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n Nominal Techniques := formal techniques for names,
n Names := identifiers/atoms in constructions.

There are two parts in this talk; nominal techniques for:

n abstract syntax,
n semantics.

Different issues, same techniques.
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∫ 1

0
f(x) dx

In the above expression we say that x is bound in∫ 1
0 f(x) dx . Alternatively, the costructor

∫ 1
0 dx binds x.

This is a very well understood notion: for example, we
can easily spot the error below.

∫ 1

0

∫ 1

0
xy dx dy =

∫ 1

0

∫ 1

0
xx dx dy =

∫ 1

0

1

3
dx =

1

3
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Consider the simply-typed λ-calculus.

Types A, B ::= B | A → B

Terms M, N ::= x | MN | λx.M

The constructor λx. is a binder. We consider terms
modulo choices of names in binding positions. That is,

Term := Var + (Term × Term) + (Var × Term)

αTerm := Term/=α

where M =α M ′ if M and M ′ differ solely in their
choices of bound names.
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Term := Var + (Term × Term) + (Var × Term)

αTerm := Term/=α

Most of the times:

n we say that we use [M ]α ∈ αTerm,
n but in fact we use (specific!) M ′ ∈ [M ]α.

This introduces (at best) an amount of informality in
definitions and proofs regarding α-terms.
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Typing rules for α-terms.

(x:A)∈Γ

Γ ⊢ x : A
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Γ, x : A ⊢ M : B x/∈dom(Γ )

Γ ⊢ λx.M : A → B

What does this formally mean?

n That Γ ⊢ [M ]α : A has a derivation if Γ ⊢ M : A does?
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Typing rules for α-terms.

(x:A)∈Γ

Γ ⊢ x : A
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Γ, x : A ⊢ M : B x/∈dom(Γ )

Γ ⊢ λx.M : A → B

What does this formally mean?

n That Γ ⊢ [M ]α : A has a derivation if Γ ⊢ M : A does?

n That Γ ⊢ [M ]α : A has a derivation if Γ ⊢ M ′ : A does, some
M ′ ∈ [M ]α?

n That derivations are considered modulo α-equivalence and that
Γ ⊢ [M ]α : A has a derivation [D]α if Γ ⊢ M ′ : A has a derivation
D, some (“sufficiently fresh”) M ′ ∈ [M ]α?
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n Can’t we do things in a way that is both simple and
formal?

n In particular, can’t we have a syntax which directly
incorporates name-binding?

αTerm := Var + (αTerm × αTerm) + 〈Var〉αTerm



Nominal Logic

What this talk is
about

From Nominal Logic
to Nominal Sets

Name-binding

Being formal about
name-binding

The problem

An example

The desideratum

Nominal Logic

Nominal Logic
(cont.)

Nominal Sets
Nominal Logic in
Nominal Sets
Remarks before
continuing

From Nominal Sets
to Nominal Games

Nominal Techniques, N. Tzevelekos 9 / 20

[Pitts, 2001]: “A first order theory of names and binding”.
A many-sorted logic with:

n sorts for data, names and name-abstractions:

S ::= A | D | 〈A〉S

n constructors for functions; in particular:

u if t1, t2 : A, t : S then (t1 t2) · t : S,
u if t1 : A, t : S then t1.t : 〈A〉S,

n constructors for relations; in particular:

u if t1 : A, t : S then t1# t is a formula,

n quantfiers ∀, ∃, N,
n axioms.
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t1, t2 : A t : S

(t1 t2) · t : S

t1 : A t : S

t1.t : 〈A〉S

t1 : A t : S

t1# t : wff

. . .

Example axioms:

Na : A. φ(~x) ⇐⇒ ∃a : A. a#~x ∧ φ(~x) (Q)
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t1, t2 : A t : S

(t1 t2) · t : S

t1 : A t : S

t1.t : 〈A〉S

t1 : A t : S

t1# t : wff

. . .

