

Functional Reachability

Luke Ong Nikos Tzevelekos

Oxford University Computing Laboratory

AVOCS'09, Gregynog

The Problem

Reachability in HO functional languages

M x

p

The Problem

Reachability in HO functional languages

M x

p

C:prog

The Problem

Reachability in HO functional languages

M x

p

C:prog

Functional Reachability

● Given a term M of a HO functional language
and a point p inside M,

● is there a program context C such that the
computation of C[M] reaches p?

Surprisingly, (Contextual) Reachability per se had
not been studied in HO functional languages.

Relevant work
● Control Flow Analysis.

 - Approximate at compile time the flow of
 control to happen at run time.
 - Crucial element: closures.

 - Reynolds ('70), Jones ('80), Shivers ('90),
 … , Malacaria & Hankin (late '90).
 - CFA > Reach (more general)
 Reach > CFA (open vs closed world)

● Useless code detection, etc.

PCF

Examined language: PCF.
● lambda-calculus,
● Boolean base type,
● recursion at all types.

A , B : := o ∣ AB

M N : := x ∣ x. M ∣ t ∣ f ∣ if M N 1 N 2 ∣ YA,

PCF

A , B : := o ∣ AB

M N : := x ∣ x. M ∣ t ∣ f ∣ if M N 1 N 2 ∣ YA

E : := []∣ E M ∣ if E N 1 N 2

,

 x.M N M {N / x }

if t xy.x , ...

Y M M Y M

M N
E [M] E [N]

Notes on PCF

fPCF

⊥ := Y0 x. x

,

M N : := x ∣ x. M ∣ t ∣ f ∣ if M N 1 N 2 ∣ ⊥,

A1⋯An⋯o

fPCF⊥

● Write (A1,...,An,o) for
● Divergence definable:
● Finitary restrictions (i.e. no rec.):

M N : := x ∣ x. M ∣ t ∣ f ∣ if M N 1 N 2,

Reachability (in PCF)

● Given a closed PCF-term M:(A1,...,An,o) and
a coloured subterm L of M,

● are there closed PCF-terms N1,...,Nn such that
MN1...Nn reduces to E [L'] with L' coloured?

Reachability (in PCF)

● Given a closed PCF-term M:(A1,...,An,o) and
a coloured subterm L of M,

● are there closed PCF-terms N1,...,Nn such that
MN1...Nn reduces to E [L'] with L' coloured?

We can make things even simpler …

PCFwitherror: PCF*

Include an error constant:
New rules: E [*] reduces to *.

*-Reachability:
● Given a closed PCF*-term M:(A1,...,An,o) with

exactly one *,
● are there closed PCF-terms N1,...,Nn such that

MN1...Nn reduces to *?

o = {t , f ,*}

PCFwitherror: PCF*

Include an error constant:
New rules: E [*] reduces to *.

*-Reachability:
● Given a closed PCF*-term M:(A1,...,An,o) with

exactly one *,
● are there closed PCF-terms N1,...,Nn such that

MN1...Nn reduces to *?

o = {t , f ,*}

Reachability ≈ *Reachability

PCF1*

Reach template

● Several classes of problems:
– Reachability

– *-Reachability

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

– *REACH[PCF1*,fPCF]

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

– *REACH[PCF1*,fPCF]

– *REACH[fPCF1*,fPCF]

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

– *REACH[PCF1*,fPCF]

– *REACH[fPCF1*,fPCF]

– *REACH[fPCF1*,fPCF]⊥

UNDECIDABLE

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

– *REACH[PCF1*,fPCF]

– *REACH[fPCF1*,fPCF]

– *REACH[fPCF1*,fPCF]⊥

UNDECIDABLE

UNDECIDABLE

UNDECIDABLE

UNDECIDABLE

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

– *REACH[PCF1*,fPCF]

– *REACH[fPCF1*,fPCF]

– *REACH[fPCF1*,fPCF]⊥

 UNDECIDABLE

UNDECIDABLE

UNDECIDABLE

UNDECIDABLE

UNDECIDABLE

Reach template

● Several classes of problems:
– Reachability

– *-Reachability, i.e. *REACH[PCF1*,PCF]

– *REACH[PCF1*,fPCF]

– *REACH[fPCF1*,fPCF]

– *REACH[fPCF1*,fPCF]

– t REACH[fPCF1*,fPCF]

⊥

Our approach

● We examine v -REACH[fPCF1*,fPCF] using:
– Alternating Dependency Tree Automata
– Alternating Tree Automata

Stirling'09

Our approach

● We examine v -REACH[fPCF1*,fPCF] using:
– Alternating Dependency Tree Automata
– Alternating Tree Automata

● Given a term M, the automaton runs on its
computation tree (a souped-up syntax tree).

Stirling'09

Our approach

● We examine v -REACH[fPCF1*,fPCF] using:
– Alternating Dependency Tree Automata
– Alternating Tree Automata

● Given a term M, the automaton runs on its
computation tree (a souped-up syntax tree).

● The automaton assigns/checks profiles to
the variables it encounters.

● Approach based on game semantics.

Stirling'09

Results

v -REACH[fPCF1*,fPCF] ADTA-non-emptiness
● Non-emptiness of ADTA's is undecidable.

v -REACH[fPCF1*,fPCF(n)] ATA-non-emptiness

● v -REACH[fPCF1*,fPCF(n)] is decidable.

● v -REACH[fPCF1*,fPCF] is decidable at order 3.

Conclusion

● A new kind of reachability problems.
● Some undecidability results.
● Some technology from game semantics.
● Characterisation by ATA's and ADTA's.
● Some relativised decidability results.

Conclusion

● A new kind of reachability problems.
● Some undecidability results.
● Some technology from game semantics.
● Characterisation by ATA's and ADTA's.
● Some relativised decidability results.

Revisit (semantic) CFA?

Conjecture: *REACH[fPCF1*,fPCF] ?

Conclusion

● A new kind of reachability problems.
● Some undecidability results.
● Some technology from game semantics.
● Characterisation by ATA's and ADTA's.
● Some relativised decidability results.

Revisit (semantic) CFA?

Conjecture: *REACH[fPCF1*,fPCF] ?

THANKS!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

