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Functional Reachability

● Given a term M of a HO functional language 
and a point p inside M,

● is there a program context C such that the 
computation of C[M] reaches p?

Surprisingly, (Contextual) Reachability per se had 
not been studied in HO functional languages.



   

Relevant work
● Control Flow Analysis.

 - Approximate at compile time the flow of     
 control to happen at run time. 
 - Crucial element: closures.

 - Reynolds ('70), Jones ('80), Shivers ('90),   
  …  , Malacaria & Hankin (late '90).
 - CFA > Reach (more general)
   Reach > CFA (open vs closed world)

● Useless code detection, etc.



   

PCF

Examined language: PCF.
● lambda-calculus,
● Boolean base type,
● recursion at all types.

A , B : := o ∣ AB

M N : := x ∣  x. M ∣ t ∣ f ∣ if M N 1 N 2 ∣ YA,



   

PCF

A , B : := o ∣ AB

M N : := x ∣  x. M ∣ t ∣ f ∣ if M N 1 N 2 ∣ YA

E : := [ ]∣ E M ∣ if E N 1 N 2

,

 x.M N  M {N / x }

if t   xy.x , ...

Y M  M Y M 

M  N
E [M ] E [N ]



   

Notes on PCF

fPCF 

⊥ := Y0 x. x

,

M N : := x ∣  x. M ∣ t ∣ f ∣ if M N 1 N 2 ∣ ⊥,

A1⋯An⋯o

fPCF⊥

● Write (A1,...,An,o) for
● Divergence definable: 
● Finitary restrictions (i.e. no rec.): 

M N : := x ∣  x. M ∣ t ∣ f ∣ if M N 1 N 2,



   

Reachability (in PCF)

● Given a closed PCF-term M:(A1,...,An,o) and 
a coloured subterm L of M,

● are there closed PCF-terms N1,...,Nn such that 
MN1...Nn reduces to E [L'  ] with L' coloured?
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● Given a closed PCF-term M:(A1,...,An,o) and 
a coloured subterm L of M,

● are there closed PCF-terms N1,...,Nn such that 
MN1...Nn reduces to E [L'  ] with L' coloured?

We can make things even simpler …  



   

PCFwitherror: PCF*

Include an error constant:                    
New rules: E [*] reduces to *.

*-Reachability:
● Given a closed PCF*-term M:(A1,...,An,o) with

exactly one *,
● are there closed PCF-terms N1,...,Nn such that 

MN1...Nn reduces to *?

o = {t , f ,*}



   

PCFwitherror: PCF*

Include an error constant:                    
New rules: E [*] reduces to *.

*-Reachability:
● Given a closed PCF*-term M:(A1,...,An,o) with

exactly one *,
● are there closed PCF-terms N1,...,Nn such that 

MN1...Nn reduces to *?

o = {t , f ,*}

Reachability ≈  *Reachability

PCF1*
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Reach template

● Several classes of problems:
–  Reachability

–  *-Reachability, i.e. *REACH[PCF1*,PCF]

–  *REACH[PCF1*,fPCF]

–  *REACH[fPCF1*,fPCF]

–  *REACH[fPCF1*,fPCF]

–  t REACH[fPCF1*,fPCF]

⊥



   

Our approach

● We examine v -REACH[fPCF1*,fPCF] using:
– Alternating Dependency Tree Automata
– Alternating Tree Automata

Stirling'09
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Our approach

● We examine v -REACH[fPCF1*,fPCF] using:
– Alternating Dependency Tree Automata
– Alternating Tree Automata

● Given a term M, the automaton runs on its 
computation tree (a souped-up syntax tree).

● The automaton assigns/checks profiles to
the variables it encounters.

● Approach based on game semantics.

Stirling'09



   

Results

v -REACH[fPCF1*,fPCF]                ADTA-non-emptiness 
● Non-emptiness of ADTA's is undecidable.

v -REACH[fPCF1*,fPCF(n)]               ATA-non-emptiness

● v -REACH[fPCF1*,fPCF(n)] is decidable.

● v -REACH[fPCF1*,fPCF] is decidable at order 3.



   

Conclusion

● A new kind of reachability problems.
● Some undecidability results.
● Some technology from game semantics.
● Characterisation by ATA's and ADTA's.
● Some relativised decidability results.
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Conclusion

● A new kind of reachability problems.
● Some undecidability results.
● Some technology from game semantics.
● Characterisation by ATA's and ADTA's.
● Some relativised decidability results.

Revisit (semantic) CFA?

Conjecture: *REACH[fPCF1*,fPCF] ?

THANKS!
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