Functional Reachability

Luke Ong Nikos Tzevelekos

Oxford University Computing Laboratory

24th Symposium on Logic in Computer Science
Los Angeles, August 2009.
Reachability in functional computation.

- Consider a term M of a higher-order functional programming language.
- Now consider a point p inside M.
- Is there a program context C such that the computation of $C[M]$ reaches p?
Reachability in functional computation.

- Consider a term M of a higher-order functional programming language.
- Now consider a point p inside M.
- Is there a program context C such that the computation of $C[M]$ reaches p?
Reachability in functional computation.

- Consider a term M of a higher-order functional programming language.
- Now consider a point p inside M.
- Is there a program context C such that the computation of $C[M]$ reaches p?

Surprisingly, (Contextual) Reachability per se had not been studied in HO functional languages.
Control Flow Analysis: Approximate at compile time the flow of control to happen at run time.

- In a HO-setting, the crucial element is that of closures.
- Reynolds ('70), Jones ('80), Shivers ('90), ... Malacaria & Hankin (late 90’s).
- CFA > Reach: more general. Reach > CFA: open vs closed world approach.

Useless code detection, etc.
The examined language: PCF

Types: \quad A, B ::= o \mid A \rightarrow B

Terms: \quad M, N ::= x \mid \lambda x.M \mid MN \mid t \mid f \mid \text{if } M N_1 N_2 \mid Y_A

Contexts: \quad C ::= \ldots
The examined language: PCF

Types: \[A, B ::= o \mid A \to B \]

Terms: \[M, N ::= x \mid \lambda x.M \mid MN \mid t \mid f \mid \text{if } M \mid N_1 N_2 \mid Y_A \]

Contexts: \[C ::= \ldots \]

Reductions: \[
\begin{align*}
(\lambda x.M)N & \to M\{N/x\} & \text{if } t & \to \lambda xy.x \\
Y M & \to M(Y M) & \text{if } f & \to \lambda xy.y
\end{align*}
\]

\[M \to N \implies E[M] \to E[N] \]

Ev. Contexts: \[E ::= [_] \mid E M \mid \text{if } E \]
The examined language: PCF

Types: \[A, B \ ::= o \mid A \to B \]

Terms: \[M, N \ ::= x \mid \lambda x.M \mid MN \mid t \mid f \mid \text{if} \ M \ N_1 \ N_2 \mid Y_A \]

Contexts: \[C \ ::= \ldots \]

Reductions: Call-by-name \(\lambda \)-calculus + if + \(Y \)

- Write \((A_1, \ldots, A_n, o)\) for \(A_1 \to \cdots \to A_n \to o\).
- Divergence definable, e.g. \(\perp := Y_o(\lambda x.x)\).
- Finitary restrictions (i.e. no \(Y \)): \text{fPCF, fPCF}_\perp.
Given a PCF-term M and a coloured subterm L of M, is there a program context C such that $C[M] \rightarrow E[L']$ with L' coloured?
Reachability

- Given a PCF-term M and a coloured subterm L of M,
- Is there a program context C such that $C[M] \rightarrow E[L']$ with L' coloured?

Equivalently:

- Given a closed PCF-term $M : (A_1, \ldots, A_n, o)$ and a coloured subterm L of M,
- Are there closed PCF-terms N_1, \ldots, N_n such that

$$M \vec{N} \rightarrow E[L']$$

with L' coloured?
Take base type $o = \{t, f, \star\}$ with \star an error constant:

$$E[\star] \rightarrow \star$$

\star-Reachability:

- Given a closed PCF*-term $M : (A_1, ..., A_n, o)$ that has exactly one occurrence of \star,

- are there closed PCF-terms $N_1, ..., N_n$ such that $M \cdot N \rightarrow \star$?
Take base type $\tau = \{ t, f, \star \}$ with \star an error constant:

$$E[\star] \longrightarrow \star$$

\star-Reachability:

- Given a closed PCF*-term $M : (A_1, \ldots, A_n, \tau)$ that has exactly one occurrence of \star,

- are there closed PCF-terms N_1, \ldots, N_n such that $M \vec{N} \rightarrow \star$?

Lemma: Reachability $\cong \star$-Reachability.
For $v \in \{t, f, \star\}$ and $\mathcal{L}_1, \mathcal{L}_2 \subseteq \text{PCF}^*$:

v-\textsc{Reach} $[\mathcal{L}_1, \mathcal{L}_2]$: Given a closed \mathcal{L}_1-term $M : (A_1, \ldots, A_n, o)$, are there closed \mathcal{L}_2-terms N_1, \ldots, N_n such that $M \overset{\vec{N}}{\rightarrow} v$?

E.g. \star-Reachability $= \star$-\textsc{Reach} $[\text{PCF}^{1\star}, \text{PCF}]$.

Reach template
For $v \in \{t, f, \star\}$ and $\mathcal{L}_1, \mathcal{L}_2 \subseteq \text{PCF}^*$:

v-$\mathbf{REACH} [\mathcal{L}_1, \mathcal{L}_2]$:
Given a closed \mathcal{L}_1-term $M : (A_1, \ldots, A_n, o)$, are there closed \mathcal{L}_2-terms N_1, \ldots, N_n such that $M \vec{N} \rightarrow v$?

