be denoted by
βν
−→, and called simply βν-reduction relation. Analogously, the restriction to

η-rules will be denoted by
η
−→, and called η-reduction relation.

Let us recall the definition of the Church-Rosser property.

5Note that the same, i.e. ((u : A)p)o ≡ u : A, doesn’t hold for typed Sλ-terms. In order to get the weaker
((u : A)p)o −→→ u : A we’d have to add η-reduction rules for & and ∨ in Sλ.

12

Definition 2.1 (Church-Rosser properties)
Let R ⊂ U2 be some reduction relation denoted by −→, for some universe set U . Then,

• R satisfies the Diamond Property if, for all M, N, K ∈ U ,
if N ←−M −→ K , then there is some L ∈ U such that N −→ L←− K.

• R satisfies the Church-Rosser property, or is Church-Rosser (CR), if its transitive re-
flexive closure (−→→) satisfies the diamond property.

• R satisfies the Weak Church-Rosser property (WCR) if, for all M, N, K ∈ U ,
if N ←−M −→ K , then there is some L ∈ U such that N −→→ L ←←− K.

⊣

The purpose of this section is to show that Rv in the dual calculus is Church-Rosser. We
follow the steps below.

• We show that the βν-reduction relation is CR (lemma 2.6).

• We show that the η-reduction relation is CR (lemma 2.7).

• We show that
βν
−→→ and

η
−→→ commute (lemma 2.11).

For the first step, we define a parallel reduction relation−→p , such that
βν
−→= ⊆−→p ⊆

βν
−→→.

Definition 2.2
−→p is defined as follows. Let G, M, N, K, L, V, W, S ∈ DuCa; if M −→p M ′ , V −→p

M ′′ , N −→p N ′ , W −→p N ′′ , K −→p K ′ , L −→p L′ , S −→p S′ then,

(pid) G −→p G
(pβ&1) 〈V, W 〉 • fst[K] −→p M ′′ •K ′ (p•) M •K −→p M ′ •K ′

(pβ&2) 〈V, W 〉 • snd[L] −→p N ′′ • L′ (p〈, 〉) 〈M, N〉 −→p 〈M ′, N ′〉
(pβ∨1) 〈V 〉inl • [K, L] −→p M ′′ •K ′ (p〈〉inl) 〈M〉inl −→p 〈M ′〉inl
(pβ∨2) 〈W 〉inr • [K, L] −→p N ′′ • L′ (p〈〉inr) 〈M〉inl −→p 〈N ′〉inl
(pβ¬) [K]not • not〈M〉 −→p M ′ •K ′ (p[]not) [K]not −→p [K ′]not
(pβL) V • x.(S) −→p S′{M ′′/x} (p().) (S).α −→p (S′).α
(pβR) (S).α •K −→p S′{K ′/α} (p[,]) [K, L] −→p [K ′, L′]
(pν&1) 〈M, N〉 •K −→p M ′ • x.(〈x, N ′〉 •K ′) (pfst[]) fst[K] −→p fst[K ′]
(pν&2) 〈V, N〉 •K −→p N ′ • y.(〈M ′′, y〉 •K ′) (psnd[]) snd[L] −→p snd[L′]
(pν∨1) 〈M〉inl •K−→p M ′ • x.(〈x〉inl •K ′) (pnot〈〉) not〈M〉 −→p not〈M ′〉
(pν∨2) 〈N〉inr •K −→p N ′ • y.(〈y〉inr •K ′) (p.()) x.(S) −→p x.(S′)

⊣

First, we show that parallel reduction preserves values.

Proposition 2.3 Suppose M −→p N . Then, M is a value iff N is.

Proof: The forward direction by induction on M being a value, the reverse by induction on
N being so. �

Moreover, parallel reduction satisfies the diamond property. To prove this, we need a substi-
tution lemma.

Lemma 2.4 (Substitution) Let G, G′, V, V ′, K, K ′ ∈ DuCa with G −→p G′, V −→p V ′,
K −→p K ′. Then, for any variable x and covariable α,

G{V/x} −→p G′{V ′/x}

G{K/α} −→p G′{K ′/α}

13

Proof: The proof is by straightforward induction on G ∈ DuCa. The base cases (of G ≡
y, G ≡ x, G ≡ α or G ≡ β) are trivial, since G ≡ G′. The induction step is done by a long
case analysis on G and all cases are straightforwardly proven using the IH. �

Lemma 2.5 The relation −→p defined above satisfies the diamond property. That is, for all
G, G1, G2 ∈ DuCa, if G1 p←− G −→p G2, then there exists Gc ∈ DuCa such that G1 −→p

Gc p←− G2.

Proof: See the Appendix. �

Therefore, the βν-reduction relation is CR.

Lemma 2.6 The βν-reduction relation is Church-Rosser; that is, for all

G, G1, G2 ∈ DuCa, if G1
βν
←←− G

βν
−→→ G2, then there exists Gc ∈ DuCa such that G1

βν
−→→

Gc
βν
←←− G2.

Proof: By definition of the parallel reduction we have that
βν
−→= ⊆ −→p ⊆

βν
−→→.

Taking transitive closures in this formula, we have that −→p + ≡
βν
−→→. But, since −→p

satisfies the diamond property, −→p+ is CR, by a simple diagram chase. �

An easier result is that the η-reduction relation is CR.

Lemma 2.7 The η-reduction relation is Church-Rosser; that is, for all

G, G1, G2 ∈ DuCa, if G1
η
←←− G

η
−→→ G2, then there exists Gc ∈ DuCa such that G1

η
−→→

Gc
η
←←− G2.

Proof: It suffices to show that
η
−→ satisfies the diamond property, since then the claim

follows by a simple diagram chase. But this is straightforward: for every context C,

C{K}
η //

η

((QQQQQQQQQQQQQ

η
wwppppppppppp

C{x.(x •K)}

η

((QQQQQQQQQQQQ

η
vvmmmmmmmmmmmm

C{K ′}
η // C{x.(x •K ′)} C′{K}

η // C′{x.(x •K)}

and similarly for C{M}. �

Now, regarding βν-reductions, we do the following distinction.

Definition 2.8
All βν-reductions are called simple reductions, except if they happen by application of βL or
βR rules; these latter are called sub≤1 or sub>1 reductions:

V • x.(S)
βL
−→ S{V/x} is a sub≤1 reduction if x occurs at most once in S,

otherwise it is a sub>1 reduction. Similarly for the βR rule.

⊣

The following lemma concerns η-reductions that destroy values.

Lemma 2.9 Let V be a value, M a non-value term, and K a coterm. Then,

V •K
η
−→M •K implies M •K

βν
−→→ V •K

where M •K
βν
−→→ V •K involves only simple or sub≤1 reductions.

14

Proof: First note that, if
η
−→ reduces the whole of V , we trivially have:

V •K
η
−→ (V • x).x •K

βR
−→ V •K

where x is fresh, and thus the βR-reduction is sub≤1.

So suppose that
η
−→ reduces inside V . Since V is turned to a non-value, V cannot be of

the type [L]not. Repeating this argument several times, we come to the conclusion that the
η-reduction above is in fact:

E{W} •K
η
−→ E{(W • α).α} •K where

E ::= {} | 〈E, W ′〉 | 〈W ′, E〉 | 〈E〉inl | 〈E〉inr

Therefore, we proceed by induction on V and a case analysis on E. The case where E ≡ {}
is dealt with above. It also includes the base case V ≡ x.
For the inductive step, we have the following reductions.

〈E{W}, W ′〉 •K
η
−→ 〈E{(W • α).α}, W ′〉 •K

ν
−→ E{(W • α).α} • y.(〈y, W ′〉 •K)

(IH) βν
−→→ E{W} • y.(〈y, W ′〉 •K)

βL
−→ 〈E{W}, W ′〉 •K

and similarly for the 〈W ′, E{W}〉 case. Also,

〈E{W}〉inl •K
η
−→ 〈E{(W • α).α}〉inl •K

ν
−→ E{(W • α).α} • y.(〈y〉inl •K)

(IH) βν
−→→ E{W} • y.(〈y〉inl •K)

βL
−→ 〈E{W}〉inl •K

and similarly for the 〈E{W}〉inr case. �

Then, we can prove the following lemmata.

Lemma 2.10 If G, G1, G2 ∈ DuCa, and G1
βν
←− G

η
−→ G2, then either

• G2
βν
−→→ G, by use of simple or sub≤1 reductions, or

• if G
βν
−→ G1 is simple or sub≤1, then there exists Gc such that

G1
η
−→= Gc

βν
←− G2, and G2

βν
−→ Gc is simple or sub≤1;

otherwise, if G
βν
−→ G1 is sub>1, then there exists Gc such that

G1
η
−→→ Gc

βν
←− G2, and G2

βν
−→ Gc is sub>1.

Proof: In the Appendix. �

Lemma 2.11 (Commutativity)
βν
−→→ and

η
−→→ commute; that is, for all G, G′, G′′ ∈ DuCa,

if G′ βν
←←− G

η
−→→ G′′, then there exists some Gc ∈ DuCa such that G′ η

−→→ Gc
βν
←←− G′′.

Proof: Suppose that

G′ ≡ Hm
βν
←− · · ·

βν
←− H2

βν
←− H1

βν
←− G

η
−→ G1

η
−→ G2

η
−→ · · ·

η
−→ Gn ≡ G′′

and assume n > 0 (the case n = 0 is trivial). We do induction on m; the base case, m = 0,
is trivial.
So fix some m > 0. We claim that there exist u1, u2, . . . un ∈ DuCa such that,

G
η //

βν0

��

G1
η //

βν1

����

· · ·
η // Gn

βνn

����
H1

η // // u1
η // // · · ·

η // // un

hence G

βν

��

η // // Gn

βν

����
H1

η // // un

15

Thus, applying the claim, we only need to prove commutativity for the reduction chain,

G′ ≡ Hm
βν
←− · · ·

βν
←− H2

βν
←− H1

η
−→→ un

for which the IH on m applies.

Hence, it suffices to prove our claim. By hypothesis, H1
βν0

←− G
η
−→ G1. Now, by lemma 2.10,

if
βν0

−→ is a simple or sub≤1 reduction, then one of the following diagrams must be the case,

G
η //

βν0

��

G1

βν1′

����
H1

η(id)

=
$$II

II
II

II
II

G

βν0

��
u1 ≡ H1

or G
η //

βν0

��

G1

βν1

��
H1

η

=
// u1

In both cases
βν1′

−→→ and
βν1

−→ include only simple or sub≤1 reductions. Thus, we can reuse this
reasoning repeatedly and finally get the following diagram, which proves the claim in this
case.

G
η // //

βν0

��

Gn−1
η //

βν

��

Gn

βν
����

H1

η

�� ��6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

w1
η

=
//

βν

��

w′
1

βν
����

w2
η

=
//

βν

��

w′
2

βν
����

...

βν

��

...

βν
����

vn−1 ≡ wk
η

=
// w′

k ≡ un

Now suppose
βν0

−→ is a sub>1 reduction. Then, by lemma 2.10, one of the first two diagrams
below must be the case.

G
η //

βν0

��

G1

βν1′

����
H1

η(id)

$$ $$II
II

II
II

II
G

βν0

��
u1 ≡ H1

G
η //

βν0

��

G1

βν1

��
H1

η // // u1

G
η //

βν0

��

G1

βν(simple or sub≤1)

����
H1

η

!! !!CC
CC

CC
CC

w1

βν(sub>1)

��
u1

with
βν1′

−→→ including only simple or sub≤1 reductions and
βν1

−→ being a sub>1 reduction. Hence,
both diagrams have the form of the third diagram above.

