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ABSTRACT

In advanced denotational semantics one frequently encounters equations of the
form D = F(D), where D ranges over e.g. cpo’s or complete lattices and F
involves constructors like +, x and — . Researchers like Wand, Plotkin, Leh-
mann and Smyth have advocated a category-theoretical solution method for
these equations. This paper presents a systematic introduction to the method
without assuming any prior knowledge from category theory.
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0. Introduction

In advanced denotational semantics one frequently encounters equations like

(D D=DD
or
(2) D=U+AxD

where the variable D ranges over a class of domains such as cpo’s or complete lattices. The first
solution method for equation (1) was provided by Scott and led to the so-called D .. model of the
untyped lambda calculus {Scott]. Later on the method has been extended and applied to various
other classes of domains; see e.g. [Plotkin] or [Smyth].

In [Wand] Wand gave a more abstract treatment of these solution methods in terms of category
theory. His main result was a theorem which isolated the common core of several methods and

which could be applied to various categories of domains. The categorical framework has been -

further developed in [Smyth & Plotkin] and [Lehmann & Smyth].

All these papers require some background in category theory and this makes them rather inacces-
sible to those unfamiliar with that field. It is the purpose of the present paper to explain the
category-theoretic solution of recursive domain equations without presupposing any knowledge
of category theory from the reader. The material covered is roughly the same as that in section
1-4 of [Smyth & Plotkin] but the presentation is more elementary and systematic. All the neces-
sary categorical notions are defined and explained and proofs are worked out in detail.

The structure of the paper is as follows.

In chapter 1 we summarize the part of fixed point theory up t0 and including the least fixed point
theorem for continuous functions on cpo’s.

Chapter 2 is a systematic generalization of this material to initial fixed points of continuous func-
tors in e-categories, resulting in theorem 2.23 which corresponds to theorem 3.6 in {Wand] and
lemma 2 in [Smyth & Plotkin].

In chapter 3 this general solution method is specialized towards the kinds of domains needed in
denotational semantics. The main purpose of this chapter is to derive simple ‘local’ conditions
which imply the categorical conditions necessary for application of the theory of chapter 2. To
this end chapter 3 is divided in five sections.

In section 3.1 the concept of an O-category is introduced. With an O-category one can associate a
‘derived’ category of projection pairs. A simple critetion is given for determining whether such
a derived category is an w-category.

Similarly in section 3.2 with a functor on O-categories a derived functor on categories of projec-
tion pairs is associated, and a simple condition is given for determining whether the derived func-
tor is m-continuous.

Section 3.3 contains some technical results.

Section 3.4 contains several examples of O-categorics. Most of these examples have important
applications in denotational semantics.
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Section 3.5 contains examples of continuous functors. Most of these functors are closely related
to domain constructors in denotational semantics.

The appendix contains some slight extensions to the basic category theory presented in the previ-
ous chapters. For a more extensive treatment of category theory the reader is referred to [Arbib &
Manes], [Herrlich & Strecker] or [MacLane].

Some special remarks are in order conceming the format of proofs. Most proofs in this paper are
presented in a rather rigid form, viz. as a sequence of numbered assertions together with refer-
ences to other assertions from which they are derived. Such references or hints are enclosed in
square brackets. Groups of related proof steps are often headed by an announcement of what is
going 1o be proved, enclosed in square brackets and quotation marks. The main reasons for using
this format are that it makes the proof structure very explicit and that it facilitates step by step
comparison of proofs, which is important in relating the theory of chapter 2 to that of chapter 1.
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1. A summary of fixed point theory for partially ordered sets.

In this chapter we present a short overview of the main notions and results concerning fixed
points of functions on complete partial orders etc.. This overview mainly serves as preparation for
the theory in chapter 2, which is presented as a systematic generalization of the material in this
chapter. The formulation of some definitions, theorems and proofs, which might seem somewhat
unusual in some cases, is tailored to that purpose. In particular the rigid format of proofs -a
sequence of numbered assertions together with references to-other assertions from which they are
derived- serves to facilitate comparison with proofs of corresponding theorems in chapter 2. As
we assume the reader’s familiarity with the subject of the current chapter, we refrain from further
comment.

