
Program equivalence with names

Nikos Tzevelekos

Oxford University Computing Laboratory

Abstract. The nu-calculus of Pitts and Stark was introduced as a paradig-
matic functional language with a very basic local-state effect: references
of unit type. These were called names, and the motto of the new lan-
guage went as follows.
“Names are created with local scope, can be tested for equality, and are

passed around via function application, but that is all.”

Because of this limited framework, the hope was that fully abstract mod-
els and complete proof techniques could be obtained. However, it was
soon realised that the behaviour of nu-calculus programs is quite intri-
cate, and program equivalence in particular is surprisingly difficult to
capture. Here we focus on the following “hard” equivalence,

new x, y in λf.(fx = fy) ≡ λf. true

where x, y are names, and f : Name → Bool. We examine attempts
and proofs of the above, explain the advantages and disadvantages of
the proof methods and discuss why program equivalence in this simple
language remains to date a mystery.

1 Introduction

Names constitute a pervasive feature in programming languages. They appear
in every computational scenario where entities of specific kinds can be created
at will and, moreover, in such a manner that newly created entities are always
fresh — distinct from any other created thus far. They are used for expressing
a large variety of features, e.g. references and exceptions in languages like ML
or C. The behaviour of languages which feature names is in general very subtle
due to issues of privacy, visibility and flow of names, and the ensuing notion of
local state.

In order to study this behaviour in higher-order languages, and in isolation
from other computational effects, Pitts and Stark introduced in the early 90’s
the nu-calculus [6]: a simple higher-order call-by-value functional language with
references of unit type which cannot be assigned values nor be dereferenced.
Those entities, following a long tradition in computer science, were called names.

[...] names are created with local scope, can be tested for equality and can
be passed around via function application, but that is all.

The above motto [6] is the basis of computation with names, on which further
effects can be built (e.g. by allowing names to be assigned values, dereferenced,
raised as exceptions, etc.).

Dagstuhl Seminar Proceedings 10351
Modelling, Controlling and Reasoning About State
http://drops.dagstuhl.de/opus/volltexte/2010/2809

Although the language was designed with simplicity in mind, it was soon
realised that it incorporated genuinely intricate effects which in turn resulted in
quite delicate behaviours [7]:

Functions may have local names that remain private and persist from one
use of the function to the next; alternatively, names may be passed out of
their original scope and can even outlive their creator. It is precisely this
mobility of names that allows the nu-calculus to model issues of locality,
privacy and non-interference.

Research focused primarily on the notion of observational equivalence, which
revealed important and perhaps unexpected properties of nominal computation.

– The nu-calculus has a type Name for names. In empty context there is only
one equivalence class in Name, represented by the term that produces a fresh
name. However, this simple behaviour changes drastically when one moves to
the type Name → Name: here there are infinitely many observationally distinct
terms, represented by (closed or open) name-chains of arbitrary size.

– Standard proof methods for observational equivalence did not seem to mi-
grate to this new setting, and in particular low-order equivalences like

new x, y in λf.(fx = fy) ≡ λf. true (∗)

turned out to be remarkably difficult to prove.

Hence, this seemingly plain language became of great importance. Here we
focus on attempts and proofs of (∗) that have appeared in the literature, each
of which hailing from different traditions in semantics. We present Stark’s orig-
inal proof [7], based on logical relations for names; we demonstrate a complete
proof method developed by Benton and Koutavas [2], based on environmental
bisimulations; and finally we present a proof by Abramsky, Ghica, Murawski,
Ong and Stark using game semantics [1], we show it not to be entirely correct
and provide its rectification.

2 The nu-calculus

The nu-calculus is a simply-typed lambda-calculus built over base types for
names and booleans. Types are given by:

T ::= Name | Bool | T → T

Assume distinct countably infinite sets V and A containing variables and names
respectively, and let B = {true, false} be the set of boolean constants. Terms
are given by:

t ::= x | a | b | λx.t | t t | if t then t else t | t == t | νa.t

where x ∈ V, a ∈ A and b ∈ B.

2

The typing rules are just like in the simply-typed lambda-calculus with con-
ditionals, with additional rules for names. The contexts are now pairs (S, Γ),
where Γ is a finite variable context of the form {x1 : T1, . . . , xn : Tn} and S is
a finite subset of A. Some of the typing rules, including the non-standard ones,
are given below.

(x : T) ∈ Γ

S; Γ ⊢ x : T
a ∈ S

S; Γ ⊢ a : Name

S ⊎ {a}; Γ ⊢ t : T

S; Γ ⊢ νa.t : T

S; Γ, x : T ⊢ t : T ′

S; Γ ⊢ λx.t : T → T ′

S; Γ ⊢ t1 : Name S; Γ ⊢ t2 : Name

S; Γ ⊢ t1 == t2 : Bool

Note that there are two notions of abstraction: variable- and name-abstraction
(via λ and ν respectively). We write fn(t) for the set of free names in term t.
Terms are equated up to α-equivalence for both notions.