Reasoning thus repeatedly and handling Gi
βν
−→→ wi in the same way as G

βν0

−→ H1 previously

16

(where
βν0

−→ was simple or sub≤1), we have the following diagram.

G
η //

βν0(sub>1)

��

G1
η //

βν

����

G2
η //

βν
����

· · ·
η // Gn−1

η //

βν

����

Gn

βν

����

H1

η

%% %%JJJJJJJJJJ
w1

η

=
//

βν(sub>1)

��

w′
1

βν
����

u1

η

%% %%KKKKKKKKKK w2
η

=
//

βν(sub>1)

��

· · ·

u2

η

$$ $$IIIIIIIIII

. . .
η

%% %%JJJJJJJJJJJ
wn−1

βν(sub>1)

��

η

=
// w′

n−1

βν

����
un−1

η

'' ''NNNNNNNNNNN
wn

βν(sub>1)

��
un

which proves the claim and the lemma. �

Combining the results above we prove confluence for the call-by-value reduction relation.

Theorem 2.12 Rv is Church-Rosser.

Proof: By lemmata 2.6,2.7 and 2.11, as in [Bar84]. �

2.2 Strong Normalization

In this section we are interested in the typed version of the Dual Calculus (DuCa) under
call-by-value reduction, and our aim is to prove that the calculus is strongly normalizing. Of
course, we have to place certain restrictions on the reduction rules, and particularly on η-
and ν-rules, as divergence is otherwise evident. We will call the resulting reduction relation
RSN

v .
Regarding the restrictions on ν-rules, divergencies may arise, for example, in the following
cases.

〈x〉inl •K −→ x • y.(〈y〉inl •K) −→ x • y.(y • z.(〈z〉inl •K)) −→ . . .

A reasonable restriction to avoid the above would be to restrict ν-rules to non-value terms.
Nevertheless, η-rules can help in the breaking of this restriction, as in

〈x〉inl •K −→ 〈(x • α).α〉inl •K −→ (x • α).α • y.(〈y〉inl •K) −→ . . .

Moreover, η-rules can diverge on their own:

K −→ x.(x •K) −→ x.(x • y.(y •K)) −→ . . .

K −→ x.(x •K) −→ y.(y • x.(x •K)) −→ . . .

Other divergences arise by the ability to create β-redices that can be immediately contracted.
A set of restrictions which resolves all of the above –and other– cases is proposed below.

Definition 2.13
RSN

v is the one-step reduction relation yielded by the following rules, when these are applied

17

to subobjects of DuCa objects, respecting restrictions R := Rν ∪Rη ∪Rη′.

(β&1) 〈V, W 〉 • fst[K] → V •K
(β&2) 〈V, W 〉 • snd[L] → W • L
(β∨1) 〈V 〉inl • [K, L] → V •K
(β∨2) 〈W 〉inr • [K, L] → W • L
(β¬) [K]not • not〈M〉 → M •K
(βL) V • x.(S) → S{V/x}
(βR) (S).α •K → S{K/α}

(ηL) K → x.(x •K)
(ηR) M → (M • α).α

(ν&1) 〈M, N〉 •K → M • x.(〈x, N〉 •K)
(ν&2) 〈V, M〉 •K → M • y.(〈V, y〉 •K)
(ν∨1) 〈M〉inl •K → M • x.(〈x〉inl •K)
(ν∨2) 〈M〉inr •K → M • y.(〈y〉inr •K)

Rν. In the ν-rules, M is a non-value term.

Rη. In the η-rules, M and K are non-abstraction objects (i.e. not (S).α or x.(S)).

Rη′. η-rules are not allowed to be applied to terms [resp. coterms] that are immediately
followed by [immediately follow] a cut ′•′ , or to values that are immediate subjects to
〈 , N〉 , 〈V, 〉 , 〈 〉inl or 〈 〉inr .

For G, H ∈ DuCa, (G, H) ∈ RSN
v is written simply as G −→ H .

⊣

We will prove that these restrictions are adequate for our purpose: RSN
v is indeed SN. The

steps we follow for this proof are the following.

• We devise a simplified version6 of DuCa, called Dual Calculus* (DuCa*), and prove SN

for DuCa* using the method of reducibility sets.
DuCa* is accompanied by a reduction relation that uses only βR and βL rules. In DuCa*
we have a ‘neutralizing dot’ symbol ′

⊙
′ for variable and covariable abstractions, over

which β-reductions are disallowed. Moreover, in the absence of all β-rules apart from
βR and βL, we use the more general notion of neutral terms instead of values (see
definition 2.16).
We also introduce a translation from DuCa to DuCa* which η- and ν-expands objects
and preserves β-reductions. The translation thus identifies terms with their η-reducts
and converts ν-reductions to β-reductions.

• We present the call-by-value CPS translation of the Dual Calculus, which was intro-
duced in [Wad03]. Under this translation reductions are preserved and in some cases
one-step reductions are preserved or lengthened. Moreover, the reduction relation of
the target calculus is SN.

• Using the results of the previous steps, we prove SN.

Note 2.14. Having introduced a translation from DuCa to the Symmetric λ-calculus in section
1.3.2 which preserves almost all one-step reductions, it would be expected to try and prove
SN for DuCa through the known SN result for Sλ-calculus (as proven in [BB96]). The problem
that would arise is that here we use η-expanding rules in our reduction relation, in contrast to
section 1.3.2 and [BB96], where η-contracting ones are used. Moreover, Sλ does not contain
ν-rules. For these reasons, the proof in [BB96] cannot be easily adjusted to our purposes, so
we prefer following the above plan (which is also more fun).

Let us recall the definition of Strong Normalization.

Definition 2.15
Let R ⊂ U2 be some reduction relation on some universe U . Then,

• if G ∈ U , then G is Strongly Normalizing (under R), or simply SN, if there is no infinite
R-reduction sequence starting from G.

• R is Strongly Normalizing if all elements of U are SN.

Moreover, if G ∈ U is SN, then l(G) is the length of the longest R-reduction path starting
from G.

⊣
6Note that we use DuCa* only as a step for proving SN for DuCa; otherwise DuCa* has no use.

18

2.2.1 The reduction relation of DuCa* is SN

We introduce an auxiliary calculus similar to DuCa.

Definition 2.16 (DuCa*, the sequent calculus GW* and the reduction relation R*)
DuCa* is a typed calculus consisting of Types and Objects. The set of objects is the union of
the sets of Terms, Coterms and Statements:

Type A, B ::= X | A&B | A ∨B | ¬A
Object G, H ::= M | K | S
Term M, N ::= Mn | (S).α
Neutral Term Mn ::= (S)⊙α
Coterm K, L ::= Kn | x.(S)
Neutral Coterm Kn ::= x⊙(S)
Statement S, T ::= M •K

An object G of DuCa* is neutral if it is a neutral term, or a neutral coterm, or a statement.
R* is the one-step reduction relation yielded by the following rules, when these are applied
to subobjects of DuCa* objects, respecting restrictions Rη′.

(βL) Mn • x.(S) → S{Mn/x}
(βR) (S).α •K → S{K/α}

Rη′. The η-rules are not allowed to be applied to terms [resp. coterms] that are immediately
followed by [immediately follow] some cut ′•′.

For G, H ∈ DuCa, (G, H) ∈ R* is written as G −→ H .
The typing rules for DuCa* are the same as those of DuCa (i.e. of system GW), with the addition
of RI⊙ and LI⊙ rules introducing ′

⊙
′:

x : A, Γ ❙ S ❙➞ Θ
LI⊙

x⊙(S) : A ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ, α : A
RI⊙

Γ ➞ Θ ❙ (S)⊙α : A

The addition of these rules yields the sequent calculus GW*.
⊣

Note that by the above definition neutral objects are preserved by reduction: if G is neutral
and G −→ G′, then G′ is neutral.
As noted above, DuCa* differs from DuCa in the addition of ′

⊙
′ and the usage of the more

general notion of neutral terms instead of values. In particular, ′
⊙
′ is a ‘neutralizing dot’ for

abstractions, as we can’t apply β-rules over it; for example:

Mn • x.(S)→ S{Mn/x} but Mn • x⊙(S) 9 S{Mn/x}

On the other hand, in the absence of extra β-rules, as in the DuCa, we can simplify the
distinctions inside terms and make use of neutral terms instead of values.
Now, we introduce notation regarding derivable sequents that type objects of DuCa*. We also
introduce notation for ‘reduction’ between such sequents.

Definition 2.17
Let G ∈ DuCa* ; we introduce the set TG of sequents typing G as follows. For any sequent s,

• σ ∈ TG(A, Γ, Θ) if σ is derivable in GW* and either

σ ≡ Γ ➞ Θ ❙ M : A and G is the term M , or

σ ≡ K : A ❙ Γ ➞ Θ and G is the coterm K, or

σ ≡ Γ ❙ S ❙➞ Θ and G is the statement S.

• σ ∈ TG(A) if σ ∈ TG(A, Γ, Θ) for some Γ, Θ.

19

• σ ∈ TG(Γ, Θ) if σ ∈ TG(A, Γ, Θ) for some type A.

• σ ∈ TG if σ ∈ TG(A, Γ, Θ) for some A, Γ, Θ.

We say that G is typed if TG 6= ∅.
Moreover, if G, G′ ∈ DuCa*, σ ∈ TG(A, Γ, Θ) , σ′ ∈ TG′(A, Γ, Θ) and G −→ G′ then σ −→ σ′ .

⊣

According to the above, if σ ∈ TG and σ ∈ TH , then G ≡ H . Moreover, for all statements S
and types A, TS = TS(A). This reflects the fact that statements are not assigned types, but
are typed iff their components are typed with the same type. Further, an object G of the
calculus can be assigned more than one type and, on the other hand, we allow for objects G
with TG = ∅. For example, 〈x, x〉 • [a, a] is not typed.
Now, subject reduction holds for DuCa*, along with two other useful properties.

Proposition 2.18 (Weakening, M for x, Subject Reduction) Let G, G′, M, K ∈ DuCa*,

1. If TG(A, Γ, Θ) 6= ∅ then TG(A, Γ ⊎ (x : B), Θ) 6= ∅ and TG(A, Γ, Θ ⊎ (α : B)) 6= ∅,

any fresh variable x and fresh covariable α.

2. If TG(A, Γ ⊎ (x : B), Θ) 6= ∅ and TM (B, Γ, Θ) 6= ∅ then TG{M/x}(A, Γ, Θ) 6= ∅,

and if TG(A, Γ, Θ ⊎ (α :B)) 6= ∅ and TK(B, Γ, Θ) 6= ∅ then TG{K/α}(A, Γ, Θ) 6= ∅.

3. If G −→ G′ and σ ∈ TG(A, Γ, Θ), some sequent σ, then there exists a sequent

σ′ ∈ TG′(A, Γ, Θ) and thus σ −→ σ′.

Proof: 1 (weakening) is proven by straightforward induction on the sequent typing G, and
the same holds for 2 (M for x). For 3 (subject reduction), the case of G reducing to G′ by
η-rules is straightforward. As far as β-rules are concerned, the claim is proven by substituting
proofs follows from 1 and 2. �

Neutral objects of DuCa* are like boxes the inside of which cannot be accessed by outer
reductions; neutral terms are like variables with extra structure and neutral coterms are like
covariables with extra structure. In particular, substituting a neutral term [resp. coterm]
for a variable [covariable] does not produce new redices apart from those inside the term
[coterm]. This remark is implicitly used in the proof of the following lemma.