Definition 1.1 [partially ordered set]

A partially ordered set (poset) is a pair (C, = ), where C is a set and = is a binary relation on C
satisfying:

1. (%xeCl x=x) [reflexivity]
2. (Vx,yeCl GEyay=S x)=x=y) [antisymmetry]
3. (Wx,y,zeCl xS yay=z)=>x=1z) [transitivity]
O
Note 1.2

In addition to = we will also use relations — , =3 and = , defined by:

Mx,yeCl xTCy<=(xE=EyAx=y),
r3y<e= y=1x, '
Tx Oy yTx

O

Definition 1.3 [Least, minimal, greatest, maximal]
Let (C, =) be a partially ordered set; x € C .

xisaleastelementof € <> (WeClx=y).
x1is aminimal elementof C <> (FyeC lyx).

xis agreatestelementof C < (WyeCly=x).

1
2
3
4. xisamaximalelementof € <«<>—-(@yeClixCy).
O

Note 1.4
From definition 1.3 and antisymmetry of = it follows that

1. (C,=)has at most one least element.

2. (€,=)has at most one greatest element.
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a least element is also a minimal element.

a greatest element is also a maximal element.

Definition 1.5 [(least) upper bound, (greatest) lower bound]
Let (C,&<) be a partially ordered set; X c C .

1.1.

1.2.

2.L

2.2.

a

UBXy={yeCl(vxeX |xE= y)}.

The elements of UB (X) are called upper bounds of X.
| | x = the least element of UB (X) , if it exists.

|} X is called the least upper bound of X.
IB(X)={yeCl(VxeX |ly=x)].

The elements of LB (X) are called lower bounds of X.

[ x = the greatest element of LB (X), if it exists.
[] x is called the greatest lower bound of X.

Definition 1.6 [directed set]
Let (C,=) be a partially ordered set; X c C .
X is directed <= every finite subset of X has an upper bound in X.

(W

Definition 1.7 [w-chain]

1.  An ascending e-chain in (C , =) is a sequence <x;>{2 s.t.
-Viili201x;€0)
—'(Vl 1iz0 Ix,-E x,-+1)
2. Adescending e-chain in (C,C2) is a sequence <x;>{2, s.t,
-(¥iliz0lxe C)
—Vilizo |l x; 3 x)
0
Note 1.8
1. For a sequence <x;>i2 the entities | | {x; | i>0) and [] {x; | i> 0} (if they exist) will be
denoted by l;l x; and [ | x; respectively.
i =0 ]
2. Deletion of an initial segment of an ascending w-chain does not affect its least upper bound,
ie.
forallk,1:0<sk<! I_lx;: X .
=i i=l
O

Definition 1.9 [e-cpo, d-cpo, cl]
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1. Ane-cpo [e-complete partial ordet] is a poset (C, =) s.t.
—(C,=)has a least element.
—every ascending o-chain in C has a least upper bound in C.

2. Ad-cpo [directed-complete partial order] is a poset (C, =) s.t.
—(C,=)has aleast element.
— every directed subset of C has a least upper bound in C.

3. Acomplete lattice is a poset (C', =) s.1. every subset of C has a least upper bound in C.
a

Note 1.10

1. It can easily be shown that in a complete lattice every subset X also has a greatest lower
bound, viz.
[1x=[]LBX)

2. The least element of an o-cpo, d-cpo, or cl (C , =) will be denoted by L¢, orjust L.
The greatest element of a cl (C, =) will be denoted by T ¢, or justT .

3.  From definition 1.9 it follows immediately, that
—every clis ad-cpo.
—every d-cpo is an o-cpo.

O

Definition 1.11 [monotonic function]}

Let (Cy .=} and (C,, =,) be posets.

A function f € C; ~» C; is monotonic <=

(x,y€C1 1 xSy F)S,£O)

O

Definition 1.12 [e-continuous function]

Let (C), =) and (€, =) be -cpo’s.

A function f € C, - C, is (upward) o-continuous <=

—  fis monotonic.

—  for each ascending w-chain <x;>72, in (C,,=):

f(gxf)=!;[f(x;)

a

Definition 1.13 [(least)(pre-) fixed point]
Let(C,=)beaposet; fe C>CiyeC.




11 FP(fH={xe CIfx)=x).

1.2 yis afixed point (f.p.) of f fif y € FP{f).

1.3 yis the least fixed point (L.f.p.) of f fif yis the least element of FP (f).

21 PFP(f)={xeClf(x)=x}.

2.2 yis aprefixed point (p.Lp.)of f fif y € PFP(f).