The operational semantics is given by means of a small-step transition rela-
tion with elements of the form:

(S, t) → (S′, t′)

with S, S′ being finite subsets of A, and such that S ⊆ S′, fn(t) ⊆ S and
fn(t′) ⊆ S′. The semantics is call-by-value, with values given by:

v ::= x | a | true | false | λx.t

We write ValT (S) for the set of values v which can be typed as S; ∅ ⊢ v : T . The
reduction rules are as follows (plus rules for conditionals),

(S, (λx.t)v) → (S, t[v/x])

(S, νa.t) → (S ⊎ {a}, t)

(S, a == a) → (S, true)

(S, a == a′) → (S, false)

(S, t) → (S′, t′)

(S, E[t]) → (S′, E[t′])

with a, a′ being distinct names, and evaluation contexts given by:

E ::= t | (λx.t) | == t | a == | · · ·

Note that, due to α-equivalence, the rule for fresh-name creation is non-deterministic:
the ν-abstraction can create any name a′ /∈ S.

(S, νa.t) → (S ⊎ {a′}, t[a′/a])

For any pair (S, t) with fn(t) ⊆ S we write (S, t) ⇓ v if there exists S′ such that
(S, t) →→ (S′, v). Finally, program equivalence is defined by means of observa-
tional (or contextual) equivalence.

Definition 1. We say that typed term S; Γ ⊢ t1 : T is equivalent to S; Γ ⊢
t2 : T (written S; Γ ⊢ t1 ∼= t2 : T) if

(S, C[t1]) ⇓ true ⇐⇒ (S, C[t2]) ⇓ true

for any context C[−] such that S; ∅ ⊢ C[t1], C[t2] : Bool.

3

Example 2 (Sample equivalences I). The following equivalences express some
very basic nominal features.

νa.t ∼= t : T if a /∈ fn(t) (1)

νa.νa′.t ∼= νa′.νa.t : T (2)

νa.λx. a 6∼= λx.νa. a : Bool → Name (3)

In particular, creating a fresh name that is not used is equivalent to not creat-
ing it at all and, on the order hand, order is not important in name creation.
Moreover, λ- and ν-abstractions do not commute. For example, the context

(λf. (ftrue) == (ftrue)) −

separates the terms in (3). (1) and (2) are proven in [7].

Example 3 (Sample equivalences II). More interesting equivalences are the fol-
lowing. Here “=” is boolean equality, expressed by use of conditionals.

νa.λx. (x == a) ∼= λx. false : Name → Bool (4)

νa1, a2. λf. (fa1 = fa2) ∼= λf. true : (Name → Bool) → Bool (5)

These are also proven in [7] but they are significantly more intricate. The former
expresses the fact that a context environment can never guess an unrevealed
private name. The latter is more subtle; in rough terms it states that a context
function (of name-less output type) cannot distinguish between different private
names fed to it. This rough argument may seem convincing at first, but it turns
out that things are a bit more complicated: f may not be able to distinguish
between a1 and a2 when it is first called, but it may do it within a recursive call.
The equivalence holds nonetheless, because overall there is perfect symmetry
between the LHS and RHS of the comparison fa1 = fa2. This will be made
precise in the following sections. For now, the reader may want to note the
difference between (5) and:

νa1. λf. νa2. (fa1 = fa2) 6∼= λf. true : (Name → Bool) → Bool (6)

These are separated e.g. by the context (note the recursive call of G):

(λG. G(λx. G(λy. x == y)))− (7)

The rest of the paper examines three different methods which have been
developed for proving program equivalences in the nu-calculus, and how in par-
ticular do they prove (5).

3 Stark’s proof

The first proof of (5) was given in Stark’s PhD thesis [7], which presents a
meticulous study of higher-order computation with names. Chapter 4 of the

4

thesis examines operational logical relations for deciding observational equiva-
lence. It presents two such formulations: logical relations and predicated logical
relations. Logical relations are shown to be sound but not generally complete:
completeness is proven only for terms of first-order type. Therefore, they cap-
ture (4) but fail to verify (5). Stark then proceeds by extending his setting to
predicated logical relations, which successfully capture the equivalence although
they do not lead to a better completeness result.

3.1 Logical Relations

Because names are created dynamically, equivalent terms may evaluate to terms
with distinct names which, however, have equivalent roles inside the terms.
Hence, logical relations between terms with names are built around the notion of
span: a bijective mapping between names appearing inside the terms. Formally,
a span R between sets of names S1, S2, written

R : S1 ⇋ S2

is a relation R ⊆ S1×S2 such that, ∀(a1, a2), (a
′

1
, a′

2
) ∈ R. a1 = a′

1
⇐⇒ a2 = a′

2
.

We may write a1 R a2 instead of (a1, a2) ∈ R. From the notion of span we move
to logical relations as follows.

Definition 4. For each R : S1 ⇋ S2 define the logical relation

RT ⊆ ValT (S1) × ValT (S2)

by induction on T as follows.

b1 RBool b2 ≡ b1 = b2

a1 RName a2 ≡ a1 R a2

(λx.t1) RT→T ′ (λx.t2) ≡ ∀R′ : S′

1 ⇋ S′

2 , vi ∈Val(Si ⊎ S′

i).

v1 (R ⊎ R′)T v2 =⇒ t1[v1/x] (R ⊎ R′)∗T ′ t2[v2/x]

Here R∗

T is the closure of RT to general closed terms of type T , given by:

t1 R∗

T t2 ≡ ∃R′ : S′

1 ⇋ S′

2, vi ∈Val(Si ⊎ S′

i). (Si, ti) →→ (S′

i, vi) ∧ v1 (R ⊎ R′)T v2

Stark shows that logical relations are complete at first-order types. Below
we write id : S ⇋ S for the span which coincides with the identity function
id : S → S.