Three classes of problems:

- Reachability
- \star-Reachability
- \star-$\mathbf{REACH} [\text{PCF}^{1*}, \text{PCF}]$
- \star-$\mathbf{REACH} [\text{PCF}^{1*}, \text{fPCF}]$
- \star-$\mathbf{REACH} [\text{fPCF}^{1*}, \text{fPCF}]$
- \star-$\mathbf{REACH} [\text{fPCF}^{1*}, \perp]$
An undecidability result

Lemma: $\ast\text{-REACH}[f\text{PCF}_\perp, f\text{PCF}]$ is undecidable.

Proof: By reduction of solvability of systems of $f\text{PCF}_\perp$-equations (proved undecidable by [Loader’01]).
Our approach

- We focus on v-REACH [fPCF*, fPCF].
- For fPCF*-term $P : o$,

 Computations of P \[\text{Traversals over its computation tree, } \lambda(P)\]

 Runs of an Alternating Tree Automaton (ATA) on $\lambda(P)$
Our approach

- We focus on v-\textsc{Reach} [$fPCF^*, fPCF$].
- For $fPCF^*$-term $P : o$,

\begin{align*}
\text{Computations of } P & \xrightarrow{\text{Traversals over its computation tree, } \lambda(P)} \\
\text{Runs of an Alternating Tree Automaton (ATA) on } \lambda(P) & \xrightarrow{\text{if an ATA accepts } \lambda(P) \text{ on initial state with value } v.}
\end{align*}

$P \xrightarrow{v} \iff$ iff an ATA accepts $\lambda(P)$ on initial state with value v.
Starting from a fPCF*-term M,

- take its η-long form,
- add application symbols ($@$),
- view the result as a tree, $\lambda(M)$.
Starting from a fPCF*-term M,

- take its η-long form,
- add application symbols (@),
- view the result as a tree, $\lambda(M)$.

$$(\lambda \Phi z. \Phi(\lambda y. if y \ast z)t)(\lambda \varphi x. \varphi x)t \mapsto$$
A traversal [Blum, Ong] over a computation tree,

- follows the flow of control within it,
- seen from the perspective of *Game Semantics*.
A traversal [Blum, Ong] over a computation tree
- follows the flow of control within it,
- seen from the perspective of Game Semantics.

\[
\begin{align*}
\lambda & \Phi z \\
\Phi & \varphi x \\
\lambda y & t \\
\lambda & x \\
y & * \\
z & \\
\end{align*}
\]
A traversal [Blum, Ong] over a computation tree,
- follows the flow of control within it,
- seen from the perspective of Game Semantics.

\[
\lambda \Phi z \quad \lambda \varphi x \quad \lambda
\]
\[
\Phi \quad \varphi \quad t
\]
\[
\lambda y \quad \lambda \quad \lambda
\]
\[
\text{if} \quad t \quad x
\]
\[
\lambda \quad \lambda \quad \lambda
\]
\[
y \quad * \quad z
\]
A traversal [Blum, Ong] over a computation tree follows the flow of control within it, seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree, follows the flow of control within it, seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree follows the flow of control within it, seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree

- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree follows the flow of control, seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree,
follows the flow of control within it,
seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree,

- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree:
- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree,

- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] follows the flow of control within it, seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree,
- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree follows the flow of control within it, seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree:

- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree:
- follows the flow of control within it,
- seen from the perspective of Game Semantics.
A traversal \cite{Blum, Ong} over a computation tree,

- follows the flow of control within it,

- seen from the perspective of Game Semantics.
A traversal [Blum, Ong] over a computation tree follows the flow of control within it seen from the perspective of Game Semantics.

\[\lambda \Phi z \]

\[\lambda \varphi x \]

\[\lambda \]

\[\lambda \]

\[t \]

\[x \]

\[y \]

\[z \]

\[\text{*-complete traversal} \]
A traversal [Blum, Ong] over a computation tree,

■ follows the flow of control within it,

■ seen from the perspective of Game Semantics.

A traversal is \(v \text{-complete} \) if every question (red visit) has been answered (green visit), and the root question has been answered with \(v \).

Theorem: For any \(P : o \) and value \(v \), \(P \rightarrow v \) iff there is a complete \(v \)-traversal over \(\lambda(P) \).
An ATA is a quadruple $\mathcal{A} = \langle Q, \Sigma, q_0, \Delta \rangle$ where:

- Q is a finite set of states,
- Σ is a finite ranked alphabet,
- $q_0 \in Q$ is the initial state,
- Δ is a finite transition relation: $q \xrightarrow{s} (Q_1, \ldots, Q_k)$.