Lemma 2.19 If M is a neutral term and S a statement, and both M and S are SN, then
M • x.(S) is SN for any variable x.
If K is a neutral coterm and S a statement, and both K and S are SN, then (S).α •K is SN

for any covariable α.

Proof: We prove only the first claim; the second is proven similarly.
We do induction on l(M) + l(S). Let S0 ≡ M • x.(S). If S0 −→ S?, then either S? ≡
M ′ • x.(S′), with M −→M ′ or S −→ S′, or S? ≡ S{M/x}.
In the former case, we have l(M ′) + l(S′) < l(M) + l(S), so M ′ • x.(S′) is SN by the IH.
Now, if we prove that in the latter case S{M/x} is SN, then S0 reduces only to SN objects,
so S0 is SN. In order to prove that, we show something stronger:

For any statement S ∈ SN and variable x, if we mark the occurrences of x inside
S by 1, 2, . . . , n, then for any tuple M1, . . . , Mn of neutral SN terms,

S1 ≡ S{M1/1x, M2/2x, . . . , Mn/nx} ∈ SN

where Mi/ix denotes the substitution of Mi for the i-occurrence of x in S.

The proof of this claim is by induction on l(S). For the base case, that is of S being in
normal form, we have that the redexes inside S1 are exactly those inside the Mi’s, since S
doesn’t contain any redexes and all Mi’s are neutral. But then S1 is SN, since all Mi’s are

20

SN.
For the inductive step, assume l(S) > 0 and suppose that there is some infinite reduction
sequence starting from S1. Then, since the Mi’s are SN, in this sequence it must be the case
that,

S1 −→→ S2 −→ S′
1 , with S2 ≡ S{M ′

1/1x, . . . , M ′
n/nx} , some Mi −→→M ′

i ,

i = 1, . . . , n, and S′
1 ≡ S′{N1/1x, . . . , Nn+k/n+kx}

where the reduction S −→ S′ produces k ∈ Z new occurrences of x. In S′
1, all x’s are replaced

by some of the M ′
i ’s (denoted by Nj , j = 1, . . . , n + k). Then, by IH, since N1, . . . , Nn+k

are all SN and neutral, and S′ is SN with l(S′) < l(S), S′
1 is SN, 	to this being an infinite

reduction sequence. Hence, S1 is SN, and thus our initial S{M/x} is SN. �

A similar idea is applied in the following lemma.

Lemma 2.20 Let S be a statement and α a covariable. If S{K/α} is SN, for some coterm
K, then S is SN.

Proof: See the Appendix. �

Back to the sequent calculus, we order derivable sequents by their degree.

Definition 2.21
Let G ∈ DuCa* and σ ∈ TG. Then, the degree d(σ) of σ is:

d(σ) := (c(σ),¬cut(σ))

where c(σ) is an integer and ¬cut(σ) a boolean. These are given by:

• if σ ≡ K : A ❙ Γ ➞ Θ , then c(σ) = c(Γ) + c(Θ) , ¬cut(σ) = 1,

• if σ ≡ Γ ➞ Θ ❙ M : A , then c(σ) = c(Γ) + c(Θ) , ¬cut(σ) = 1,

• if σ ≡ Γ ❙ S ❙➞ Θ , then c(σ) = c(Γ) + c(Θ) , ¬cut(σ) = 0,

• if Γ ≡ x1 : A1, x2 : A2, . . . , xn : An , then c(Γ) = c(A1) + c(A2) + · · ·+ c(An),

• if Θ ≡ α1 : B1, α2 : B2, . . . , αn : Bm , then c(Θ) = c(B1) + c(B2) + · · ·+ c(Bm),

• if A is some type, then c(A) is its complexity, that is the number of connectives con-
tained in A.

We order degrees lexicographically.
⊣

We define the set of reducible sequents, which is a subset of derivable sequents.

Definition 2.22
The set of reducible sequents Red is defined by induction on the degree of (derivable) sequents:

• if d(σ) = (0, n), n ∈ {0, 1} and σ ∈ TG, then σ ∈ Red ⇐⇒ G ∈ SN

• if d(σ) = (c, n), n ∈ {0, 1}, c > 0 and σ ∈ TG, then σ ∈ Red ⇐⇒ cl(σ) ⊂ Red

• if d(σ) = (c, 1), c > 0, σ ≡ Γ ➞ Θ ❙ M : A, σ ∈ TM , then cl(σ) is the set:

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙➞ Θ, Θ0

if σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0 ∈ (Red ∩ TK0
) , d(σ1) < d(σ) , d(σ2) < d(σ) , and if M is

neutral, then K0 is neutral.7

7This is in fact an abbreviation for:

cl(σ) := {σ2 | ∃A, K0, Γ0, Θ0, σ1.[(σ2 ≡ Γ,Γ0 ❙ M • K0 ❙➞ Θ,Θ0) ∧ (σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0)

∧ (σ1 ∈ (Red ∩ TK0
)) ∧ (d(σ1) < d(σ)) ∧ (d(σ2) < d(σ)) ∧ (M neutral =⇒ K0 neutral)]}

Note that σ, σ1 being derivable implies that σ2 is derivable, thus d(σ2) is defined.

21

• if d(σ) = (c, 1), c > 0, σ ≡ K : A ❙ Γ ➞ Θ, σ ∈ TK , then cl(σ) is the set:

σ2 ≡ Γ, Γ0 ❙ M0 •K ❙➞ Θ, Θ0

if σ1 ≡ Γ0 ➞ Θ0 ❙ M0 : A ∈ (Red ∩ TM0
) , d(σ1) < d(σ) , d(σ2) < d(σ) , and M0 is

neutral.

• if d(σ) = (c, 0), c > 0, σ ≡ Γ ❙ S ❙➞ Θ, σ ∈ TS , then cl(σ) is the union of the sets:

σ1 ≡ Γ ➞ Θ− {β : B} ❙ (S)⊙β : B , if β : B ∈ Θ, c(B) > 0

σ2 ≡ y⊙(S) : B ❙ Γ− {y : B} ➞ Θ , if y : B ∈ Γ, c(B) > 0

⊣

Note that the above definition is valid. In all cases, the question of σ ∈ Red reduces to
questions of σ′ ∈ Red, with d(σ′) < d(σ). For example, in the last case we have that, for all
such σ1, d(σ1) < d(σ), since we subtract a non-base type B from Θ, and σ being derivable
implies σ1 is derivable.
Note also that , if σ −→ σ′, then d(σ) = d(σ′).
The following proposition assures that for any type A we can find terms and coterms typed
with A using only variables and covariables of base type.

Proposition 2.23 For any type A there exist derivable sequents:

σ1 ≡ Γ1 ➞ Θ1 ❙ M : A

σ2 ≡ K : A ❙ Γ2 ➞ Θ2

such that d(σ1) = d(σ2) = (0, 1) and M, K are neutral and SN.

Proof: We derive σ1 by:

x : X ➞ α : X, β : A ❙ x : X α : X ❙ x : X ➞ α : X, β : A

x : X ❙ x • α ❙➞ α : X, β : A

x : X ➞ α : X ❙ (x • α)⊙β : A

and similarly σ2. �

The following lemma shows the relation between the reducibility set Red of sequents and
the set SN of strongly normalizing objects of DuCa*.

Lemma 2.24 Let σ be some derivable sequent, then,

CR1: If σ ∈ (TG ∩ Red), some G, then G is SN.

CR3: If σ ∈ TG, some neutral G, and σ −→ σ′ implies that σ′ ∈ Red, then σ ∈ Red.
This implies:
CR3′: If σ ∈ TG, G neutral and SN, then σ ∈ Red.

CR2: If σ ∈ (Red ∩ TG), some G, and σ −→ σ′, then σ′ ∈ Red.

Proof: See the Appendix. �

A straightforward corollary of the lemma is the following.

Corollary 2.25 Let G be some object of DuCa*, then:

• If G is neutral and SN, then TG ⊂ Red.

• If (TG ∩ Red) 6= ∅ and G is neutral, then TG ⊂ Red.

22

• If K is some coterm and (TK ∩ Red) 6= ∅, then TK ⊂ Red.

Proof: The first claim is clear from CR3′.
For the second, if σ ∈ (TG ∩ Red), then, by CR1, G is SN, so TG ⊂ Red by first claim.
For the last claim, if K is neutral, then we use the previous claim. Otherwise, assume
K ≡ x.(S) and take some σ ≡ x.(S) : A ❙ Γ ➞ Θ ∈ TK . Then, σ ∈ Red iff for all neutral
M0 and σ1 ≡ Γ0 ➞ Θ0 ❙ M0 : A ∈ (Red ∩ TM0

) with d(σ1) < d(σ):
if σ2 ≡ Γ, Γ0 ❙ M0 • x.(S) ❙➞ Θ, Θ0 and d(σ2) < d(σ), then σ2 ∈ Red.
For this, it suffices to show that M0•x.(S) is SN, by first claim. But x.(S) is SN, by hypothesis
and CR1, and thus S is SN. Moreover, by CR1, M0 is also SN, thus, by lemma 2.19, M0•x.(S)
is SN. �

We can prove the following lemma for sequents typing non-neutral terms.

Lemma 2.26 Let σ ≡ Γ ➞ Θ ❙ (S).α : A be some derivable sequent. If, for all coterms
L with TL(A) ∩ Red 6= ∅, we have TS{L/α} ⊂ Red, then σ ∈ Red.

Proof: Assume the hypothesis. σ ∈ Red iff for all coterms K0 and sequents σ1 ∈ (TK0
∩Red)

with d(σ1) < d(σ) and σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0:

if σ2 ≡ Γ, Γ0 ❙ (S).α •K0 ❙➞ Θ, Θ0 and d(σ2) < d(σ) , then σ2 ∈ Red.

Now take any such σ1, K0, σ2. By corollary 2.25, Red ⊃ Tα 6= ∅, ∴ TS ⊂ Red, by hypothesis.
Since (S).α is typed, S is also typed, thus, by CR1, S ∈ SN. Since K0 is also SN, by CR1, we
show by induction on l(S) + l(K0) that, if σ1 ∈ (TK0

(A) ∩ Red) and for all coterms L with
TL(A) ∩ Red 6= ∅ we have TS{L/α} ⊂ Red, then σ2 ∈ Red.
So suppose that σ2 −→ σ′

2. By CR3, it suffices to show that σ′
2 ∈ Red. Now, σ′

2 may be:

• σ′
2 ≡ Γ, Γ0 ❙ S{K0/α} ❙➞ Θ, Θ0 , where, since σ1 ∈ (TK0

(A) ∩ Red), we have, by
hypothesis, TS{K0/α} ⊂ Red, ∴ σ′

2 ∈ Red.

• σ′
2 ≡ Γ, Γ0 ❙ (S′).α •K ′

0 ❙➞ Θ, Θ0 , where S −→ S′ or K0 −→ K ′
0.

By CR2, σ′
1 ≡ K ′

0 : A ❙ Γ0 ➞ Θ0 ∈ Red. Thus, if we show that TS′{L/α} ⊂ Red, for
all relevant L, then we can use the IH on l(S) + l(K0) and get σ′

2 ∈ Red.
Now take some relevant L. By corollary 2.25, it suffices to show that S′{L/α} is SN.
Since (S).α and L are typed with A, (S).α • L is also typed, ∴ S{L/α} is typed,
∴ S{L/α} ∈ SN, by hypothesis and CR1. But S −→ S′ implies that S{L/α} −→
S′{L/α} , ∴ S′{L/α} is SN. �

Now, strong normalization of DuCa* follows from the next theorem.