Theorem 5 ([7]). For any S; ∅ ⊢ t1, t2 : T , if t1 id
∗

T t2 then S; ∅ ⊢ t1 ∼= t2 : T .
Moreover, if T is of order at most 1 and all types in Γ are of order 0 then the
converse also holds.

In particular, (note that types are omitted for economy)

we have νa.λx. (x == a) id
∗ λx. false (8)

but not νa1,a2. λf. (fa1 = fa2) id
∗ λf. true . (9)

5

Note that in both cases the underlying spans are empty. In order to show (8), by
definition, it suffices to show that λx. (x == a) R λx. false, where R : {a} ⇋ ∅
is the empty span. For this to hold, it must be that the two functions evaluate to
the same boolean value once they are fed R-related inputs. But note that those
inputs would not include a, and therefore λx. (x == a) would return false.
On the other hand, for (9) to hold it would be necessary to have λf. (fa1 =
fa2) R λf. true, for R : {a1, a2} ⇋ ∅ the empty span. But note now that,
reasoning as above, we have λx. (x == a1) R λx. false, and if we use the latter
as arguments to λf. (fa1 = fa2) and λf. true respectively then we get different
values.

3.2 Predicated Logical Relations

The reason why (5) holds is that there is a symmetry between the names a1 and
a2 on the LHS of the equivalence. Stark extended the notion of span in such a
way that symmetries, and all predicated relations on the sets of names of related
terms, are captured. An augmented span R̂ : S1 ⇋ S2 is a triple of ordinary
spans (R1, R, R2) of the form:

R̂ = (S1

R1

⇋ S1

R
⇋ S2

R2

⇋ S2)

Augmented spans are the basis of predicated logical relations.

Definition 6. For each R̂ : S1 ⇋ S2 define the predicated logical relation

R̂T ⊆ ValT (S1) × ValT (S2)

by induction on T as follows.

b1 R̂Bool b2 ≡ b1 = b2

a1 R̂Name a2 ≡ a1 R1 a1 R a2 R2 a2

(λx.t1) R̂T→T ′ (λx.t2) ≡ (λx.ti) (Ri)T→T ′ (λx.ti) ∧ ∀R̂′ : S′

1 ⇋ S′

2, vi ∈Val(Si ⊎ S′

i).

v1 (R̂ ⊎ R̂′)T v2 =⇒ t1[v1/x] (R̂ ⊎ R̂′)∗T ′ t2[v2/x]

Here R̂∗

T is the closure of R̂T to general closed terms of type T , given by:

t1 R̂∗

T t2 ≡ ∃R̂′ : S′

1 ⇋ S′

2, vi ∈Val(Si ⊎ S′

i). (Si, ti) →→ (S′

i, vi) ∧ v1 (R̂ ⊎ R̂′)T v2

Theorem 7 ([7]). For any S; ∅ ⊢ t1, t2 : T , if t1 îd
∗

T t2 then S; ∅ ⊢ t1 ≡ t2 : T .
Moreover, if T is of order at most 1 and all types in Γ are of order 0 then the
converse also holds.

We can now present the first proof of equivalence (5).

Proof 8 (Stark) By the previous theorem, it suffices to show

νa1,a2. λf. (fa1 = fa2) îd
∗

λf. true

6

where id : ∅ ⇋ ∅ the empty span, and for the latter it suffices to show that
λf. (fa1 = fa2) R̂ λf. true, where now we choose R̂ : {a1, a2} ⇋ ∅ to be given
by the triple:

R = R2 = ∅ , R1 = {(a1, a2), (a2, a1)}

that is, an empty span with a symmetry at the left hand. But, by definition 6
(case for λ-abstractions), any relevant input v1 for λf. (fa1 = fa2) must be R1-
related to itself and therefore v1a1 and v1a2 would be deemed to give the same
value. Thus,

v1 (R̂ ⊎ R̂′) v2 =⇒ (v1a1 = v1a2) ⇓ true

which implies λf. (fa1 = fa2) R̂ λf. true, as required. ⊓⊔

The proof method just presented is advantageous in that it is notionally
simple and robust. Moreover, it is constructive in the sense that predicated
relations can be derived from the spans without much guessing: the only step in
the definition when we are required to guess is in the case of ∗-closure but this
can be overcome by first evaluating and then considering all the possible spans
for the yielded name-sets. On the other hand, the method is limited in that it is
complete only up to first-order types, and its extension to predicated relations
seems to be very specific to cases like (5) and does not give better completeness.

4 Benton & Koutavas’ proof

Another proof with operational flavour, but with full completeness power, was
originally presented in 2007 by Benton and Koutavas [2]. Their method invokes
environmental bisimulations [8, 5], a notion of bisimulation defined not as a sin-
gle relation but rather as a set of relations. This expresses the fact that the
information available to the environment changes during the bisimulation test.
In particular, the bisimulations considered are annotated with sets of names
and relate terms containing names from those sets. As the knowledge of names
available to the environment increases during computation, the bisimulation sets
invoke larger bisimulations.

4.1 Adequate bisimulation sets and full completeness

Consider relations annotated with sets of names. Formally, an annotated relation
is a triple

(S1, S2, R)

where R is an infinite product of relations, one for each type T :

R = 〈RT 〉
all types T

RT ⊆ ValT (S1) × ValT (S2)

relating closed values of T . An annotated relation R is extended to closed terms
in the following way (note that T and T are unrelated notations).