$s \in \Sigma$
$q \in Q$

$Q_1, \ldots, Q_k \subseteq Q$
An ATA is a quadruple $\mathcal{A} = \langle Q, \Sigma, q_0, \Delta \rangle$ where:

- Q is a finite set of states,
- Σ is a finite ranked alphabet,
- $q_0 \in Q$ is the initial state,
- Δ is a finite transition relation: $q \xrightarrow{s} (Q_1, \ldots, Q_k)$.
An ATA is a quadruple $\mathcal{A} = \langle Q, \Sigma, q_0, \Delta \rangle$ where:

- Q is a finite set of states,
- Σ is a finite ranked alphabet,
- $q_0 \in Q$ is the initial state,
- Δ is a finite transition relation: $q \xrightarrow{s} (Q_1, \ldots, Q_k)$.
An ATA is a quadruple $\mathcal{A} = \langle Q, \Sigma, q_0, \Delta \rangle$ where:

- Q is a finite set of states,
- Σ is a finite ranked alphabet,
- $q_0 \in Q$ is the initial state,
- Δ is a finite transition relation: $q \xrightarrow{s} (Q_1, \ldots, Q_k)$.
How can we simulate a complete traversal by an ATA?
How can we simulate a complete traversal by an ATA?

- By *guessing* the number of visits of each node.
- By *guessing* the profile of each variable per visit.
- By verifying these guesses.
Variable profiles

- Introduced by [Ong’06].

- \(\text{VP}(A_1, \ldots, A_n, o) := \text{Var} \times \text{Val} \times \mathcal{P}(\bigcup_{i=1}^{n} \text{VP}(A_i)) \)

- Notation: \((x, v), (x, v | \pi_1, \ldots, \pi_n)\)
Variable profiles
Variable profiles

\[\lambda \Phi z \]

\[\Phi \lambda \varphi x \]

\[\varphi \lambda y \]

\[\text{if} \]

\[(y, t) \]

\[(x, t) \]
Variable profiles
\[(\Phi, \star \mid (\varphi, \star \mid (y, t)), (x, t)) \]

\[(\varphi, \star \mid (y, t)) \]

\[\text{if} \]

\[(y, t) \]

\[y \]

\[\star \]

\[z \]
Given a finite fPCF*-alphabet Σ, the states of the traversal-simulating ATA A_Σ are:

$$Q := Val \times \mathcal{P}(VP_\Sigma) \times \mathcal{P}(VP_\Sigma)$$
Given a finite fPCF*-alphabet Σ, the states of the traversal-simulating ATA A_Σ are:

$$Q := \text{Val} \times \mathcal{P}(\text{VP}_\Sigma) \times \mathcal{P}(\text{VP}_\Sigma)$$

- $M \vec{N} \rightarrow v$ iff A_Σ accepts $\lambda(M \vec{N})$ on initial state with value v.
- Any tree accepted by \tilde{A}_Σ is a closed fPCF-term.
Theorem: \(M \in v\text{-}\text{REACH}[fPCF^*_{\Sigma}, fPCF_{\Sigma}] \) iff there is an initial state \(q_0 \) with value \(v \) such that:

- \(A_{\Sigma}(q_0) \) accepts \(\lambda(M) \),

- \(\forall i, \) the language accepted by \(\tilde{A}_{\Sigma}(q_0 \upharpoonright A_i) \) is non-empty.
The Problem

Relevant work

The examined language: PCF

Reachability PCF-with-error: PCF

⋆ Reach template

An undecidability result

Our approach

Computation trees

Traversals

Alternating Tree Automata

Traversal-simulating ATA’s

Variable profiles

ATA correspondence

Results

Theorem: $M \in v\text{-REACH} \left[\text{fPCF}^*, \text{fPCF}_\Sigma \right]$ iff there is an initial state q_0 with value v such that:

- $A_\Sigma(q_0)$ accepts $\lambda(M)$,

- $\forall i$, the language accepted by $\tilde{A}_\Sigma(q_0 \upharpoonright A_i)$ is non-empty.

Corollary: $\ast\text{-REACH} \left[\text{fPCF}^*, \text{fPCF}(n) \right]$ is decidable.

Corollary: $\ast\text{-REACH} \left[\text{fPCF}^*, \text{fPCF} \right]$ is decidable up to order 3.
For the general case we can use Alternating Dependency Tree Automata [Stirling’09].

Corollary: Emptiness problem is undecidable for ADTA’s.
Conclusion and on

- A new kind of Reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA’s and ADTA’s.
- Some (relativised) decidability results.
Conclusion and on

- A new kind of Reachability problems.
- Some undecidability results.
- Some technology from game semantics.
- Characterisation by ATA’s and ADTA’s.
- Some (relativised) decidability results.
- Revisit (semantic) CFA?
- Reachability through intersection types?
- Conjecture: \star-REACH[fPCF*, fPCF]?
A new kind of Reachability problems.

Some undecidability results.

Some technology from game semantics.

Characterisation by ATA’s and ADTA’s.

Some (relativised) decidability results.

Revisit (semantic) CFA?

Reachability through intersection types?

Conjecture: $\star\text{-REACH}[\text{fPCF}^*, \text{fPCF}]$?

THANKS!