Functional Reachability

Luke Ong Nikos Tzevelekos

Oxford University Computing Laboratory

AVOCS'09, Gregynog

The Problem

Reachability in HO functional languages

 $M\left(ec{x}
ight)$

The Problem

Reachability in HO functional languages

 $M(\vec{x})$

C:prog

The Problem

Reachability in HO functional languages

C:prog

Functional Reachability

- Given a term *M* of a HO functional language and a *point p* inside *M*,
- is there a program context C such that the computation of C[M] reaches p?

Surprisingly, (Contextual) Reachability *per se* had not been studied in HO functional languages.

Relevant work

- Control Flow Analysis.
 - Approximate at compile time the flow of control to happen at run time.
 - Crucial element: closures.
 - Reynolds ('70), Jones ('80), Shivers ('90), ..., Malacaria & Hankin (late '90).
 - CFA > Reach (more general)
 Reach > CFA (open vs closed world)
- Useless code detection, etc.

PCF

- Examined language: PCF.
- lambda-calculus,
- Boolean base type,
- recursion at all types.

 $A, B ::= o \mid A \rightarrow B$ $M, N ::= x \mid \lambda x. M \mid t \mid f \mid if M N_1 N_2 \mid Y_A$

PCF

$A, B ::= o \mid A \rightarrow B$ $M, N ::= x \mid \lambda x. M \mid t \mid f \mid if M N_1 N_2 \mid Y_A$ $E ::= \begin{bmatrix} \\ \end{bmatrix} \begin{bmatrix} E M \end{bmatrix}$ if $E N_1 N_2$ $(\lambda x.M)N \rightarrow M\{N/x\}$ $M \rightarrow N$ if $t \rightarrow \lambda xy.x$,... $E[M] \to E[N]$ $\mathbf{Y} M \rightarrow M(\mathbf{Y} M)$

Notes on PCF

- Write (A_1, \dots, A_n, o) for $A_1 \rightarrow \cdots \rightarrow A_n \cdots \rightarrow o$
- Divergence definable: $\bot := Y_0(\lambda x. x)$
- Finitary restrictions (i.e. no rec.):

fPCF

 $M, N ::= x | \lambda x. M | t | f | if M N_1 N_2$

fPCF_{\perp}

 $M, N ::= x \mid \lambda x. M \mid t \mid f \mid if M N_1 N_2 \mid \bot$

Reachability (in PCF)

- Given a closed PCF-term M:(A₁,...,A_n,o) and a coloured subterm L of M,
- are there closed PCF-terms N₁,..., N_n such that MN₁..., N_n reduces to E[L'] with L' coloured?

Reachability (in PCF)

- Given a closed PCF-term M:(A₁,...,A_n,o) and a coloured subterm L of M,
- are there closed PCF-terms N₁,..., N_n such that MN₁..., N_n reduces to E[L'] with L' coloured?

We can make things even simpler ...

PCF-with-error: PCF*

- Include an error constant: $o = \{t, f, \star\}$
- New rules: E[*] reduces to *.

- *-Reachability:
- Given a closed PCF*-term M:(A1,...,An,o) with exactly one *,
- are there closed PCF-terms N₁,...,N_n such that MN₁...,N_n reduces to *?

PCF-with-error: PCF*

- Include an error constant: $o = \{t, f, \star\}$
- New rules: E[*] reduces to *.

Reachability ≈ *****-Reachability

- *-Reachability:
- Given a closed PCF*-term M:(A₁,...,A_n,o) with exactly one *,
- are there closed PCF-terms N₁,...,N_n such that MN₁...N_n reduces to *?

- Several classes of problems:
 - Reachability

*-Reachability

- Several classes of problems:
 - Reachability

-

*-Reachability, i.e. *-REACH[PCF^{1*},PCF]

- Several classes of problems:
 - Reachability

- *****-Reachability, i.e. *****-REACH[PCF^{1*},PCF]
- *-REACH[PCF^{1*},fPCF]

- Several classes of problems:
 - Reachability

*-Reachability, i.e. *-REACH[PCF^{1*},PCF]

- *-REACH[PCF^{1*},fPCF]

- *-REACH[fPCF^{1*},fPCF]

- Several classes of problems:
 - Reachability

*-Reachability, i.e. *-REACH[PCF^{1*},PCF]

- *-REACH[PCF^{1*},fPCF]
- *-REACH[fPCF^{1*},fPCF]
- *-REACH[fPCF^{1*},fPCF]

- Several classes of problems:
 - Reachability

*-Reachability, i.e. *-REACH[PCF^{1*},PCF]

- *-REACH[PCF^{1*},fPCF]

- *-REACH[fPCF^{1*},fPCF]

UNDECIDABLE *-REACH[fPCF^{1*}, fPCF]

- Several classes of problems:
- UNDECIDABLE Reachability

UNDECIDABLE *-Reachability, i.e. *-REACH[PCF^{1*},PCF]

UNDECIDABLE *-REACH[PCF^{1*},fPCF]

- *-REACH[fPCF^{1*},fPCF]

UNDECIDABLE *-REACH[fPCF^{1*}, fPCF]

- Several classes of problems:
- UNDECIDABLE Reachability
- UNDECIDABLE *-Reachability, i.e. *-REACH[PCF^{1*},PCF]
- UNDECIDABLE *-REACH[PCF^{1*},fPCF]
 - *-REACH[fPCF^{1*},fPCF]

UNDECIDABLE *-REACH[fPCF^{1*}, fPCF]

UNDECIDABLE t-REACH[fPCF^{1*},fPCF]

Our approach

- We examine *v*-REACH[fPCF^{1*},fPCF] using:
 - Alternating Dependency Tree Automata

Stirling'09

- Alternating Tree Automata

Our approach

- We examine *v*-REACH[fPCF^{1*},fPCF] using:
 - Alternating Dependency Tree Automata

Stirling'09

- Alternating Tree Automata
- Given a term *M*, the automaton runs on its computation tree (a souped-up syntax tree).

Our approach

- We examine *v*-REACH[fPCF^{1*},fPCF] using:
 - Alternating Dependency Tree Automata

Stirling'09

- Alternating Tree Automata
- Given a term *M*, the automaton runs on its computation tree (a souped-up syntax tree).
- The automaton assigns/checks profiles to the variables it encounters.
- Approach based on game semantics.

Results

v-REACH[fPCF^{1*},fPCF] → ADTA-non-emptiness

Non-emptiness of ADTA's is undecidable.

v-REACH[fPCF^{1*},fPCF(n)] \longrightarrow ATA-non-emptiness

- *v*-REACH[fPCF^{1*},fPCF(*n*)] is decidable.
- *v*-REACH[fPCF^{1*},fPCF] is decidable at order 3.

Conclusion

- A new kind of reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA's and ADTA's.
- Some relativised decidability results.

Conclusion

- A new kind of reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA's and ADTA's.
- Some relativised decidability results.

- Revisit (semantic) CFA?
- Conjecture: *-REACH[fPCF^{1*},fPCF] ?

Conclusion

- A new kind of reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA's and ADTA's.
- Some relativised decidability results.

THANKS!

- Revisit (semantic) CFA?
- Conjecture: *-REACH[fPCF^{1*},fPCF] ?