Functional Reachability

Luke Ong Nikos Tzevelekos

Oxford University Computing Laboratory

AVOCS'09, Gregynog
The Problem

Reachability in HO functional languages

\[M(\bar{x}) \]
The Problem

Reachability in HO functional languages
The Problem

Reachability in HO functional languages

\[C : \text{prog} \]

\[M(\overline{x}) \]
Functional Reachability

- Given a term M of a HO functional language and a point p inside M,
- is there a program context C such that the computation of $C[M]$ reaches p?

Surprisingly, (Contextual) Reachability *per se* had not been studied in HO functional languages.
Relevant work

- Control Flow Analysis.
 - *Approximate at compile time the flow of control to happen at run time.*

 - Crucial element: *closures.*

 - Reynolds ('70), Jones ('80), Shivers ('90), ...
 - Malacaria & Hankin (late '90).

- CFA > Reach (more general)
 Reach > CFA (open vs closed world)

- Useless code detection, etc.
Examined language: PCF.

- lambda-calculus,
- Boolean base type,
- recursion at all types.

\[
\begin{align*}
A, B & ::= o \mid A \rightarrow B \\
M, N & ::= x \mid \lambda x. M \mid t \mid f \mid \text{if } M N_1 N_2 \mid Y_A
\end{align*}
\]
PCF

\[
A, B ::= o \mid A \rightarrow B
\]

\[
M, N ::= x \mid \lambda x. M \mid t \mid f \mid \text{if } M \ N_1 N_2 \mid Y_A
\]

\[
E ::= _ \mid E M \mid \text{if } E N_1 N_2
\]

\[
(\lambda x. M) N \rightarrow M \{ N / x \}
\]

\[
\text{if } t \rightarrow \lambda xy.x , \ldots
\]

\[
Y M \rightarrow M (Y M)
\]
Notes on PCF

- Write \((A_1, \ldots, A_n, o)\) for \(A_1 \rightarrow \cdots A_n \cdots \rightarrow o\)
- Divergence definable: \(\perp := Y_0(\lambda x. x)\)
- *Finitary* restrictions (i.e. no rec.):

\[
\text{fPCF} \\
M, N ::= x | \lambda x. M | t | f | \text{if } M N_1 N_2
\]

\[
\text{fPCF}_\perp \\
M, N ::= x | \lambda x. M | t | f | \text{if } M N_1 N_2 | \perp
\]
Reachability (in PCF)

- Given a closed PCF-term $M:(A_1,\ldots,A_n,o)$ and a coloured subterm L of M,
- are there closed PCF-terms N_1,\ldots,N_n such that $MN_1\ldots N_n$ reduces to $E[L']$ with L' coloured?
Reachability (in PCF)

• Given a closed PCF-term $M:(A_1,\ldots,A_n,o)$ and a coloured subterm L of M,
• are there closed PCF-terms N_1,\ldots,N_n such that $MN_1\ldots N_n$ reduces to $E[L']$ with L' coloured?

We can make things even simpler …
PCF-with-error: PCF∗

Include an error constant: $o = \{t, f, *\}$

New rules: $E[*]$ reduces to $*$.

*-Reachability:

- Given a closed PCF∗-term $M:(A_1,\ldots,A_n,o)$ with exactly one $*$,
- are there closed PCF-terms N_1,\ldots,N_n such that $MN_1\ldots N_n$ reduces to $*$?
PCF-with-error: PCF*

Include an error constant: \(o = \{ t, f, * \} \)

New rules: \(E[*] \) reduces to *.

Reachability \(\approx * \)-Reachability

*-Reachability:

- Given a closed PCF*-term \(M:(A_1,\ldots,A_n,o) \) with exactly one *,
- are there closed PCF-terms \(N_1,\ldots,N_n \) such that \(MN_1\ldots N_n \) reduces to *?
Reach template

• Several classes of problems:
 - Reachability
 - *-Reachability
Reach template

• Several classes of problems:
 - Reachability
 - \(\ast\)-Reachability, i.e. \(\ast\text{-REACH}[\text{PCF}^{1\ast},\text{PCF}]\)
Several classes of problems:

- Reachability

- \(\ast \)-Reachability, i.e. \(\ast \)-REACH[PCF1\ast,PCF]\n
- \(\ast \)-REACH[PCF1\ast,fPCF]\n
Reach template