∅; x : T ⊢ s : T v1 RT v2

s[v1/x] R∗

T s[v2/x]

7

Observe that here closures are purely contextual, a formulation quite different
to that of Stark, which reduces terms to related values. We now consider sets
X of annotated relations. The notion which allows us to capture observational
equivalence is the following.

Definition 9. A set of annotated relations X is semi-adequate if, for all
(S1, S2, R) ∈ X and all t1, t2, S

′

1, v1:

t1 R∗

T t2 ∧ (S1, t1) →→ (S′

1, v1) =⇒ ∃S′

2, v2, Q . R ⊆ Q ∧ v1 Q∗

T v2

∧ (S1 ⊎ S′

1
, S2 ⊎ S′

2
, Q) ∈ X

∧ (S2, t2) →→ (S′

2, v2)

∧ (T = Bool) =⇒ (v1 = v2)

The inverse of X is given by X−1 = {(S1, S2, R) | (S2, S1, R
−1) ∈ X}. We say

that X is adequate if both X and X−1 are semi-adequate.

The above formulation is reminiscent of Stark’s logical relations but there
are substantial differences. First, we have moved from single relations R to sets
of relations X . Moreover, the (sets of) relations are not constructed inductively
from their base specifications (their spans), but are rather specified coinductively.

From a set of relations X we can can obtain a relation between open terms
by ‘flattening’ X in the following sense.

Definition 10. Given a set X of annotated relations we define a relation (X)◦

on typed open terms by setting:

S; x : T ⊢ t1 (X)◦ t2 : T ≡ ∃(S, S, R) ∈ X . λx.t1 RT→T λx.t2 ∧ ∀a ∈ S. a RName a

Benton and Koutavas show that the latter notion applied to adequate X is
sound and complete with respect to observational equivalence at all types.

Theorem 11 ([2]). For all typed terms S; Γ ⊢ t1, t2 : T :

t1 ∼= t2 ⇐⇒ ∃X . X adequate ∧ t1(X)◦t2

4.2 A simpler proof method

Theorem 11 yields a proof method for verifying equivalences. In order to show
that S; Γ ⊢ t1 ∼= t2 : T , where Γ = x : T , we follow the steps below.

1. Find a set X containing (S, S, R) such that λx.t1 RT→T λx.t2 and a RName a
for all a ∈ S.

2. Show that X is adequate.

The former step requires some guessing. However, the really difficult part is the
latter step: we need to verify the condition of Definition 9 for all t1, t2 related
by the closure of R. Benton and Koutavas produce a simpler proof method by
parameterising the condition of Definition 9 by the number of reduction steps
in the evaluation (S1, t1) →→ (S′

1
, v1), which allows one to prove adequacy by

induction on this parameter. The induction hypothesis for the induction is given
as follows.

8

Definition 12. For each set X of annotated relations and each k ∈ ω define
IHX (k) to be the following condition. For all (S1, S2, R) ∈ X and all t1, t2, S

′

1
, v1:

t1 R∗

T t2 ∧ (S1, t1) →→k (S′

1
, v1) =⇒ ∃S′

2
, v2, Q . R ⊆ Q ∧ v1 Q∗

T v2

∧ (S1 ⊎ S′

1, S2 ⊎ S′

2, Q) ∈ X

∧ (S2, t2) →→ (S′

2
, v2)

∧ (T = Bool) =⇒ (v1 = v2)

where →→k is the reflexive transitive closure of → with transitivity bounded at
k steps.

Thus, in order to prove that X is adequate it suffices to show that IHX (k)
and IHX−1(k) hold, by induction on k. The base cases are trivial, so all we are
left to prove is the induction steps. Spelling out explicitly what the latter means,
and removing some clear cases, one can prove the following.

Theorem 13 ([2]). A set of annotated relations X is adequate if and only if
for all k ∈ ω and all (S1, S2, R) ∈ X if IHX (k − 1) holds then the following
conditions are satisfied.

1. For all b1 RBool b2, b1 = b2.
2. For all λx.t1 RT→T ′ λx.t2 and all v1, v2, S

′

1
, v′

1
with (S1, (λx.t1)v1) →→k (S′

1
, v′

1
)

and v1 R∗

T v2, there exist S′

2, v
′

2, Q such that:

R ⊆ Q ∧ v′1 Q∗

T ′ v′2 ∧ (S1⊎S′

1, S2⊎S′

2, Q) ∈ X ∧ (S1, (λx.t2)v2) →→ (S′

2, v
′

2)

3. For all a1 /∈ S1 there exist a2 /∈ S2 and Q such that:

R ⊆ Q ∧ a1 QName a2 ∧ (S1 ⊎ {a1}, S2 ⊎ {a2}, Q) ∈ X

4. For all a1 RName a2 and a′

1
RName a′

2
, a1 = a′

1
⇐⇒ a2 = a′

2
.

Moreover, the same conditions hold for X−1.

We proceed to the proof of (5). We take a shortcut with respect to the
proof presented in [2] by using a lemma regarding order of evaluation in the
nu-calculus. Let us set

Ua1a2
≡ λf. (fa1 = fa2)

with f : Name → Bool.

Lemma 14. For all a1, a2 ∈ A, Ua1a2
∼= Ua2a1

.

Proof. It suffices to show that t[a1/x] = t[a2/x] ∼= t[a2/x] = t[a1/x], for any
term t, which is straightforward. ⊓⊔

Proof 15 (Benton & Koutavas) It suffices to relate λy.τ1 with λy.τ2, where

τ1 ≡ νa1,a2. Ua1a2
, τ2 ≡ λf. true .