Theorem 2.27 Let G be some element of DuCa* with free variables amongst x1, x2, . . . , xn

and covariables amongst α1, α2, . . . , αm.
Then, for all coterms Li with TLi

∩ Red 6= ∅, i = 1, . . . , m, and neutral terms Nj with
TNj
∩ Red 6= ∅, j = 1, . . . , n,

TG{f} ⊂ Red , where f := N1/x1, . . . , Nn/xn, L1/α1, . . . , Lm/αm

Proof: Note first that if G{f} is not typed, then the claim trivially holds. Assume then
that TG{f} 6= ∅. We do induction on G. The base cases, that is of G ≡ x or G ≡ α, are clear
by corollary 2.25.
For the inductive step, we do a case analysis on G, showing only the most difficult cases. Let
σ ∈ TG{f}(A), some type A:

– G ≡ 〈M, N〉. Then G{f} ≡ 〈M{f}, N{f}〉, thus both M{f}, N{f} are typed. By IH,
TM{f} ⊂ Red and TN{f} ⊂ Red, so, by CR1, both N{f} and M{f} are SN.
But then 〈M{f}, N{f}〉 ≡ 〈M, N〉{f} is SN, so, by corollary 2.25, σ ∈ Red.

– G ≡ (S)⊙α. Then G{f} ≡ (S{f, α/α})⊙α, thus S{f, α/α} is typed. By IH, TS{f,α/α} ⊂

23

Red, therefore, by CR1, S{f, α/α} is SN.
But then (S{f, α/α})⊙α is SN, so, by corollary 2.25, σ ∈ Red.

– G ≡ (S).α. By IH, TS{f,L/α} ⊂ Red, for any coterm L with TL∩Red 6= ∅. Then, TS{f,L/α} ⊂
Red for any coterm L with TL(A) ∩ Red 6= ∅. Now S{f, L/α} ≡ (S{f}){L/α}, since f is a
substitution in (S).α and it doesn’t introduce new α’s. Moreover, σ ≡ Γ ➞ Θ ❙ (S{f}).α : A,
some Γ, Θ, so, by lemma 2.26, σ ∈ Red.

– G ≡ x.(S). By definition and corollary 2.25, it suffices to show that, for every relevant
neutral M0 and σ1 ∈ (TM0

(A) ∩ Red), M0 • (x.(S){f}) is SN. Now G{f} ≡ x.(S{f, x/x}),
thus S{f, x/x} is typed and, by IH and CR1, S{f, x/x} ∈ SN. Moreover, M0 ∈ SN by CR1,
therefore M0 • (x.(S){f}) is SN by lemma 2.19.

– G ≡ M • K. Then G{f} ≡ M{f} • K{f}, thus both M{f}, K{f} are typed: say with
type B. There are two subcases:

• G ≡ (S).α •K. Let
σ ≡ Γ ❙ ((S).α •K){f} ❙➞ Θ

Since σ is derivable, σ1 and σ2 are also derivable:

σ1 ≡ Γ ➞ Θ ❙ (S).α{f} : B

σ2 ≡ K{f} : B ❙ Γ ➞ Θ

By IH, T(S).α{f} ⊂ Red, so σ′
1 ∈ (Red ∩ T(S).α{f}), where

σ′
1 ≡ Γ ➞ Θ, β : Ab ❙ (S).α{f} : B

with Ab some big type and β fresh.
Now note that, by IH, σ2 ∈ Red and, because of Ab, d(σ2) < d(σ′

1). Then, by definition,
σ′

1 ∈ Red implies σ′ ∈ (T((S).α•K){f} ∩ Red), where

σ′ ≡ Γ ❙ ((S).α •K){f} ❙➞ Θ, β : Ab

with d(σ′) = (c, 0) < (c, 1) = d(σ′
1), some c. But then, by corollary 2.25, σ ∈ Red.

• G ≡M0 •K, M0 neutral: treated dually as the above case. �

Corollary 2.28 If G ∈ DuCa* is typed, then G is SN.

Proof: Straightforward from the previous theorem and CR1. �

2.2.2 Translation from DuCa to DuCa*

Although objects of DuCa are also objects of DuCa*, we devise a transition function from
the former calculus to the latter so that we can apply some preprocessing. In particular, the
translation function deliberately η- and ν-expands terms and coterms, to remedy the absence
of η- and ν-rules in DuCa*.

Definition 2.29
We define functions () η© and () ν© from objects of DuCa to objects of DuCa* by mutual

24

recursion, as follows (note below that β, γ, y, z are fresh in their contexts).

(K) η©≡

{

y.(y • (L) ν©) if K ≡ y.(y • L)

y.(y • (K) ν©) otherwise
(M) η©≡

{

((N) ν©• β).β if M ≡ (N • β).β

((M) ν©• β).β ow

(M •K) ν©≡ (M) ν©• (K) ν©

(x.(S)) ν©≡ x.((S) ν©) (α) ν©≡ α

(fst[K]) ν©≡ fst[(K) η©] (snd[K]) ν©≡ snd[(K) η©]

([K, L]) ν©≡ [(K) η©, (L) η©] ([K]not) ν©≡ [(K) η©]not

((S).α) ν©≡ ((S) ν©).α (x) ν©≡ x

(〈V 〉inl) ν©≡ 〈(V) ν©〉inl (〈V 〉inr) ν©≡ 〈(V) ν©〉inr

(〈V, W 〉) ν©≡ 〈(V) ν©, (W) ν©〉 (not〈M〉) ν©≡ not〈(M) η©〉

(〈V, M〉) ν©

(〈M, N〉) ν©

(〈M〉inl) ν©

(〈M〉inr) ν©

≡
(

(M) η©• z.(〈(V) ν©, z〉 • β)
)

.β

≡
(

(M) η©• y.
((

(N) η©• z.(〈y, z〉 • α)
)

.α • β
))

.β

≡ ((M) η©• y.(〈y〉inl • β)).β

≡ ((M) η©• z.(〈z〉inr • β)).β



















M non-value

For any G ∈ DuCa , its translation in DuCa* is (G) η©.
⊣

Note that we don’t really translate types; G is typed by A iff (G) η© is.

Lemma 2.30 For any G, K, V, α, x ∈ DuCa ,

(G) ν©{(V) ν©/x} ≡ (G{V/x}) ν© and (G) ν©{(K) ν©/α} ≡ (G{K/α}) ν©

Proof: By straightforward induction on G. Observe that a term M is a value iff M{V/x}
and M{K/α} are, and that M is of the form (N •β).β iff M{V/x} and M{K/α} are. Similar
observations for coterms. �

The translation conveniently preserves reductions.

Proposition 2.31 For any G, H ∈ DuCa ,

G
η
−→ H =⇒ (G) η©≡ (H) η©

G
ν
−→ H =⇒ (G) η©−→+ (H) η©

G
βL/βR
−→ H =⇒ (G) η©−→+ (H) η©

Proof: For the first implication suppose the reduction is ηR. Then, for some non-abstraction
term M , G ≡ C0{M} −→ C0{(M • α).α} ≡ H . Because of the restrictions in RSN

v , C0{M}
must be in one of the forms:
{

M , C{〈M, N〉} , C{〈N, M〉} , C{〈M〉inl} , C{〈M〉inr} , C{not〈M〉} if M non-value

V , C{〈N ′, V 〉} , C{not〈V 〉} if M a value V

with N term, N ′ non-value term and C context. Now observe that in every case there is
some context C∗ in DuCa* such that (C0{M})

η© ≡ C∗{(M) η©} and C∗{((M • α).α) η©} ≡
(C0{(M • α).α}) η©. But, since M is non-abstraction, (M) η©≡ ((M) ν©• α).α ≡ ((M • α).α) η©.
The case of the reduction being ηL is similar.
Now, suppose the reduction happens because of some statement S ν-reducing to T : G ≡
C{S}

ν
−→ C{T } ≡ H . Then, we can see that there exists a context C∗ in DuCa* such that

25

(G) η©≡ C∗{S ν©} and (H) η©≡ C∗{T ν©}. Therefore, it suffices to show that (S) ν©−→+ (T) ν©.
But this follows from the definition of () ν©. For example,

(〈M, V 〉 •K) ν©≡
(

(M) η©• y.
((

(V) η©• z.(〈y, z〉 • α)
)

.α • β
))

.β • (K) ν©

−→ (M) η©• y.
((

(V) η©• z.(〈y, z〉 • α)
)

.α • (K) ν©
)

−→ (M) η©• y.
(

(V) η©• z.(〈y, z〉 • (K) ν©)
)

−→+ (M) ν©• y.
(

(V) ν© • z.(〈y, z〉 • (K) ν©)
)

−→ (M) ν©• y.
(

〈y, (V) ν©〉 • (K) ν©
)

≡ (M • y.(〈y, V 〉 •K)) η©

Also, for N non-value we have,

(〈M, N〉 •K) ν©≡
(

(M) η©• y.
((

(N) η©• z.(〈y, z〉 • α)
)

.α • β
))

.β • (K) ν©

−→ (M) η©• y.
((

(N) η©• z.(〈y, z〉 • α)
)

.α • (K) ν©
)

−→= (M) ν©• y.
((

(N) η©• z.(〈y, z〉 • α)
)

.α • (K) ν©
)

≡ (M • y.(〈y, N〉 •K)) η©

The cases for the other ν-rules are proven similarly.
Finally, suppose the reduction happens because of some statement S βLR-reducing to T :

G ≡ C{S}
βL/βR
−→ C{T } ≡ H . Then, (G) η© ≡ C∗{S ν©} and (H) η© ≡ C∗{T ν©}, for some

context C∗. Because of the previous lemma (S) ν©−→+ (T) ν©, hence (G) η©−→+ (H) η©. �

2.2.3 The call-by-value CPS translation

CPS translations are very useful when examining extensions of lambda calculi, because they
supply us with a way of projecting given properties of the source calculus to a well-behaved
lambda calculus. In our case, using a CPS translation of the Dual Calculus enables us to
prove that the reduction relation yielded by some β-reduction rules is strongly normalizing,
since these reduction rules are projected in the target calculus.
The call-by-value CPS translation of the Dual Calculus we’ll be using was defined in [Wad03].
We quote that definition.

Definition 2.32 (Call-by-value CPS translation. [Wad03])
The call-by-value CPS translation is defined for types and objects of the DuCa as follows.

(X)V ≡ X (x)V ≡ x
(A&B)V ≡ (A)V × (B)V (〈V, W 〉)V ≡ 〈(V)V , (W)V 〉
(A ∨B)V ≡ (A)V + (B)V (〈V 〉inl)V ≡ inl(V)V

(¬A)V ≡ (A)V → R (〈W 〉inr)V ≡ inr(W)V

([K]not)V ≡ (K)v

(M •K)v ≡ (M)v(K)v

(x)v ≡ λγ.γx
(〈M, N〉)v ≡ λγ.(M)v(λx.(N)v(λy.γ〈x, y〉))
(〈M〉inl)v ≡ λγ.(M)v(λx.γ(inlx))
(〈N〉inr)v ≡ λγ.(N)v(λy.γ(inry))
([K]not)v ≡ λγ.γ(λz.(K)vz)
((S).α)v ≡ λα.(S)v

(α)v ≡ λz.αz
([K, L])v ≡ λz.case z of inlx⇒ (K)vx, inry ⇒ (L)vy
(fst[K])v ≡ λz.case z of 〈x,−〉 ⇒ (K)vx
(snd[L])v ≡ λz.case z of 〈−, y〉 ⇒ (L)vy
(not〈M〉)v ≡ λz.(λγ.(M)vγ)z
(x.(S))v ≡ λx.(S)v

⊣

26

Note that boldface lambda-abstractions are administrative, that is, they are reduced auto-
matically on translation.
As follows from the following definition, the target calculus is a restriction of the simply-typed
lambda calculus with products and sums.