2.3 yis the least prefixed point (I.p.f.p.) of f fif yis the least element of PFP(f) .
d

Lemma 1.14 [least prefixed point is also least fixed point]
Let (C,=) be a poset; f € C — € and f monotonic; x € C .
If x is the 1.p.f.p of £, then x is the Lf.p. of f.

O

Proof

1. fis monotonic
2. xislp.fp.off

["xis £.p. of ']

3. fx=x [2,defl.13]
4. fSfE) 3,1]
5. fx)isp.fp.off [4, defl.13]
6. x=f@&x) [5,2]
7. x=f@® [6,3]
["xis Lfp, of /]
8. (WePFP({H) | xE= y) [2, defl.13)
9.  (Vye FP(f) | ye PFP(f)) [def1.13]
10. (Ve FP(f) | xC=y) [9, 8]
11. xisl.fp.off [10, 71
0

Theorem 1.15 [Knaster - Tarski]
Let(C,=)beacl; fe C - C and f monotonic.
Then FP(f) is acl, and Lfp. of fis [ | PFP(F).
O

Proof
Omitted. See e.g. [Tarski]

O

Theorem 1.16 [least fixed point theorem]
Let (C,=)beacpo;




fe C > C;f o-continuous.
Then

a  <f"(L)>no is an ascending o-chain,

b, Letz={]{ .
a=0
z is the least fixed point of f.

a
Proof
a. Induction on n:
base step
1. L1
2. focsiw [1]
induction step
3. Letnz20
4. UL MW [ind. hyp]
5. FWYE £ {4, fmonotonic]
6. LS [51
7. (rinz0l )= L) [2,3-6, induction)
b.
bl. ["zis fixed point"]
8. =z= [4 Fian)
9 z= [I ey [note 1.8.2]
n=1
10. z={] W 9]
n=0
. fE=f]rw (8]
12. f@=L{r"w [11, f continuous]
n=0
13.  f(z)==z o, 12]
14.  zisafixed pointof f. [13]
b2. "z is least fixed point"]
15. letye FP(f).
[by induction we show : (v 1 n20 | f/(L)= y)]
base step
16. 1c=y.
induction step
17. Letnz0
18. ey [ind. hyp]




19,
20.

21.
22.

23.
24.

e ro
MMy

Vnlnz01 /)= y)
Qﬁm;y

M eFP(f)1z:=y)
zislEp.of f

[18, fmonotonic]
[19, 15]

[16, 17—20, induction]
[21, deft.5.1]

[15,8,22]
[14, 23]




2. Fixed point theory for categories

In chapter 1 we have summarized the construction of solutions for equations of the form x = £ (x),
where x should be an element of an w-cpo, d-cpo, or ¢l C, and £is a continuous function from C to
C. Qurend goal is the solution of equations like

D=A+BXxD,
D=ED D

or generally

6y D =F (D)

where D should be an entire o-cpo, d-cpo, cl or something similar, and F prescribes a way of com-
bining objects of these kinds. An appropriate and very general mathematical framework for
studying equations like (1) is provided by catcgory theory. In this chapter we shall introduce
some elements of catcgory theory and present a solution method for equations like (1) which is a
systematic generalization of the theory in chapter 1. To make this generalization explicit, the
structure of this chapter is very similar to that of chapter 1. Where appropriate, definitions,
theorems and proof steps are provided with references to their counterparts in chapter 1.

A "category” is an abstraction of "a collection of sets and functions between them". A category
consists of a collection of "objects”, which are abstractions of scts, and for each ordered pair of
objects a set of "arrows" or "morphisms", which are abstractions of functions. For morphisms
there exist associative composition operators and identity morphisms. The complete definition
follows: '

Definition 2.1 [category]
A category K consists of:

1.  aclass Obj (K}, called the objects of X,

2. forall A,RBin Obf(K), a set Homg{A ,B) . Such a set is called a hom-set, and its elements
arc called the arrows or morphisms from A to B.

3. forallA,B,CinObj(K), amap
o apc + Homg(B ,C) X Homg(A ,B) — Homg(A , C)
called composition
such that the following conditions are satisfied :
composition i$ associative
for all A in Obj (K)
there exists an 7, in Homg(A ,A),

called the identity of A, such that
for 2t Bin Obj (K) ; f e Homg({A ,B), g € Homg(B ,A):




-10-

folp=fandl o g=¢
O
Note 2.2 Where context supplies sufficient information, the following abbreviations will be used:
—  oapc becomes o
—  Homg(A, B) becomes Hom(A , B)
—  f€ Hom(A,.B)becomes f:A - B
O

Statements about categories are often in terms of diagrams, with nodes representing objects and
edges representing morphisms. Equality between morphism compositions then amounts to com-
mutativity of such diagrams.