9

and y is a dummy variable of type Bool. Define X to be the set of annotated
relations given by the following rules.

(∅, ∅, { (λy.τ1 , λy.τ2) }) ∈ X
X1

(S1, S2, R) ∈ X S1 ∩ {a1, a2} = ∅

(S1 ⊎ {a1, a2}, S2, R ∪ { (Ua1a2
, τ2) }) ∈ X

X3

(S1, S2, R) ∈ X R′ : S′

1
⇋ S′

2
Si ∩ S′

i = ∅

(S1 ⊎ S′

1, S2 ⊎ S′

2, R ⊎ R′) ∈ X
X2,4

We proceed to show that X is adequate. It will suffice to show that the conditions
of Theorem 13 hold for X . Conditions 1 and 4 are trivially satisfied, and condition
3 is taken care of by rule X2,4. We are left with condition 2. Note that the terms
which appear in X are determined by rules X1 and X3; we examine each case
separately. Suppose (S1, S2, R) ∈ X and that IHX (k − 1) holds.
• Let λy.τ1 RT λy.τ2, with T = Bool → (Name → Bool) → Bool, and let
b1 R∗

Bool
b2. By construction of X , b1 = b2. Moreover,

(S1, (λy.τ1) b1) →→ (S1 ⊎ {a1, a2}, Ua1a2
)

(S2, (λy.τ2) b2) →→ (S2, τ2)

and now observe that (S1 ⊎{a1, a2}, S2, R∪{ (Ua1a2
, τ2) }) ∈ X by X3 so we can

take Q = R ∪ { (Ua1a2
, τ2) }.

• Let Ua1a2
RT→T ′ τ2, with T = Name → Bool and T ′ = Bool, and let v1 R∗

T v2.
Then, a1, a2 ∈ S1 and there are some S′, b such that:

(S1, Ua1a2
v1) →→ (S1 ⊎ S′, b)

(S2, τ2 v2) →→ (S2, true)

Because of rule X2,4, it suffices to show that b = true. Note that v1 R∗

T v2 implies

that v1 ≡ λz. s[u1/x] for some ∅; x : T ⊢ λz.s : T and u1 R u2. Hence,

(S1, Ua1a2
v1) →→ (S1, s[u1/x][a1/z] = s[u1/x][a2/z])

and, using the notation (a1 a2) · t for the term obtained from t by permuting all
occurrences of a1 and a2 inside it,

(S1, s[u1/x][a1/z]) ⇓ b1 =⇒ (S1, (a1 a2) · s[u1/x][a1/z]) ⇓ b1 .

But the only way that a1, a2 may appear in u1 is by some u1j being Ua1a2
. Thus,

(a1 a2) · s[u1/x][a1/z] ≡ s[u1/x][a2/z][Ua2a1
/Ua1a2

]

and therefore, by Lemma 14, we get (S1, s[u1/x][a2/z]) ⇓ b1 and thus b = true.
⊓⊔

Note that, in order to show that b = true, the original proof of [2] uses
the bisimulation method again: it constructs an appropriate auxiliary set Y and
proves it adequate by use of Theorem 13.

10

The proof of Benton and Koutavas is the only one based on a proper complete
method. Stark’s logical relations are not complete while the AGMOS approach
provides a proof of (5) but not a general method. Moreover, the setting of the
method is such that proofs can be automatically checked—and (5) in particular
is checked in [2]. The downside of the method is that some guessing is needed
in choosing X and, most importantly, that showing adequacy is by no means
automatic, although the passage from Theorem 11 to Theorem 13 is a definite
simplification.

5 AGMOS’ proof

Abramsky, Ghica, Murawski, Ong and Stark [1] presented in 2004 a fully abstract
model for the nu-calculus using nominal game semantics — game semantics with
names. The paper is a remarkable achievement, providing the first, and only up
to date, fully abstract model for the language. Using the model, the authors
demonstrated a remarkably concise proof of (5) which, however, turns out to be
flawed. As we show below, the flaw is easily fixable.

5.1 Nominal game semantics

Game semantics models computation as a game: a dialogue between the program
and its environment which follows their exchange of data during program execu-
tion. Thus, a game has two players: a Proponent (or simply P) representing the
program, and an Opponent (or O) representing the environment. A game is for-
mally specified by plays, that is, sequences of moves played in alternation by the
two players. Moves represent computational data and are chosen from appropri-
ate game arenas. Arenas represent types and can be seen as game specifications:
they provide the moves of the game, and its rules.

Definition 16. An arena A is a tuple A = 〈MA, IA,⊢A〉 where:

– MA is a set of moves, partitioned into questions and answers by MA =
MQ

A ⊎ MA
A , and to O-moves and P-moves by MA = MO

A ⊎ MP
A .

– IA ⊆ MA
A ∩ MP

A is a set of initial moves.
– ⊢A ⊆ MA × (MA \ IA) is a justification relation, satisfying the condition:

⊢A ⊆ ((MP
A × MO

A) ∪ (MO
A × MP

A)) ∩ ((MQ
A × MA) ∪ (MA

A × MQ
A)).

The justification relation specifies the causality between the moves in an
arena. For example, a question representing a function input justifies an answer
representing the function’s value. The justification condition stipulates that O-
moves justify P-moves, and viceversa, and that answers can only justify ques-
tions. Note that initial moves are always P-answers and are not justified by
anything.