• Several classes of problems:
 - Reachability
 - \(*\)-Reachability, i.e. \(*\)-REACH[PCF_{1*},PCF]
 - \(*\)-REACH[PCF_{1*},fPCF]
 - \(*\)-REACH[fPCF_{1*},fPCF]
Reach template

- Several classes of problems:
 - Reachability
 - *-Reachability, i.e. *-REACH[PCF^{1*},PCF]
 - *-REACH[PCF^{1*},fPCF]
 - *-REACH[fPCF^{1*},fPCF]
 - *-REACH[fPCF_{1*},fPCF]
Reach template

• Several classes of problems:
 - Reachability
 - \(*\)-Reachability, i.e. \(*\)-\text{REACH}[\text{PCF}^1*,\text{PCF}]
 - \(*\)-\text{REACH}[\text{PCF}^1*,\text{fPCF}]
 - \(*\)-\text{REACH}[\text{fPCF}^1*,\text{fPCF}]

UNDECIDABLE \(*\)-\text{REACH}[\text{fPCF}^1_\perp*,\text{fPCF}]
Reach template

- Several classes of problems:

 - Reachability
 - \(*\)-Reachability, i.e. \(*\)-REACH[PCF_{1*},PCF]
 - \(*\)-REACH[PCF_{1*},\text{fPCF}]
 - \(*\)-REACH[\text{fPCF}_{1*},\text{fPCF}]
 - \(*\)-REACH[\text{fPCF}_{1*},\text{fPCF}]

 UNDECIDABLE
Reach template

- Several classes of problems:

<table>
<thead>
<tr>
<th>Undecidable</th>
<th>Reachability</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDECIDABLE</td>
<td>Reachability</td>
</tr>
<tr>
<td>UNDECIDABLE</td>
<td>***-Reachability, i.e. -REACH[PCF^{1},PCF]</td>
</tr>
<tr>
<td>UNDECIDABLE</td>
<td>-REACH[PCF^{1},fPCF]</td>
</tr>
<tr>
<td>-REACH[fPCF^{1},fPCF]</td>
<td></td>
</tr>
<tr>
<td>UNDECIDABLE</td>
<td>-REACH[fPCF^{1},fPCF]</td>
</tr>
<tr>
<td>UNDECIDABLE</td>
<td>t-REACH[fPCF^{1},fPCF]*</td>
</tr>
</tbody>
</table>
Our approach

- We examine ν-REACH[fPCF1*,fPCF] using:
 - Alternating Dependency Tree Automata
 - Alternating Tree Automata
Our approach

- We examine \(\nu\text{-REACH}[f\text{PCF}^1, f\text{PCF}] \) using:
 - Alternating Dependency Tree Automata
 - Alternating Tree Automata
- Given a term \(M \), the automaton runs on its computation tree (a souped-up syntax tree).

Stirling'09
Our approach

- We examine ν-REACH[fPCF1*,fPCF] using:
 - Alternating Dependency Tree Automata
 - Alternating Tree Automata
- Given a term M, the automaton runs on its computation tree (a souped-up syntax tree).
- The automaton assigns/checks profiles to the variables it encounters.
- Approach based on game semantics.

Stirling'09
Results

\[\nu\text{-REACH}[fPCF^{1*}, fPCF] \rightarrow \text{ADTA-non-emptiness} \]

- Non-emptiness of ADTA's is undecidable.

\[\nu\text{-REACH}[fPCF^{1*}, fPCF(n)] \rightarrow \text{ATA-non-emptiness} \]

- \(\nu\text{-REACH}[fPCF^{1*}, fPCF(n)] \) is decidable.
- \(\nu\text{-REACH}[fPCF^{1*}, fPCF] \) is decidable at order 3.
Conclusion

- A new kind of reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA's and ADTA's.
- Some relativised decidability results.
Conclusion

- A new kind of reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA's and ADTA's.
- Some relativised decidability results.

- Revisit (semantic) CFA?
- Conjecture: $*-\text{REACH}[\text{fPCF}^1,\text{fPCF}]$?
Conclusion

- A new kind of reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA's and ADTA's.
- Some relativised decidability results.

THANKS!

- Revisit (semantic) CFA?
- Conjecture: \star-REACH[fPCF$^{1\ast},\text{fPCF}$]?