Definition 2.33 (The target calculus. [Wad03])
The CPS target calculus is a typed calculus containing values, terms, coterms and statements:

Type A, B ::= X | A×B | A + B | A→ R

Value V, W ::= x | 〈V, W 〉 | inlV | inrW | K
Term M, N ::= λα.S
Coterm K, L ::= λx.S
Statement S, T ::= αV | case V of 〈x,−〉 ⇒ S | case V of 〈−, y〉 ⇒ T |

case V of inlx⇒ S, inry ⇒ T | M V

The reduction relation is defined by the following reduction rules.

(β×1) case 〈V, W 〉 of 〈x,−〉 ⇒ S → S{V/x}
(β×2) case 〈V, W 〉 of 〈−, y〉 ⇒ T → T {W/y}
(β+1) case inlV of inlx⇒ S, inry ⇒ T → S{V/x}
(β+2) case inrW of inlx⇒ S, inry ⇒ T → T {W/y}
(β →) (λα.S)(λx.T) → S{T {−/x}/α−}

⊣

Note that in the above definition S{T {−/x}/α−} stands for S with all occurrences of the
form α V replaced by T {V/x}.
Calculi of this type have been investigated in depth and many nice properties are known to
hold. One such property is strong normalization.

Proposition 2.34 The target calculus of the call-by-value CPS translation is SN under the
given reduction relation.

Proof: It suffices to show that the target calculus is a restriction of the lambda calculus
with sums and products of Dougherty [Dou93], since the latter was shown to be SN.
But this clearly holds. For example, case V of 〈x,−〉 ⇒ S is an abbreviation for (λx.S)π1V
and case V of inlx ⇒ S, inry ⇒ T is an abbreviation for [λx.S, λy.T]V . Moreover, the
reductions of the target calculus are valid in the calculus of Dougherty. �

A very handy property of the CPS translation is that it preserves Rv-reductions.

Proposition 2.35 ([Wad03]) Let M, N, K, L, S, T be in the Dual Calculus. Then,

M −→v N =⇒ (M)v −→→ (N)v

K −→v L =⇒ (K)v −→→ (L)v

S −→v T =⇒ (S)v −→→ (T)v

In particular, if the left-hand side reduction is of type βL, βR, η or ν, then, in the right-hand
side, −→→ can be replaced by ≡. Otherwise, it can be replaced by −→+.

Proof: The proposition is proven in [Wad03]. The last part of it is not completely stated
in that paper, yet it is straightforward from the definition of the CPS translation and the
results that proceed this proposition in [Wad03]. �

Wadler goes further by defining an inverse CPS translation, which translates elements M
of the target calculus to objects (M)v of the Dual Calculus. Finally, he proves that the CPS
translation is a reflection.

27

2.2.4 Strong normalization of call-by-value reduction in DuCa

Using the results of the previous sections, we show that the call-by-value reduction relation
RSN

v is strongly normalizing in DuCa. The SN result is the following.

Theorem 2.36 For any G ∈ DuCa, there is no infinite RSN
v -reduction sequence starting from

G.

Proof: Let G ∈ DuCa and suppose that there is some infinite RSN
v -reduction sequence starting

from G: say G −→ G1 −→ G2 −→ Then, by proposition 2.35, there is a sequence:

(G)v −→→ (G1)
v −→→ (G2)

v −→→ . . .

in the target calculus of the CPS translation. By proposition 2.34, the target calculus is SN,
so there is some last element in the sequence, say Mn. Therefore, there is some 1 ≤ m ≤ n
and some im such that, for all i ≥ im, (Gi)

v ≡ Mm. But then, by proposition 2.35, in the
sequence

Gim
−→ Gim+1 −→ Gim+2 −→ . . .

all reductions are instances of βL, βR, η or ν. Now, by proposition 2.31, this produces a
sequence

(Gim
) η©−→→ (Gim+1)

η©−→→ (Gim+2)
η©−→→ . . .

in DuCa*. By corollary 2.28, DuCa* is SN, so there is some last element in the sequence, say
Gl. Therefore, there is some 1 ≤ k ≤ l and some jk such that, for all j ≥ jk, (Gj)

η©≡ Gk.
But then, by proposition 2.31, in the sequence

Gjk
−→ Gjk+1 −→ Gjk+2 −→ . . .

all reductions are instances of ηL or ηR. This is a contradiction to the fact that, under RSN
v ,

every η-reduction reduces by one the η-redices of the object it is applied to. �

2.3 A call-by-value reduction to satisfy both SN and CR

In this section we present a restricted version of the call-by-value reduction relation in DuCa

which satisfies both CR and SN. The version of the reduction relation we use is RSN
v of the

previous section with some more restrictions on the η-rules. The added restrictions cope with
separations of the following form. For M a non-value term,

M •K ←− [K]not • not〈M〉 −→ [x.(x •K)]not • not〈M〉 −→ M • x.(x •K)

The reduction relation with the new restrictions is called RSN
v

′.

Definition 2.37

The reduction rules of RSN
v

′ are those of RSN
v (definition 2.13), while the restrictions of RSN

v
′

are those of RSN
v with the addition of:

Rη′′. η-rules are not allowed to be applied to coterms that are immediate subjects to []not.

⊣

Note that values followed by a cut cannot be reduced to non-values using RSN
v

′.
It is clear that, since RSN

v
′ is a restriction of RSN

v and the latter is SN, RSN
v

′ is SN. Therefore,
we need only to show satisfaction of the CR property, which is much easier with SN at hand.
Indeed, it suffices to prove WCR (Weak CR), because of the known result (see [Bar84]):

SN ∧ WCR⇒ CR (3)

Below, βν-reduction relation is RSN
v

′ restricted to β- and ν-rules, and η-reduction relation is
RSN

v
′ restricted to η-rules.

28

Lemma 2.38 The βν- and η-reduction relations are WCR.

Proof: For both cases we do a case analysis on some G1 ←− G −→ G2. The proofs are
straightforward, as restrictions on ν- and η-rules do not allow for non-trivial cases. �

We now prove WCR for RSN
v

′.

Lemma 2.39 RSN
v

′ satisfies the Weak Church-Rosser property (WCR); that is, for all G, G1, G2 ∈
DuCa, if G1 ←− G −→ G2, then there exists some Gc ∈ DuCa such that G1 −→→ Gc ←←− G2.

Proof: The proof is by a case analysis on G −→ G1 and the possible combinations for
G −→ G2. By lemma 2.38, we can omit the cases of both reductions being βν or both being
η. Therefore, by symmetry, we may assume that G −→ G1 is a βν-reduction and G −→ G2

an η-reduction. In the following diagrams we do the case analysis on G −→ G1, which is
always the topmost horizontal reduction. C is some context and note that we have omitted
the trivial cases of G −→ G2 affecting solely C and not its content.
For G −→ G1 being β&1:

C{〈V, W 〉 • fst[K]}
β //

η

��
η

**

C{V •K}

η

= ��
C{〈V ′, W ′〉 • fst[K ′]}

β // C{V ′ •K ′}

C{〈V, W 〉 • fst[x.(x •K)]}
β // C{V • x.(x •K)}

β

hh

The cases of β&2, β∨1, β∨2 and β¬ are similar.
For G −→ G1 being βR we have:

C{(S).α •K}
β //

η
vvmmmmmmmmmmmm

η

((QQQQQQQQQQQQQ
C{S{K/α}}

η

((QQQQQQQQQQQQ

ηvvvvmmmmmmmmmmmm

C{(S).α •K ′}
β // C{S{K ′/α}} C{(S′).α •K}

β // C{S′{K/α}}

and also the particular case when S{K/α} cannot reduce to S′{K/α}, which occurs when

C{ (C0{α}).α • y.(S) }
β //

η

��

C{ (C0{α}){y.(S)/α} }

×
��

C{ (C0{x.(x • α)}).α • y.(S) }
β // C{ (C0{x.(x • α)}){y.(S)/α} }

β

OO

where C0{α} is some statement S0, and we use the fact that, by alpha-conversion, we have

x.(x • y.(S)) −→ x.(S{x/y}) ≡ y.(S)

29

The case of βL is similar and simpler.
For G −→ G1 being ν&1:

C{〈M, N〉 •K}
ν //

η

''
η

''

η

��

C{M • x.(〈x, N〉 •K)}

η

��

ν

N non-value

uu

C{〈M ′, N ′〉 •K ′}
ν // C{M ′ • x.(〈x, N ′〉 •K ′)}

C{〈(M • α).α, N〉 •K}
ν // C{(M • α).α • x.(〈x, N〉 •K)}

β

hh

C{〈M, (N • α).α〉 •K}
ν // C{M • x.(〈x, (N • α).α〉 •K)}

ν N value

ssffffffffffffffffffffff

C{M • x.((N • α).α • y.(〈x, y〉 •K))}
β // C{M • x.(N • y.(〈x, y〉 •K))}

β

ii

The cases of ν&2, ν∨1 and ν∨2 are similar and simpler. �

We conclude with the main result of this subsection.

Theorem 2.40 RSN
v

′ is both SN and CR.

Proof: Since RSN
v

′ is a restriction of RSN
v , every reduction sequence of the former is also a

reduction sequence of the latter. By theorem 2.36, RSN
v is SN, therefore RSN

v
′ is SN.

Furthermore, by (3) and lemma 2.39, RSN
v

′ is CR. �

3 A glimpse into the second-order case

Girard proposed an extension of the simply-typed lambda calculus, called polymorphic
lambda calculus (system F [GTL89, SU98], or λ2 [Bar92]), which is isomorphic to second-
order propositional intuitionistic logic in Curry-Howard style. The extension from the simply-
typed lambda calculus to F is a very strong one, with regard to the functions that we can
represent in each calculus. In [FLO83] it is shown that the functions which are representable
in the simply-typed lambda calculus form a proper subset of the elementary functions8. This
is indeed a very ‘small’ class of functions. On the other hand, in [GTL89] it is shown that
the functions representable in F are exactly those which are provably total9 in second-order
Peano Arithmetic. This is a substantially ‘larger’ class of functions.
Consequently, it is interesting and natural to study second-order extensions for the Dual
Calculus. We briefly introduce two different such extensions.

3.1 The natural extension

We extend the Dual Calculus to second-order propositional classical logic by adding typing
rules for second-order quantifiers over types.

Definition 3.1 (DuCa2)
DuCa2 consists of Types and Objects. The set of objects is the union of the sets of Terms,

8The class of elementary functions is the smallest class of functions which contains projections, successor,
+, −̇ and ×, and is closed under composition and bounded sums and products (note x −̇y is x − y for x ≥ y,
otherwise 0).

9A function f is provably total in a theory T , if there is an algorithm A computing f for which T proves
that A terminates on all inputs.