For example, the arenas corresponding to the types Bool and Name are:

JBoolK = 〈B, B, ∅〉 , JNameK = 〈A, A, ∅〉

11

These are “flat” arenas in the sense that all moves are initial. Things lift up in
higher-order types. First, for each set of moves MA we define the flipped set MA

to be the set with the same elements, albeit with O- and P-polarities swapped,
and with initial moves being changed to O-questions. Put formally:

MO
A = MP

A , MP
A = MO

A , MQ
A = MQ

A ∪ IA, MA
A = MA

A \ IA

Now, for arenas A and B we define the arena A → B by setting:

MA→B = {∗F} ⊎ MA ⊎ MB

IA→B = {∗F}

⊢A→B =⊢A ∪ ⊢B ∪{(∗F , iA), (iA, iB) | iA ∈ IA ∧ iB ∈ IB}

Intuitively, arrows are formed by justifying the initial moves of B from the initial
moves of A, and the latter from the initial move ∗F . The moves of B are otherwise
left untouched, while those of A are flipped. For example:

JBool → BoolK = JBoolK → JBoolK = 〈{∗F} ⊎ B ⊎ B, {∗F}, {(∗F , bl), (bl, br) | bl, br ∈ B}〉

where the two copies of B are distinguished by using l- and r-tags. Observe that
bl’s are O-questions while br’s are P-answers.

Given arenas A and B we define the product arena A × B by setting:

MA×B = (IA × IB) ⊎ (MA \ IA) ⊎ (MB \ IB)

IA×B = IA × IB

⊢A×B = (⊢A↾ (MA \ IA)) ∪ (⊢B↾ (MB \ IB)) ∪ {((iA, iB), m) | iA ⊢A m ∨ iB ⊢B m}

Intuitively, products are formed by putting the component arenas side-by-side
and gluing them together at their initial moves.

Remark 17. What distinguishes the games we define here from ordinary call-by-
value games of [4] is the presence of names, which we have kept as inconspicuous
as possible. In fact, all the game constructions we present are formally conducted
within strong nominal sets [3, 9]. This means that there is a canonical notion of
applying name-permutations to elements of our constructions, and any such
element may only involve finitely many names— all other names are fresh for it.
In particular, sets of moves are closed under name-permutations, and so do sets
of initial moves, sets of plays, and strategies below. Moreover, all functions and
relations defined are nominal : they commute with name-permutations.

Games are not played in arenas but between arenas, in structures defined
below.

Definition 18. Given arenas A, B define the prearena A −→ B to be a triple
consisting of a set of moves, a set of initial moves and a justification relation:

A −→ B = 〈 MA ⊎ MB, IA,⊢A ∪ ⊢B ∪{(iA, iB) | iA ∈ IA ∧ iB ∈ IB} 〉

where moves are partitioned according to the partitions of MA and MB.

12

Thus, prearenas are almost identical to arenas only that their initial moves
are O-questions, appearing on the left of the arrow. The difference between the
arena A → B and the prearena A −→ B is the extra initial move of the former.

Prearenas model types-in-context: each S; Γ ⊢ T with |S| = n and Γ = {x1 :
T1, . . . , xm : Tm}, is mapped to a prearena:

JNameKn × JT1K × · · · × JTmK −→ JT K

with its initial move being an O-question opening the context on the LHS. This
reflects the way games are played: the first move of a play is played by the
environment and provides the context of the modelled program. For example,
the prearena corresponding to the typing context ∅; ∅ ⊢ Bool → Bool is:

1 −→ JBoolK → JBoolK

where 1 = 〈{∗}, {∗}, ∅〉 is the one-move arena. Valid plays in this prearena are
of the form:

∗ ∗F bl b
′

r b
′′

l b
′′′

r · · ·
O P O P O P · · ·

These start with the initial O-move ∗ which provides the context (“the context
is empty”), to which P answers by playing ∗F (“the result of the computation is
a function”). From that point on, O may ask (possibly repeatedly) the value of
the function for specific inputs bl, to which P answers with values b′r according
to the function which P represents.

Observe that we use pointers representing the causality relation between
moves in the play. Pointers follow the justification relation and, for example,
allow us to distinguish between different function calls. In the plays we consider
all moves apart from the first one have pointers to preceding moves. For any
sequence s of moves with full pointers which is alternating (moves alternate
between O- and P-moves) we define its view, psq, inductively as follows.

pmq = m

ps n ms′ n′q = ps nq mn′

For such a sequence s and a move m in it, say s = s1 m s2, the view of m is ps1q.

Definition 19. A legal sequence s in a prearena A −→ B is an alternating
sequence of moves from A −→ B attached with explicit justification pointers,
satisfying the conditions:

– The first move of s is an initial move (i.e. taken from IA→B).

– Apart from the first move, each move m in s is justified by some move n
preceding it (by means of a justification pointer) such that n ⊢A−→B m.

– Each answer move in s is justified by its closest preceding question.

– Each move in s is justified by a move in its view.

13

The above are the standard conditions of well-opening, justification, well-
bracketing and visibility. Plays are justified sequences attached with names. For-
mally, let us write A

⊛ for the set of finite lists of distinct names. A move-with-

names is a pair mā, where m a move and ā is a name-list, i.e. an element of
A⊛. We set mā = m.