For example, the last line of Def. 2.1 is equivalent to saying that the following diagram com-
mutes:

Pl

B_g A
14
g
AT f B

Example 2.3
Some examples of categories are :

SET, where the objects are sets and the morphisms are total functions between them.
PEN, where the objects are sets and the morphisms are partial functions between them.
VECT, where the objects are vector spaces and the morphisms are lincar maps.

CPO, where the objects are w-cpo’s and the morphisms are continuous functions.

0

In particular, with any poset (C, =) there corresponds a category K . as follows:

Obj (Kc . =y)=C

xoylifxEy

forallx,y e C: Hom (x,y)={g otherwise

where {x - y} stands for a set consisting of a single arrow from x to y. Composition and identity
are defined by:

forallx,y,z € Cs.t. the arrows exist: (y=>z)o (xy)=x—>z

foralxe C : IL=x—x

Note that these two definitions correspond to transitivity and reflexivity of =.




-11-

This correspondence forms the basis for the generalization from the theory of chapter 1 to that of
chapter 2. E.g. the familiar notions of subset of a poset and dual of a poset generalize to definition
24.:
Definition 2.4 [ (full) subcategory ]
Let X and L be categories.
1. Lisasubcategory of X fif
— Obj (L) is a subclass of Obj (K)
—forall A, Bin Obj (L) : Homy, (A,B) < Homyx (A, B)
2. Lis afull subcategory of K fif
— 0bj (L) is a subclass of Obj (K)
—forallA,Bin Obj (L) : Homy (A ,B)=Homg (A, B)
3. K is the category with
~0bj (KF)=0bj (K)
—forallA, B e Obj(K?): Homg~ (A, B)=Homg (B, A)
a

The example category K =) also shows that a category is a weaker structure than a poset.
Transitivity and reflexivity can be modelled by composition and identity, but there is no counter-
part of antisymmetry. This makes it almost impossible to prove that objects are equal. Usually the
best one can prove is that objects are isomorphic, as defined below:

Definition 2.5 [isomorphism])

Let K'be a category, A,B € Obj (K); f< Hom (A,B).

fis an isomorphism fif there exisis a g € Hom (B, A)

suchthatfo g=/gandgo f=1I,.

Such a g is called an inverse of f .

O

Note 2.6

1. It can easily be verified that an inverse of f, if it exists, is unique, It will be denoted by
I
2. Diagrammatically, isomorphism amounts to commutativity of the following diagram:

A [ B
& Ns
Iy
f B
O

In Def. 1.3 we defined a least element of a poset (C, =) to be an x e € such that
(Ve C 1 x= y). In terms of the category K (c,<) this amounts to an object x such that for all

objects y there
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exists a unique arrow from x to y. This correspondence suggests the following definition:

Definition 2.7 [initial, terminal ; compare with Def. 1.3]
Let K be a category; A € Obj (K) .

1.  Ais an initial object of K fif for every X € Obj (K} Hom (A, X) has exactly one element.

2. Aisaterminal object of K fif for every X € 0bj (K) Hom (X , A) has exactly one element.
O

Note 2.8

It can easily be verified that if A and B are both initial objects of X, they are isomorphic. Similarly
for terminal objects. Also, initial object and terminal object are dual notions, in the sense that any
initial object in X is a terminal object in K.

O

According to Def. 1.7 an ascending o-chain in a poset (C, =) is a sequence <x;>;2 such that
(Vi 1i20 1 x; = x;41). Its counterpart in the corresponding category K« —, would be a sequence of
objects <x;>i2, such that for all i there exists an arrow from x; to x;4;. In K¢, the arrow from x;
to x;4, is unique, but in general it is not. Therefore it is necessary to mention the arrows as well.
This leads to:

Definition 2.9 [«-chain, «”-chain; compare with Def. 1.7]
Let K be a category.
1. Ano-chaininX is a sequence < (D;, f;} > 5.
— (Vi 1i201D;€ 0bj (K))
— (Vi liz 0| fie Hom (D, ,D;.;))
2.  Ane®-chaininX is a sequence < (D;, f;) >72q s.t.
— (Vi 1i201D; e Obj(K))
—(viliz0| fie Hom(Dyy,D:)