30

Coterms and Statements:

Type A, B ::= X | A&B | A ∨B | ¬A | ∀X.A | ∃X.A
Object G, H ::= M | K | S
Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α | a� M | e� M
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S) | a� K | e� K
Statement S, T ::= M •K

The typing rules are the same as those of DuCa (i.e. of GW) plus the second-order rules:

K : A{B/X} ❙ Γ ➞ Θ
∀L

a� K : ∀X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
∀R

Γ ➞ Θ ❙ a� M : ∀X.A

K : A ❙ Γ ➞ Θ
∃L

e� K : ∃X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A{B/X}
∃R

Γ ➞ Θ ❙ e� M : ∃X.A

where in ∀R and ∃L we have X /∈ FTV (Γ, Θ). The typing rules form the sequent calculus
GW2.
The basic reduction relation is R2b, which extends Rb by the rules:

(βa) a� M • a� K → M •K
(βe) e� M • e� K → M •K

For G, H ∈ DuCa2, we denote (G, H) ∈ R2b by G −→ H .
⊣

This extension of DuCa to second-order follows Parigot’s extension of the Sλ-calculus to
second-order introduced in [Par00]. Its characteristic feature is the use of ‘trivial witnesses’
at the level of objects, which distinguish objects with types quantified by introduction rules
from those with types quantified by axioms. We choose this presentation, instead of Church-
style passing of type-variables in terms, for simplicity.
In fact, the use of such witnesses is essential for subject reduction to hold, since without
witnesses the following derivation would be legal.

···
Γ ❙ S ❙➞ Θ, α : A

Γ ➞ Θ ❙ (S).α : A

Γ ➞ Θ ❙ (S).α : ∀X.A

···
x : ∀X.A, Γ ❙ S′ ❙➞ Θ

x.(S′) : ∀X.A ❙ Γ ➞ Θ

Γ ❙ (S).α • x.(S′) ❙➞ Θ

Now, (S).α • x.(S′) −→ S{x.(S′)/α} , yet we cannot always type S{x.(S′)/α}.10

Since Subject Reduction is problematic for the extension without witnesses, it is useful to
show it for DuCa2. First we show the following lemmata11.

Lemma 3.2 (Type Substitution) Take any G ∈ DuCa2. If there exists some sequent σ ∈
TG(A, Γ, Θ), derived say by a derivation D, then for any type B there exists some sequent
σ′ ∈ TG(A{B/X}, Γ{B/X}, Θ{B/X}) derived by a derivation D′, such that D and D′ have
the same tree structure.

Proof: In the Appendix. �

Lemma 3.3 (Weakening, M for x) Let G, M, K ∈ DuCa2,

1. If TG(A, Γ, Θ) 6= ∅ then TG(A, Γ⊎ (x :B), Θ) 6= ∅ and TG(A, Γ, Θ⊎ (α :B)) 6= ∅, any fresh

variable x and fresh covariable α.

10In fact, there are also other cases in which Subject Reduction fails if we don’t use witnesses, but they
can be remedied by use of Strong Contraction rules (see [Tze04] for details).

11Recall the notation introduced in definition 2.17 for sequents typing objects of DuCa*. Here we use the
analogs for DuCa2.

31

2. If TG(A, Γ ⊎ (x : B), Θ) 6= ∅ and TM (B, Γ, Θ) 6= ∅ then TG{M/x}(A, Γ, Θ) 6= ∅, and if

TG(A, Γ, Θ ⊎ (α :B)) 6= ∅ and TK(B, Γ, Θ) 6= ∅ then TG{K/α}(A, Γ, Θ) 6= ∅.

Proof: For 1 we do induction on the derivation of σ ∈ TG(A, Γ, Θ) and case analysis on
the last rule in it, using lemma 3.2 to deal with the ∀R, ∃L rules where B may contain the
quantified type variable. For 2 we do similar induction. �

Proposition 3.4 (Subject Reduction) Suppose that G, H ∈ DuCa2 and that G −→ H. If
TG(A0, Γ0, Θ0) 6= ∅ , some A0, Γ0, Θ0, then TH(A0, Γ0, Θ0) 6= ∅.

Proof: In the Appendix. �

Because of the similarities between DuCa2 and the second-order Sλ-calculus, it is natural
to consider translations between the two calculi. Although we will not examine these in full
detail here, we note the following.

Note 3.5. Translations ()o (from DuCa to Sλ, definition 1.10) and ()p (from Sλ to DuCa,
definition 1.15) readily extend to second-order. Moreover, it is not difficult to show that
the former translation preserves typing judgements and reductions. The same doesn’t hold
for the latter, as typing judgements are not preserved. This is because of the “substitution
lemma” failing on types: (A{B/X})p ≡/ (A)p{(B)p/X}, e.g.

¬Y ∨ ¬Z ≡ (Y ⊥ ∨ Z⊥)p ≡ (X⊥{Y &Z/X})p ≡/ (X⊥)p{(Y &Z)p/X} ≡ ¬(Y &Z)

As a result, typing judgements for existential quantification in second-order Sλ are not pre-
served in DuCa2 under ()p.

3.2 Simulation of second-order quantifiers

In second-order classical propositional logic the quantification over propositional variables is
in fact a quantification over true and false propositions. That is, if ⊥ is some contradiction
(for example ⊥ ≡ X0 & ¬X0) then, for any formula A, ∀X.A is logically equivalent to
A{⊥/X} & A{¬⊥/X}. A similar property holds for existential quantification, so quantifiers
can be simulated in the logic12.
Below we are going to define a construction for quantification over types by using the above
remark explicitly, so universal quantification will be the abbreviation of a conjunction and
existential quantification the abbreviation of a disjunction. Therefore, universal types will be
assigned to product syntactic constructs, while existential types to sum constructs. For this
purpose, some new construction rules for terms and coterms will be defined, so as to capture
quantification in the cases where the existing construction rules are not enough.
The resulting calculus is non-polymorphic: in the logic we can prove A{B/X} given A{⊤/X}
and A{⊥/X}, yet in the syntax we cannot always derive, for example, M : A{B/X} given
derivations for M : A{⊤/X} and M : A{⊥/X}. We will return to this in the end of this
section. We begin with some definitions.

Definition 3.6
Let ̥ be a type constant. Define the set of Types:

Type A, B ::= ̥ | X | A&B | A ∨B | ¬A

We define the following abbreviations, for any type A and X ∈ TV ar,

∀X.A ≡ A{⊤/X} & A{⊥/X} , ∃X.A ≡ A{⊤/X} ∨A{⊥/X}

and ⊤ ≡ ̥ ∨ ¬̥ , ⊥ ≡ ̥&¬̥

⊣

12In [Pit92] it is shown that in intuitionistic propositional logic second-order quantifiers can also be modelled
in first-order constructions. That result is far deeper than its classical counterpart.

32

Defining ⊤,⊥ in terms of another constant ̥ we get the properties of ⊤,⊥ for free, using the
properties of &,∨,¬. Note that under the above abbreviations alpha-equivalence is valid,
that is, for all types A and X, Y ∈ TV ar with Y /∈ FTV (A), ∀X.A ≡ ∀Y.A{Y/X} and
∃X.A ≡ ∃Y.A{Y/X}.
DuCa2C is the resulting second-order calculus.

Definition 3.7
DuCa2C consists of Types as in definition 3.6 and Objects. The set of objects is the union of
the sets of Terms, Coterms and Statements:

Object G, H ::= M | K | S
Term M, N ::= x | 〈M, N〉 | 〈M〉inl | 〈N〉inr | [K]not | (S).α | 〈M〉in
Coterm K, L ::= α | [K, L] | fst[K] | snd[L] | not〈M〉 | x.(S) | one[K]
Statement S, T ::= M •K

The typing rules are the same as those of DuCa (i.e. of system GW) with the addition of:

K : A{B/X} ❙ Γ ➞ Θ
∀L

one[K] : ∀X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A{B/X}
∃R

Γ ➞ Θ ❙ 〈M〉in : ∃X.A

The typing rules form the sequent calculus GW2C.
The basic reduction relation is R2Cb, which extends trivially Rb to the syntax of DuCa2C.

⊣

The intuition behind the new construction rules is that 〈M〉in produces a sum value built
up from M being either its first or its second element, whereas one[K] absorbs a product
value and offers one of its elements to K.
Now, suppose we can derive Γ ➞ Θ ❙ M : A and X /∈ FTV (Γ, Θ). Then it is not difficult
to see that we can also derive Γ ➞ Θ ❙ M : A{⊤/X} and Γ ➞ Θ ❙ M : A{⊥/X} and thus
derive Γ ➞ Θ ❙ 〈M, M〉 : A{⊤/X}&A{⊥/X}. Therefore, a proof of ∀X.A is a construction
merging together a proof of A{⊤/X} and one of A{⊥/X}. In fact, this is the analog of
the Brouwer-Heyting-Kolmogorov interpretation of the proof of ∀X.A in intuitionistic logic.
Similar remarks can be made for the usual ∃L rule.
Let us now formulate the above remark formally.

Proposition 3.8 The following are derived rules of DuCa2C.

K : A ❙ Γ ➞ Θ
∃L

[K, K] : ∃X.A ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : A
∀R

Γ ➞ Θ ❙ 〈M, M〉 : ∀X.A

where X /∈ FTV (Γ, Θ).

Proof: First prove Weakening and Type Substitution for the calculus, from which the propo-
sition follows straightforwardly. �

It is easy to show that Subject Reduction holds under R2Cb for DuCa2C.

Proposition 3.9 (Subject Reduction) Suppose that G, H ∈ DuCa2C and that G −→ H.
If TG(A0, Γ0, Θ0) 6= ∅ , some A0, Γ0, Θ0, then TH(A0, Γ0, Θ0) 6= ∅.

Proof: The proof is by a case analysis on the rule used for the reduction and is very similar
(and simpler) to the proof of proposition 3.4. �

Thus, we have introduced an extension of the dual calculus that corresponds to second-order
classical propositional logic and is well-behaved in that it satisfies subject reduction. As we

33

mentioned above, the calculus is not polymorphic. For example, abstractions of universal
type can be derived only in the form 〈(S).α, (S).α〉, as below.

Γ ➞ Θ ❙ (S).α : A
X /∈ FTV (Γ, Θ)

Γ ➞ Θ ❙ 〈(S).α, (S).α〉 : ∀X.A

K : A{B/X} ❙ Γ ➞ Θ

one[K] : ∀X.A ❙ Γ ➞ Θ

Γ ❙ 〈(S).α, (S).α〉 • one[K] ❙➞ Θ

However, (S).α cannot be applied on K, as polymorphism would demand.
A possible solution would be to add some obvious reduction rules in R2Cb to enable this:

(β&c) 〈M, M〉 • one[K] → M •K
(β∨c) 〈M〉in • [K, K] → M •K

But now Subject Reduction breaks down; for example, x : ⊥ ❙ 〈〈x〉in, 〈x〉in〉 • one[α] ❙➞ α :
B ∨ ⊥ is derivable for any type B, yet x : ⊥ ❙ 〈x〉in • α ❙➞ α : B ∨ ⊥ is derivable only if
B ≡ ⊤ or B ≡ ⊥.

4 Conclusion

In this paper we examined an extension of the lambda calculus, the Dual Calculus of Wadler.
The calculus has two very interesting properties, namely that it corresponds to classical
propositional logic under Curry-Howard isomorphism, and that its call-by-value and call-by-
name reduction relations are De Morgan duals. We studied two basic syntactic properties
relative to CBV reduction in the dual calculus: Church-Rosser property for the untyped
calculus, and Strong Normalization for the typed calculus. Finally, we briefly introduced two
extensions of the calculus to second-order quantified types, which correspond to second-order
classical propositional logic.
The paper leaves space for a deeper investigation on the second-order calculus, in particular
on its Church-Rosser and Strong Normalization properties. On the other hand, an aspect
we didn’t examine at all is that of denotational semantics for the dual calculus. It would be
very interesting to study such semantics given the “classical” orientation of the calculus.