Definition 20. A play s in a prearena A −→ B is a sequence of moves-with-
names such that s is a legal sequence and the following conditions are satisfied.

– If mā is a P-move in s then ā contains as a prefix the name-list of the move
preceding it. It possibly contains some other names, all of which are fresh
for the whole sequence up to mā.

– If mā is a P-move in s, and a ∈ A appears in m but is fresh for (i.e. it does
not appear in) the view of mā, then a is contained in ā.

– The name-list of an O-move in s is that of the move justifying it, if the move
is non-initial, otherwise it is empty.

The set of plays i n a A −→ B is denoted by PA,B.

Terms are modelled by sets of plays that represent specific strategies: instruc-
tions for P on how to play the game.

Definition 21. A strategy σ on a prearena A −→ B is a prefix-closed set of
plays in PA,B satisfying:

– If s ∈ σ and s′ is obtained from s by some name-permutation then s′ ∈ σ.
– If even-length s ∈ σ and smā is a play then smā ∈ σ.
– If even-length smā1

1
, smā2

2
∈ σ then mā2

2
is obtained from mā1

1
by means of

permuting names which are fresh for s.
– If even-length s1m

ā1

1
∈ σ and odd-length s2 ∈ σ have ps1q = ps2q then there

exists s2m
ā2

2
∈ σ where mā2

2
is obtained from mā1

1
by means of permuting

names which are fresh for ps1q.

We write σ : A −→ B.

The third condition stipulates that strategies are deterministic up to permu-
tation of fresh names. The last condition, called innocence, expresses the fact
that, excluding names, the nu-calculus exhibits purely functional behaviour: a
program behaves in the same manner in different calls— the only thing that may
change is the choice of generated names.

Example 22. Consider ∅; ∅ ⊢ λx, y. x == y : Name → Name → Bool. Its denota-
tion is the strategy for the prearena

1 −→ J (Namex → (Namey → Bool
z)G)F K

with typical play:
∗ ∗F ax ∗G a′y bz

O P O P O P

14

where bz is true iff ax = ay. Note that since only names introduced by P make
it to the name-lists, here the name-lists are empty. Consider now the following.

Jνa.λx. aK : 1 −→ JBoolK → JNameK

{

∗ ∗ b aa
b
′ aa · · ·

O P O P O P

Jλx.νa. aK : 1 −→ JBoolK → JNameK

{

∗ ∗ b aa
b
′ a′a

′

· · ·

O P O P O P

The former term is a one-name generator: it generates a fresh name a and returns
it whenever it is called. The latter is a proper name-generator: it returns a fresh
name each time it is called.

Composition of strategies is defined by playing one against the other:

if σ : A −→ B and τ : B −→ C

then σ and τ have opposite O/P polarities in their B components, and therefore
we can play them in parallel synchronising them at their B-moves (taking some
extra care for name-lists). By subsequently hiding the moves from B from this
parallel play (and redirecting pointers from initial moves of C to initial moves
of A) we obtain a strategy:

σ; τ : A −→ C

Theorem 23 ([1]). Nominal games form a category, with objects being arenas
and arrows being strategies on prearenas.

5.2 Full abstraction

Nominal games provide a sound model for the nu-calculus which, moreover, sat-
isfies finitary definability: any strategy with finite representation is the denota-
tion of some nu-calculus term. Full abstraction is then obtained via the following
notion of intrinsic equivalence.

Definition 24. Suppose σ1, σ2 : 1 −→ A. We define σ1 ≈ σ2 to hold if:

∀ρ : A −→ JBoolK. σ1; ρ = { ∗ true} ⇐⇒ σ2; ρ = { ∗ true}

Theorem 25 (Full abstraction [1]). For all typed terms ∅; ∅ ⊢ t1, t2 : A:

t1 ∼= t2 ⇐⇒ Jt1K ≈ Jt2K

We proceed to prove (5). The semantics of the simple term is given as follows
(we write t as short for true).

Jλf. trueK : 1 −→ J(Name → Bool) → BoolK =

{

∗ ∗F ∗f t · · ·

O P O P

15

The semantics of the other term, Jνa1, a2.λf. fa1 = fa2K, is given below (where
we have omitted some name-lists and some pointers pointing to the preceding
move),

∗ ∗a1a2

F ∗f a1 b1 a2 b2 b · · ·

O P O P O P O P

with b = (b1 = b2). By full abstraction, it suffices to consider plays which can
be played by a counter-strategy ρ in the prearena

J(Name → Bool) → BoolK −→ JBoolK .

Since the roles of O and P are reversed in ρ, the moves b1 and b2 are P-moves
for it. Moreover, ρ contains the plays:

∗F ∗f a1 b1 , ∗F ∗f a1 b1 a2 b2

(note that ρ cannot see the name-lists a1a2, while the initial move ∗ is not in
ρ’s part of the board). Since ρ is closed under permutation of names, it contains
the plays:

∗F ∗f a1 b1 , ∗F ∗f a2 b1 a1 b2 .

Moreover, the view at b1, b2 is the same:

p∗F ∗f a1q = ∗F ∗f a1 = p∗F ∗f a2 b1 a1q

and therefore, by innocence, b1 = b2 and thus b = t. We then have that the two
strategies cannot be distinguished by ρ because

p∗F ∗f tq = ∗F ∗f t = p∗F ∗f a2 b1 a1 b2 bq

and ρ is innocent.