O
Note 2.10
Diagrammatically an w-chain < (D; , ;) >7%9 is represented as an infinite diagram
fa f I A fon
D, = by 3 —D, > Dy "

and an @”-chain < (D;, ;) >/ a8
fll fl f. f'd-l
Dy ¢ Dy & == D, & Dpu — "

a

In a poset (C,=) an upper bound of an ascending w-chain <x,>;, is an y € C such that
(Vn1n>01x,= y). In the category K, — this would correspond to an object D for an e-chain
< (Da, o) > 5 such that for all » there exists an arrow from D, to D. Diagrammatically:




In K, the o, are unique and because of the way composition is defined in X ., we have that
for all » a, =a,,, o f,, i.c. the diagram commutes. In an arbitrary category there may be more
arrows from D, to D however and commutativity is not implied. Hence the following definition:
Definition 2.11 [(co-)cone]
Let X be a category;
1. LetA=<(D;,f) >, be an e~chain in K,
A co - cone for A is a pair (D , a) such that
—D e obj K}
—a is a sequence <a;>iz, such that
(Vi 1i201 ;€ Hom(D;, D))
(Viliz0l oy=0y 0 f)
2. LetA=<(D;,f) >y be an w”-chain in X,
A cone for A is a pair (D , @) such that
—D € 0bj (K)
—a is a sequence <o;>2, such that
(Vi liz2 0! o; e Hom(D,D)))
(Viliz0loy=fio 0yy)
a
Note 2.12
Diagrammaﬁca]ly, a co-cone (D, o) for an w-chain < (D;, ;) >12, is represented by the following
infinite commutative diagram;
Do fo D D, f

A cone (D ,a) for an @ -chain < (D; , f;) >iZp is represented by the following diagram:

Do fo D D, fi Dy,
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a

According to Def. 1.5 and note 1.8 the least upper bound of an ascending o-chain x = <x;>2, is
the least element of UB (x), the set of upper bounds of x. Le. if 4 is the least upper bound of x, then
foralbe UB(x):a:= b,

Let us now consider the counterpart of this notion for the category K¢ o). Let A=< (D;, £) >3
be an e-chain, and let (A, o) and (B, B) be two cocones for A. Then the following diagrams (of
which only the parts near f, have been drawn completely) commute:

DO fO :Dl __________ _’Dn fn ppu-l - -
(1
G, sl
A
Do fo P _______ _Du f D
)
B" Bn-ﬂ
B

If A is "at most" B, there is a unique arrow f from A to B. Because of the way composition has
been defined in K¢ ), we have that for all n>0:8,=f0 a,. Le. the following diagram com-
mutes (again we only draw the part near £, ):

Do fo Dy e ____D, Ho Dyiy o
Ba A Br1
L
B

In particular, if A is "least”, then for any "upper bound” 8 there should be a unique arrow from A
t0 B such that diagram (3) commutes; i.e. A is initial among the "upper bounds" for A.

Note that in the the above, because of the special structure of K¢ ,, for given A, A and B the
o, , B, and f are uniquely determined. In an arbitrary category L however, for given A and A there
may be many o such that (4 , o) is a2 cocone for 4, and there may be many arrows from A to B, so




-15-

commutativity as in (3) is not guaranteed. Therefore, when considering two cocones (4, ) and
(B, B) for A, rather than taking all arrows from A to B, we should restrict ourselves to those arrows
f for which (3) commutes. It can easily be verified that in this way we obtain a category UB (A} of
cocones for A, and we can take the initial objects of UB(A) as the proper generalization of the
notion "least upper bound of an ascending w-chain”. This completes the motivation of the follow-
ing definition:
Definition 2,13 [UB, LB, limit, colimit; compare with Def. 1.5]
Let KX be a category.
1. LetAbe anw-chainink.
1.  UB (4) is the category X such that
— 0bj (X) is the class of co-cones for A .
—forall (A ,c),.(B,.B),in08j X):
Homy (A, o}, (B,B))= {f € Homx (A,B) | (Va1n201B,=f0 a,))
2. A colimit of A in an initial object of UB (A).
2. LetAbcan®®-chainink.
1. LB (A)is the category X such that
— Obj (X) is the class of cones for A,
—forall (A,a),(B,B)in Obj (X):
Homy (A,), (B ,p)={fec Homg (A,B) | (Vn1nz01B,=0,0 f)}
2. Alimit of A is a terminal object of LB (A).
0O
Note 2.14
1. It can easily be verified that UB (A) and LB (A) are categories indeed. Composition and iden-
tities are as in K.
2. The unique arrow f such that diagram (3) commutes is called the mediating morphism from
the colimit (A4 , ) to the cocone (B, B).
3. Colimits and limits are unique up to isomorphism.
4. Deletion of an initial part of an o-chain does not affect the colimit property, i.e.
foralk,1:0<k<g1:
if (4,<w,>,o)is acolimit for <D, ., f)>ne »
then(A , <a,>,-,) is a colimit for <(D,, f)> e .
[Compare with note 1.8.2]
O
Given the above definitions the generalization of the notion e-cpo is straightforward.
Definition 2.15 [w-category, o’ -category]
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1.  Ane-complete category (e-category for short) is a category which has an initial object and
in which each o-chain has a colimit.