5 Acknowledgements

I would like to thank Prof Samson Abramsky for his encouragement and guidance. Moreover,
I would like to thank Prof Phil Wadler and the anonymous reviewer for their constructive
comments. I also acknowledge financial support by the Eugenides Foundation in Athens.

34

A Some proofs from sections 2 and 3

Proof of lemma 2.5:
The proof is by induction on G ∈ DuCa and case analysis on the two reductions. The pid

cases are trivial. We examine the other cases. Note that we may use the previous lemma on
substitution without mentioning it.
The cases for G −→p G1 are:
➛ pβ&1: then G ≡ 〈V, W 〉 • fst[K] and G1 ≡ V ′ • K ′; for some V −→p V ′, W −→p

W ′,K −→p K ′.
By inspection of the other rules we have the following choices for the rule in G −→p G2,

• pβ&1: in this case G2 ≡ V ′′ •K ′′; for some V −→p V ′′, W −→p W ′′, K −→p K ′′. By
IH, there exist Vc, Kc such that V ′, V ′′ −→p Vc and K ′, K ′′ −→p Kc. Thus, G1, G2 −→p

Vc •Kc, by use of p•.

• pν&1: then G2 ≡ V ′′ • x.(〈x, W ′′〉 • K?); for some V −→p V ′′, W −→p W ′′ and
fst[K] −→p K?.
By inspection, K? ≡ fst[K ′′] for some K −→p K ′′, and so, by IH, there exist Vc, Kc

with V ′, V ′′ −→p Vc and K ′, K ′′ −→p Kc; thus,

〈x, W ′′〉 • fst[K ′′]
pβ&1

−−→p x •Kc

∴ G2 ≡ V ′′ • x.(〈x, W ′′〉 • fst[K ′′])
pβL
−−→p Vc •Kc

and G1 ≡ V ′ •K ′
p•
−−→p Vc •Kc

• pν&2: then G2 ≡W ′′ • y.(〈V ′′, y〉 • fst[K ′′]) and we follow the same steps as above.

• p•: then G2 ≡ M ? • K?, with 〈V, W 〉 −→p M ?, fst[K] −→p K?. By inspection,
M ? ≡ 〈V ′′, W ′′〉 and K? ≡ fst[K ′′], some V −→p V ′′, W −→p W ′′, K −→p K ′′.
Hence, using the IH,
G2 ≡ 〈V ′′, W ′′〉 • fst[K ′′] −→p Vc •Kc p←− V ′ •K ′ ≡ G1.

➛ pβ&2, pβ∨1, pβ∨2, pβ¬: proven similarly.
➛ pβL: then G ≡ V • x.(S) and G1 ≡ S′{V ′/x}; for some V −→p V ′, S −→p S′.
By inspection, we have the following choices for G −→p G2.

• pβL: then G2 ≡ S′′{V ′′/x} and the result is straightforward from lemma 2.4.

• pν&1: then G ≡ 〈V, W 〉 • x.(S), G1 ≡ S′{〈V ′, W ′〉/x} and G2 ≡ V ′′ • y.(〈y, W ′′〉 •
x.(S′′)); for some V −→p V ′, V ′′, W −→p W ′, W ′′, S −→p S′, S′′. Then, by IH, there
exist V ′, V ′′ −→p Vc, W ′, W ′′ −→p Wc, S′, S′′ −→p Sc, and thus,

〈y, W ′′〉 • x.(S′′)
pβL
−→ Sc{〈y, Wc〉/x}

∴ V ′′ • y.(〈y, W ′′〉 • x.(S′′))
pβL
−→ (Sc{〈y, Wc〉/x}){Vc/y}

y fresh
≡ Sc{〈Vc, Wc〉/x}

and S′{〈V ′, W ′〉/x} −→p Sc{〈Vc, Wc〉/x} , by lemma 2.4

• pν&2, pν¬1, pν¬2: proven similarly.

• p•: this case is straightforward by applying lemma 2.4.

➛ pβR: this case is proven in a similar, yet simpler, way as pβL.
➛ pν&1: then G ≡ 〈M, N〉 • K and G1 ≡ M ′ • x.(〈x, N ′〉 • K ′); for some M −→p M ′,
N −→p N ′ and K −→p K ′. Then, the possible choices for G −→p G2 which have not been
considered above in symmetry are:

35

• pν&2: then M is a value and G2 ≡ N ′′ • y.(〈M ′′, y〉 • K ′′); for some M −→p M ′′,
N −→p N ′′ and K −→p K ′′. Using the IH, we have that,

〈x, N ′〉 •K ′ pν&2

−→ Nc • y.(〈x, y〉 •Kc)

∴ G1
pβL
−→ Nc • y.(〈Mc, y〉 •Kc)

and clearly G2 −→p Nc • y.(〈Mc, y〉 •Kc)

• p•: this case is straightforward.

➛ pν&2, pν∨1, pν∨2: proven similarly.
➛ p•: this case is simple, since all reductions to which it may be combined are already
checked in the previous cases, by symmetry.
➛ p〈, 〉, p〈〉inl, p〈〉inr, p[]not, pnot〈〉, p()., p.(), pfst[], psnd[]: these cases are trivial, since
no other reduction can be combined to any one of them. �

Proof of lemma 2.10:

We do a case analysis on the reduction G
βν
−→ G1, which we label with an index: G

βν0

−→ G1.

In the following, C denotes some context and G is C{G′}, with G′ being the redex of
βν0

−→ (so

G is, in fact, a statement). The cases of G
η
−→ G2 being an η-reduction that can be trivially

‘reverted’ by a one-step β-reduction, for example

C{V •x.(S)}
η
−→ C{V •y.(y•x.(S))}

β
−→ C{V •x.(S)} , are trivial and omitted for economy.

For the same reason, the cases of this η-reduction affecting solely C and not its content, for

example C{V • x.(S)}
η
−→ C′{V • x.(S)}, are also omitted.

Hence, we have the following diagrams.

For
βν0

−→ being βL:
C{V • x.(S)}

βν0

//

η
ttiiiiiiiiiiiiiiii

η

��
η

((

C{S{V/x}}

η

��
η1

xxxx

C{M • x.(S)}

βν
44 44iiiiiiiiiiiiiiii

C{V • x.(S′)}
βν // C{S′{V/x}}

C{V ′ • x.(S)}
βν1

// C{S{V ′/x}}

where M is a non-value, and for it lemma 2.9 is applied. Note in
η1

−→→ that only in the

occasion where
βν0

−→ is sub>1 are there more than one η-steps required. In this case,
βν1

−→ is
also sub>1.

For
βν0

−→ being βR:
C{(S).α •K}

βν0

//

η
vvmmmmmmmmmmmm

η

((QQQQQQQQQQQQQ
C{S{K/α}}

η
vvmmmmmmmmmmmm

η1

((QQQQQQQQQQQQ

C{(S′).α •K}
βν // C{S′{K/α}} C{(S).α •K ′}

βν1

// C{S{K ′/α}}

where the same comments as above apply for
η1

−→→,
βν1

−→.
For β&1: C{〈V, W 〉 • fst[K]}

βν0

//

η
sshhhhhhhhhhhhhhhhhhh

η

��

C{V •K}

η

= ��
C{M • fst[K]}

βν
33 33hhhhhhhhhhhhhhhhhhh

C{〈V ′, W ′〉 • fst[K ′]}
βν // C{V ′ •K ′}

where M is a non-value. The cases of β&2, β∨1, β∨2 are similar and this of β¬ is similar but
simpler.
For ν&2:

36

C{〈V, N〉 •K}
βν0

//

η
ttjjjjjjjjjjjjjjj

η

��

C{N • y.(〈V, y〉 •K)}

η

��
C{〈M, N〉 •K}

ν&1

��

C{〈V ′, N ′〉 •K ′}
βν // C{N ′ • y.(〈V ′, y〉 •K ′)}

C{M • x.(〈x, N〉 •K)}

βν (lemma 2.9)
����

C{V • x.(〈x, N〉 •K)}

βL

??�����������������������������

where M is a non-value, and (since V
η
−→ M) V • x.(〈x, N〉 • K)

η
−→ M • x.(〈x, N〉 • K),

whence lemma 2.9 can be applied. The cases of ν&1, ν∨1, ν∨2 are similar but simpler. �

Proof of lemma 2.20:
We prove something stronger:

For any statement S and covariable α, if we mark the occurrences of α in S by
1, 2, . . . , n and there exist coterms K1, . . . , Kn such that Sp ≡ S{K1/1α, . . . , Kn/nα} ∈
SN, then S ∈ SN.

Above, Ki/iα denotes the substitution of Ki for the i-occurrence of α in S.
The proof of this claim is by induction on l(Sp). The base case is this of Sp being in normal
form, in which case S is clearly also in normal form.
For the inductive step, suppose there is some infinite reduction sequence from S. Then, in
this sequence it must be the case that S −→ S′, with the reduction producing k ∈ Z new
occurrences of α. But now,

Sp ≡ S{K1/1α, . . . , Kn/nα} −→ S′{K ′
1/1α, . . . , K ′

n+k/n+kα} ≡ S′p

where the K ′
i’s are selected from the Ki’s and, since Sp is SN, S′p is SN. Moreover, l(S′p) <

l(Sp), thus S′ ∈ SN by IH, 	.
Hence, S is SN. �

Proof of lemma 2.24:
For CR[1, 2, 3], we do induction on d(σ). Note that CR3′ is implied by CR3 by induction on
l(G), where G is neutral and SN, using the fact that all its reducts are also neutral and SN

and have the same degree as G.
The base case, of d(σ) = (0, n), is straightforward:

• CR1 is a tautology.

• For CR3, if σ′ ∈ Red, then G′ is SN. So G reduces only to strongly normalizing objects,
thus G is SN, ∴ σ ∈ Red.

• For CR2, if σ ∈ (TG ∩ Red), then G is SN and so is any G′ to which it may reduce.

Now assume d(σ) = (c, n), c > 0 and σ ∈ TG:

CR1: [If σ ∈ (TG ∩ Red), some G, then G is SN]
– If G ≡ S, some S ≡ M • K, and σ ≡ Γ ❙ S ❙➞ Θ, then, since c > 0, there exists some
β : B ∈ Θ or y : B ∈ Γ with c(B) > 0, and thus, for example in the former case:

σ′ ≡ Γ ➞ Θ− {β : B} ❙ (S)⊙β : B ∈ Red

Then, by IH, (S)⊙β ∈ SN, ∴ S ∈ SN.

37

– If G ≡M and σ ≡ Γ ➞ Θ ❙ M : A, then, by proposition 2.23, there exists some derivable
sequent σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0, for some K0 neutral and SN, with d(σ1) = (0, 1) < d(σ).
By definition, σ1 ∈ Red. Then,

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙➞ Θ, Θ0

has d(σ2) = (c, 0) < (c, 1) = d(σ). Since σ ∈ Red, by definition, σ2 ∈ Red,
∴ by IH, M •K0 ∈ SN , ∴ M ∈ SN.

– If G ≡ K, we work dually as above.

CR3: [If σ ∈ TG, G neutral, and σ −→ σ′ implies σ′ ∈ Red, then σ ∈ Red]
– If G ≡ M and σ ≡ Γ ➞ Θ ❙ M : A, then we need to show that for all relevant K0 and
σ1 ∈ (TK0

∩ Red), we have σ2 ∈ Red, where:

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙➞ Θ, Θ0 , with d(σ2) < d(σ)

σ1 ≡ K0 : A ❙ Γ0 ➞ Θ0 , d(σ1) < d(σ)

Since d(σ1) < d(σ), by IH on CR1, K0 is SN. Thus, prove that σ2 ∈ Red by induction on
l(K0). Since M, K0 are neutral, σ2 −→ σ′

2 implies:

σ′
2 ≡ Γ, Γ0 ❙ M ′ •K ′

0 ❙➞ Θ, Θ0

where either M −→M ′, or K0 −→ K ′
0.