Example axioms (note sorts should match):

Na : A. φ(~x) ⇐⇒ ∃a : A. a#~x ∧ φ(~x) (Q)

(a a′) · (b b′) · x = ((a a′)·b (a a′)·b′) · (a a′) · x (E1)

b#x =⇒ (a a′)· b# (a a′)· x (E2)

a#x ∧ a′#x =⇒ (a a′) · x = x (F1)

a.x = a′.x′ ⇐⇒ (a = a′ ∨ a′#x) ∧ x′ = (a a′) · x (A1)

NL gives us a strong handle on names. For example:

• φ(~x) ⇐⇒ φ((a a′) · ~x)

• (∃a : A. a#~x ∧ φ(~x)) ⇐⇒ (∀a : A. a#~x =⇒ φ(~x))

• b# a.x ⇐⇒ b = a ∨ b# x

• a.x = a′.x′ ⇐⇒ Nb : A. (a b) · x = (a′ b) · x′
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t1, t2 : A t : S

(t1 t2) · t : S

t1 : A t : S

t1.t : 〈A〉S

t1 : A t : S

t1# t : wff

. . .

Consider a countably infinite set A of atoms and its group of finite
permutations PERM(A).

A nominal set is a pair (X, ·) such that X is a set and

n · : PERM(A) × X → X is an action on X,

u i.e. id · x = x, π · (π′ · x) = (π ◦ π′) · x,

n each x ∈ X has finite support,

u i.e, there exists finite S ⊆ A,
∀π. (∀a ∈ S. π(a) = a) =⇒ π · x = x,

In particular, each x ∈ X has a least support, supp(x).
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t1, t2 : A t : S

(t1 t2) · t : S

t1 : A t : S

t1.t : 〈A〉S

t1 : A t : S

t1# t : wff

. . .

Consider a countably infinite set A of atoms and its group of finite
permutations PERM(A).

A nominal set is a pair (X, ·) such that X is a set and

n · : PERM(A) × X → X is an action on X,

u i.e. id · x = x, π · (π′ · x) = (π ◦ π′) · x,

n each x ∈ X has finite support,

u i.e, there exists finite S ⊆ A,
∀π. (∀a ∈ S. π(a) = a) =⇒ π · x = x,

In particular, each x ∈ X has a least support, supp(x).
For example, any set is trivially nominal, A is a nominal set, prod-
ucts of nominal sets are nominal, etc.

∼ Nominal sets derived from FM permutation models of ZFA.
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t1, t2 : A t : S

(t1 t2) · t : S

t1 : A t : S

t1.t : 〈A〉S

t1 : A t : S

t1# t : wff

. . .

Nominal sets provide a model for NL:

n map each D to some XD,
n map A to A,
n for each a, b ∈ A and x ∈ X take:

u (a b) · x as given,
u a#x if a /∈ supp(x),
u a.x := {(b, y) | (a = b ∨ b#y) ∧ y = (a b) · x}.

Thus, 〈A〉X := {a.x | a ∈ A ∧ x ∈ X}.
n etc.
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n Nominal techniques introduced in [Gabbay & Pitts’99].
The original presentation was set-theoretic, in ZFA.

n Nominal techniques have had a huge impact on
abstract syntax:

u nominal algebras,
u nominal rewriting systems,
u nominal theorem provers,
u nominal metalanguages, etc.