The above argument was presented in [1]. It is flawed in that in does not take
into account the possibility of O not playing immediately b1 after a1 is played,
but rather opening a recursive call of f by playing ∗f again. Once the latter is
considered, the argument fails. For example, the following is a valid play for the
strategy.

∗ ∗a1a2

F ∗f a1 ∗f a1 t a2 f · · ·

O P O P O P O P O

Note that in the view of the last move O can see both a1 and a2 and, for example
reply f (false): the two names are not the same. In fact, such an Opponent
precisely corresponds to the counter-strategy given by the context (7).

There is no reason why O should stop in one recursive call of f , and therefore
O is able to see more than two names in his view, call f recursively again after
P closes one of its call, etc. Thus, a direct argument as the above does not go
through. The following lemma solves the problem.

16

Lemma 26. For any play s in Jνa1, a2.λf. fa1 = fa2K of the form

∗ · · · a1 · · · b1 · · · a2 · · · b2

O P O P O

in which O plays innocently if p∗ · · ·a1q can be obtained by p∗ · · ·a2q by permut-
ing the names a1 and a2 then b1 = b2.

Proof. By induction on the length of s. Let s = ∗ ∗a1a2

F s1 a1 s′
1
b1 s2 a2 s′

2
b2. If

s′1 = ǫ then, by O-innocence, b2 = b1. Otherwise, s′1 starts with ∗f and therefore,
by O-innocence, so does s′

2
. Thus,

s′
1

= ∗f a1 · · ·b11 a2 · · · b12 · · ·

s′2 = ∗f a1 · · ·b21 a2 · · · b22 · · ·

with a1, a2 justified by ∗f , b11 justified by a1, b12 by a2, and so on. We have:

s = ∗ ∗a1a2

F s1 a1 ∗f a1

1
· · · b11 a1

2
· · · b12 · · ·b1 s2 a2 ∗f a2

1
· · · b21 a2

2
· · ·b22 · · · b2

where we have tagged different occurrences of a1, a2. By hypothesis p∗ · · ·a1q =
(a1 a2) · p∗ · · ·a2q and therefore:

p∗ · · ·a1 ∗f a1

1
q = (a1 a2) · p∗ · · ·a2 ∗f a2

1
· · ·b21 a2

2
q

p∗ · · ·a1 ∗f a1

1 · · · b11 a1

2q = (a1 a2) · p∗ · · ·a2 ∗f a2

1q

By applying the IH to the subsequence ending in b22 we obtain b11 = b22, and
by applying it to the one ending in b21 we get b12 = b21. Thus,

s′1 = ∗f a1 · · ·b11 a2 · · · b12 b s′′1

s′
2

= ∗f a1 · · ·b21 a2 · · · b22 b s′′
2

with b justified by ∗f . If s′′
1

= ǫ then by O-innocence s′′
2

= ǫ and b1 = b2.
Otherwise, s′′1 = ∗f · · · and s′′2 = ∗f · · · , and we repeat the same argument. ⊓⊔

Proof 27 Applying the previous lemma to the play

∗ ∗ ∗f a1 · · · b1 a2 · · · b2 b

O P O P O P O P

with its last move omitted we obtain that b1 = b2 and therefore b = true, and
the argument proceeds as in [1]. ⊓⊔

The use of nominal games is advantageous in that it comes with a powerful
full abstraction result. Moreover, it is constructive in the sense that strategies
are derived from the syntax compositionally. On the other hand, though, the
amount of notions (some of them very technical) one needs to digest in order
to understand the model is quite substantial and the model is not particularly
good for proving observational equivalences. It was possible to prove (5), but we
have no general method for deriving such proofs.

17

6 Concluding remarks

We presented research in several directions instigated by the surprising compli-
cacy involved in proving program equivalences of the nu-calculus. The methods
have their advantages and disadvantages, and probably none of them is fully
satisfactory: the language is simply difficult. In particular none of these, or any
other, attempts have been able to answer the question:

Is program equivalence in the nu-calculus decidable?

We conjecture it is decidable.

Acknowledgements

Many thanks to Vasilis Koutavas, Paul-Andre Mellies, Andrzej Murawski and
Ian Stark for fruitful discussions, explanations and suggestions.

References

1. S. Abramsky, D. R. Ghica, A. S. Murawski, C.-H. L. Ong, and I. D. B. Stark.
Nominal games and full abstraction for the nu-calculus. In LICS, pages 150–159,
2004.

2. N. Benton and V. Koutavas. A mechanized bisimulation for the nu-calculus, 2009.
Symposium in Honor of Mitchell Wand, August 2009. Submitted to Higher Order
and Symbolic Computation.

3. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13(3-5):341–363, 2002.

4. K. Honda and N. Yoshida. Game-theoretic analysis of call-by-value computation.
Theoretica Computer Science, 221(1-2):393–456, 1999.

5. V. Koutavas. Reasoning about Imperative and Higher-Order Programs. PhD thesis,
Northeastern University, 2008.

6. A. M. Pitts and I. D. B. Stark. Observable properties of higher order functions that
dynamically create local names, or what’s new? In MFCS, pages 122–141, 1993.

7. I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, University of
Cambridge, 1994.

8. E. Sumii and B. C. Pierce. A bisimulation for type abstraction and recursion.
Journal of the ACM, 54(5), 2007.

9. N. Tzevelekos. Full abstraction for nominal general references. Logical Methods in

Computer Science, 5(3), 2009.

18