In the former case, σ′
2 ∈ Red by hypothesis.

In the latter case, by IH on CR2, σ′
1 ≡ K ′

0 : A ❙ Γ0 ➞ Θ0 ∈ Red and l(K ′
0) < l(K0), thus

the IH on l(K0) applies and σ′
2 ∈ Red.

In any case, σ2 −→ σ′
2 implies σ′

2 ∈ Red, ∴ σ2 ∈ Red, by IH on CR3.

– If G ≡ K, we work dually as above.

– If G ≡ S ≡ M •K, and, say σ ≡ Γ ❙ S ❙➞ Θ ∈ TS, then σ ∈ Red iff for all x : B ∈ Γ,
α : C ∈ Θ, with c(B) > 0, c(C) > 0, we have σ1, σ2 ∈ Red, where,

σ1 ≡ Γ ➞ Θ− {α : C} ❙ (S)⊙α : C

σ2 ≡ x⊙(S) : B ❙ Γ− {x : B} ➞ Θ

But σ1 −→ σ′
1 implies σ′

1 ≡ Γ ➞ Θ − {α : C} ❙ (S′)⊙α : C, some S −→ S′, and, by
hypothesis, σ′ ≡ Γ ❙ S′ ❙➞ Θ ∈ Red, thus σ′

1 ∈ Red, ∴ by IH, σ1 ∈ Red.
Similarly, σ2 ∈ Red; hence, σ ∈ Red.

CR2: [If σ ∈ (Red ∩ TG), some G, and σ −→ σ′, then σ′ ∈ Red]
– If G ≡M and σ ≡ Γ ➞ Θ ❙ M : A, then σ −→ σ′ implies that σ′ ≡ Γ ➞ Θ ❙ M ′ : A,
with M −→M ′.
Now, σ ∈ Red; therefore, for all relevant K0, σ1 ∈ (TK0

∩ Red) and

σ2 ≡ Γ, Γ0 ❙ M •K0 ❙➞ Θ, Θ0 with d(σ2) < d(σ),

we have that σ2 ∈ Red. Moreover,

σ2 −→ σ′
2 ≡ Γ, Γ0 ❙ M ′ •K0 ❙➞ Θ, Θ0

so, by IH, σ′
2 ∈ Red for all such σ′

2, and thus σ′ ∈ Red.

– If G ≡ K : A, we work dually as above.

– If G ≡ M • K ≡ S, σ ≡ Γ ❙ S ❙➞ Θ, then σ −→ σ′ implies σ′ ≡ Γ ❙ S′ ❙➞ Θ,

38

some S −→ S′. Since σ ∈ Red, for all y : B ∈ Γ, β : C ∈ Θ with c(B) > 0, c(C) > 0, we have
σ1, σ2 ∈ Red, where,

σ1 ≡ Γ ➞ Θ− {β : C} ❙ (S)⊙β : C

σ2 ≡ y⊙(S) : B ❙ Γ− {y : B} ➞ Θ

By IH, since σ1 −→ σ′
1 ≡ Γ ➞ Θ− {β : C} ❙ (S′)⊙β : C, we have σ′

1 ∈ Red, and similarly
σ′

2 ∈ Red, for all relevant σ′
1, σ

′
2, ∴ σ′ ∈ Red. �

Proof of lemma 3.2:
Let σ ∈ TG(A, Γ, Θ); we do induction on the derivation of σ. By a case analysis on the last
rule of the derivation, the only non-straightforward cases are those of rules with quantifiers.

Assume the last rule is
K : A′{C/Y } ❙ Γ ➞ Θ

∀L
a� K : ∀Y.A′ ❙ Γ ➞ Θ

By IH, we can derive

K : (A′{C/Y }){B/X} ❙ Γ{B/X} ➞ Θ{B/X}

Now, (A′{C/Y }){B/X} ≡ ((A′{Z/Y }){B/X}){C{B/X}/Z}, some fresh Z, and
∀Z.(A′{Z/Y }){B/X} ≡ (∀Z.A′{Z/Y }){B/X} ≡ (∀Y.A′){B/X}; thus, by ∀L we derive

a� K : (∀Y.A′){B/X} ❙ Γ{B/X} ➞ Θ{B/X}

as required. Now suppose the last rule is
Γ ➞ Θ ❙ M : A′

∀R
Γ ➞ Θ ❙ a� M : ∀Y.A′

with Y /∈ FTV (Γ, Th). Choose some fresh Z, by applying twice the IH we can derive

Γ ➞ Θ ❙ M : A′{Z/Y }

and Γ{B/X} ➞ Θ{B/X} ❙ M : (A′{Z/Y }){B/X}

and by ∀R we derive

Γ{B/X} ➞ Θ{B/X} ❙ a� M : ∀Z.(A′{Z/Y }){B/X}

where ∀Z.(A′{Z/Y }){B/X} ≡ (∀Z.A′{Z/Y }){B/X} ≡ (∀Y.A′){B/X} , as required.
The cases of ∃R, ∃L are dealt with similarly. �

Proof of proposition 3.4:
The proof is by a case analysis on the rule used for the reduction and it is rather straight-
forward. We are going to show some characteristic cases.
Suppose that G −→ H by use of the β&1 rule. Then, it suffices to show that
T〈M,N〉•fst[K](A, Γ, Θ) 6= ∅ implies TM•K(A, Γ, Θ) 6= ∅ . Suppose that Γ ❙ 〈M, N〉•fst[K] ❙➞ Θ
is derivable. By inspection of the rules, its derivation must end with:

K : B ❙ Γ ➞ Θ

fst[K] : B&C ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : B Γ ➞ Θ ❙ N : C

Γ ➞ Θ ❙ 〈M, N〉 : B&C

Γ ❙ 〈M, N〉 • fst[K] ❙➞ Θ

and the claim straightforwardly follows.
Suppose that G −→ H by use of the ν&1 rule. Then it suffices to show that
T〈M,N〉•K(A, Γ, Θ) 6= ∅ implies TM•x.(〈x,N〉•K)(A, Γ, Θ) 6= ∅ . Let Γ ❙ 〈M, N〉 • K ❙➞ Θ
be derivable. By inspection of the typing rules, its derivation must end with

K : B1&B2 ❙ Γ ➞ Θ

Γ ➞ Θ ❙ M : B1 Γ ➞ Θ ❙ N : B2

Γ ➞ Θ ❙ 〈M, N〉 : B1&B2

Γ ❙ 〈M, N〉 • K ❙➞ Θ

and the claim follows, using also Weakening.
Suppose that G −→ Q by use of the βR rule. Then it suffices to show that T(S).α•K(A, Γ, Θ) 6=

39

∅ implies TS{K/α}(A, Γ, Θ) 6= ∅. Let Γ ❙ (S).α •K ❙➞ Θ be derivable. By inspection of the
typing rules, its derivation must end with

K : B ❙ Γ ➞ Θ

Γ ❙ S ❙➞ Θ, α : B

Γ ➞ Θ ❙ (S).α : B

Γ ❙ (S).α • K ❙➞ Θ

and the claim follows from lemma 3.3.
Finally, suppose that G −→ Q by use of the βa rule. Then it suffices to show that
Ta�M•a�K(A, Γ, Θ) 6= ∅ implies TM•K(A, Γ, Θ) 6= ∅. Let Γ ❙ a � M • a � K ❙➞ Θ be deriv-
able. By inspection of the typing rules, its derivation must end with

Γ ➞ Θ ❙ M : A′

∀R
Γ ➞ Θ ❙ a� M : ∀X.A′

K : A′{B/X} ❙ Γ ➞ Θ
∀L

a� K : ∀X.A′
❙ Γ ➞ Θ

Γ ❙ a� M • a� K ❙➞ Θ

where X /∈ FTV (Γ, Θ). The claim follows from lemma 3.2. �

40

References

[Bar84] Hendrik P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

[Bar92] Hendrik P. Barendregt. Lambda calculi with types. In Abramsky, Gabbay, and
Maibaum, editors, Handbook of logic in computer science (vol. 2). Background:
computational structures, pages 117–309. Oxford University Press, Inc., 1992.

[BB96] Franco Barbanera and Stefano Berardi. A symmetric lambda calculus for classical
program extraction. Inf. Comput., 125(2):103–117, 1996.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Proceedings
of the fifth ACM SIGPLAN international conference on Functional programming,
pages 233–243. ACM Press, 2000.

[Dou93] Daniel J. Dougherty. Some lambda calculi with categorical sums and products.
In Claude Kirchner, editor, Proc. 5th International Conference on Rewriting Tech-
niques and Applications (RTA), volume 690 of Lecture Notes in Computer Science,
pages 137–151, Berlin, 1993. Springer-Verlag.

[FH92] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories
of sequential control and state. Theor. Comput. Sci., 103(2):235–271, 1992.

[Fil89] Andrzej Filinski. Declarative continuations: an investigation of duality in program-
ming language semantics (lecture notes in computer science 389). In D. H. Pitt et al.,
editors, Category Theory and Computer Science, pages 224–249. Springer-Verlag,
1989.

[FLO83] Steven Fortune, Daniel Leivant, and Michael O’Donnell. The expressiveness of
simple and second-order type structures. J. ACM, 30(1):151–185, 1983.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in [Gen69].

[Gen69] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo,
editor, The Collected Works of Gerhard Gentzen, pages 68–131. North-Holland,
Amsterdam, 1969.

[Gri90] Timothy G. Griffin. A formulae-as-types notion of control. In Conf. Record 17th An-
nual ACM Symp. on Principles of Programming Languages, POPL’90, San Fran-
cisco, CA, USA, 17–19 Jan 1990, pages 47–57. ACM Press, New York, 1990.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science Vol.7. Cambridge University Press, 1989.

[Par92] Michel Parigot. λµ-calculus: An algorithmic interpretation of classical natural
deduction. In A. Voronkov, editor, Proceedings of the International Conference
on Logic Programming and Automated Reasoning, pages 190–201, St. Petersburg,
Russia, July 1992. Springer-Verlag LNCS 624.

[Par00] Michel Parigot. Strong normalization of second order symmetric lambda-calculus.
In Proceedings of the 20th Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 442–453. Springer-Verlag, 2000.

[Pit92] Andrew M. Pitts. On an interpretation of second order quantification in first order
intuitionistic propositional logic. J. Symb. Log., 57(1):33–52, 1992.

[Sel01] Peter Selinger. Control categories and duality: On the categorical semantics of the
lambda-mu calculus. Mathematical Structures in Computer Science, 11(2):207–260,
2001.

41

[SU98] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the curry-howard isomor-
phism. Available as DIKU Rapport 98/14, 1998.

[SW74] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathe-
matical semantics for handling full jumps. Technical Monograph PRG-11, Oxford
University Computing Laboratory Programming Research Group, 1974. Repub-
lished in [SW00].

[SW00] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathemat-
ical semantics for handling full jumps. Higher-Order and Symbolic Computation,
13(1–2):135–152, April 2000.

[Tze04] Nikos Tzevelekos. Investigations on the dual calculus. Technical Report RR-04-21,
Oxford University Computing Laboratory, 2004.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. ICFP 2003, Uppsala, Sweden,
25-29 August 2003.

[Wad05] Philip Wadler. Call-by-value is dual to call-by-name - reloaded. In RTA, pages
185–203, 2005.

42