See e.g. works of: Cheney, Gabbay, Mathijssen, Pitts,
Shinwell, Urban, and collaborators.

n but also in semantics via nominal sets:

u nominal domains [Shinwell & Pitts],
u nominal games.
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Denotational Semantics assigns to terms denotations in
some abstract mathematical domain (a category).

n Issues with α-equivalence disappear at the level of
semantics.

n Different approach: λx.f(x) represents

u a name-abstraction (no comp. content) in syntax,
u an exponential (a function) in semantics.
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Denotational Semantics assigns to terms denotations in
some abstract mathematical domain (a category).

n Issues with α-equivalence disappear at the level of
semantics.

n Different approach: λx.f(x) represents

u a name-abstraction (no comp. content) in syntax,
u an exponential (a function) in semantics.

n But there is still space for nominal techniques, in
languages with names:

u names for references,
u names for objects, exceptions,
u names for threads, channels, etc.
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Types A, B ::= B | A | A → B base types: booleans, names

Terms M, N ::= t | f | x | MN | λx.M λ-calculus over booleans

| if M thenN1 else N2

| a name

| [M1 = M2] name-equality test

| νa.M name-abstraction
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Types A, B ::= B | A | A → B base types: booleans, names

Terms M, N ::= t | f | x | MN | λx.M λ-calculus over booleans

| if M thenN1 else N2

| a name

| [M1 = M2] name-equality test

| νa.M name-abstraction

n Terms form a nominal set (a ∈ A).
n νa.M creates a fresh name a for M – it is a binder.
n Terms are taken modulo α-equivalence (wrt both bindings).

“Names are created with local scope, can be tested for equality
and can be passed around via function application, but that is all.”
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n Reduction happens in state-environments. Reduction
rules include:

u λ-calculus rules (call by value),
u nominal rules:

S, νa.M → S ⊕ a, M

S, [a = b] → S, f (a 6= b)

S, [a = a] → S, t

So reduction is non-deterministic, in a “nominal way”.

n Two terms are (observationally) equivalent (∼=) if no
context of type C[ ] : B can distinguish them.
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This simple calculus is quite expressive. For example:

n
νa.λx.a 6∼= λx.νa.a

νa.λx.[a = x] ∼= λx.f

...

n As n ranges in ω we get infinitely many
(observationally) different terms of type A → A by:

νa1. ...νan.λx. if [x = a1] then a2 else

if [x = a2] then a3 else

. . .

if [x = an−1] then an else a1

Although introduced in [Pitts & Stark, 1993], its first fully
abstract semantics was given in [AGMOS, 2004].
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[AGMOS’04] and [Laird’04] introduced Nominal Games.

Names excluded, the ν-calculus is game-semantically easy.
The extra feature needed was plays-with-names:

n names in plays as first-class moves (like integers),
n strategies unable to distinguish between fresh names

(unlike integers),
n some notion of local state (or name-availability).
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[AGMOS’04] and [Laird’04] introduced Nominal Games.

Names excluded, the ν-calculus is game-semantically easy.
The extra feature needed was plays-with-names:

n names in plays as first-class moves (like integers),
n strategies unable to distinguish between fresh names

(unlike integers),
n some notion of local state (or name-availability).

All of the above achieved elegantly by use of nominal sets
at the basis of moves, plays, strategies, etc.

This is no coincidence: the first two specifications go back
to the notions of atomic, bindable names at the very basis
of nominal techniques!
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[What has been accomplished] A series of FA models:

n for the ν-calculus [AGMOS’04, Tz’07],
n ν-calc.+HO-references,exceptions [Tz’07, Tz’08],
n ν-calc.+pointers [Laird’04, Laird’08],
n ν-calc.+HO-concurrency [Laird’06],
n ν-calc.+int-references [Tz & Murawski’08].

[What to do next] Examine (at least):

n more nominal languages (...),
n decidability of nominal languages,
n other structures under the “nominal lense”

(e.g. AJM-games)!
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[What has been accomplished] A series of FA models:

n for the ν-calculus [AGMOS’04, Tz’07],
n ν-calc.+HO-references,exceptions [Tz’07, Tz’08],
n ν-calc.+pointers [Laird’04, Laird’08],
n ν-calc.+HO-concurrency [Laird’06],
n ν-calc.+int-references [Tz & Murawski’08].

[What to do next] Examine (at least):

n more nominal languages (...),
n decidability of nominal languages,
n other structures under the “nominal lense”

(e.g. AJM-games)!

THANKS!
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