2. Ane”-complete category (o’ -category for short) is a category which has a terminal object
and in which each w™-chain has a limit.

a

Given two posets (C;,=;) and (C,, =) one could consider arbitrary functions from C; to C,
but more interesting are the monotonic functions, i.e. those functions f satisfying the additional
requirement (vx ,ye C; 1 x=1y= (), F (v)) .

One could say that a monotonic function is in a sense "structure preserving”. For categories there
exists a similar notion. Mappings between categories should at least map objects to objects and
arrows to arrows. The "structure” of a category is determined by its commuting diagrams, and if
we are interested in "structure preserving” mappings we should consider mappings with the addi-
tional property that commuting diagrams are mapped to commuting diagrams. Such mappings are
called functors and are defined as follows:

Definition 2.16 [functor]

Let K and L be categorics.

A functor F from X to L consists of

1. Amap0Obj(K)—0bj(L)

2. ForallA,B e Obj (K), amap Homy (A,B) — Homy (F(A), F(B))
such that
—ifgo fisdefinedin K, then F(go f}=F{g) o F{f)

0

Note that in the special case of the category K =) a functor from K o~ 0 K¢, =
corresponds to a monotonic function from (C, ,&=,;) to (C5 , =5).

From Def, 2.16 it follows immediately that cocones are mapped to cocones. If we require the
additional property that colimits are mapped to colimits, we obtain the counterpart of an w-
continuous function:

Definition 2.17 [w-cocontinuous functor; compare with Def. 1.12]

Let K and L be e-categories.

A functor F from X to L is e-cocontinugus fif F preserves colimits, i.e.

for each w-chain < (D, f;) >i< in X with colimit (D, <a;> ), the pair (F (D), <F (0;)>7=) is col-
imit of the o-chain (in L) < (F (D) ,F{f))) > .

a

Note 2.18

In the sequel we shall often abbreviate "o-cocontinuous™ to "continuous”.
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Given a poset (C, =) and a function f € C — €, a prefixed point of fis an x € € such that
f(x)E x . In terms of the category K¢, =) and a functor F from K¢ ) to K =) a prefixed
point of F would be an object A for which there exists an arrow from F(A) to A. In K¢, =) such
an arrow is unique but in an arbitrary category there may be many arrows from F (4) to A. There-
fore it is more appropriate to define a prefixed point of F as a pair (A, o), where A is an object
and ae Hom (F(A),A).

The least prefixed point of a function fhas been defined as the least element of the set PFP (f) of
prefixed points of f. The obvious generalization of this notion is that of an initial object of a
category PFP (F) of prefixed points of a functor F. The objects of this category are the pairs
(A , o) as mentioned above. For the morphisms from (4, o) to (A' , &) we could take all mor-
phisms from A to A’ in the original category, but this seems too general as it does not involve o
and o . The obvious restriction is to those morphisms f for which the following diagram com-
mutes.

FA = >4
F(f )l ‘lf
F@AY__ o LA

For fixed points the reasoning is similar. As equality of objects cannot be proved in general, we
should content ourselves with isomorphism and define a fixed point of a functor F as a pair (4, «)
such that o is an isomorphism from F (4) to A, The complete definitions follow.
Definition 2.19 [ (pre-) fixed point]
Let X be a category; F a functor from X to X.
1. A prefixed point of F is a pair (4 , ), where
A e Obj(K)and a € Hom (F(A),A).
2. A fixed point of F is a pair (A , &), where (A , o) is a prefixed point of F and . is an isomor-
phism.
a
Definition 2.20 [PFP (F), FP (F)]
Let K be a category; F a functor from X to K.
1. The category of prefixed points of F, denoted PFP (F), is the category X with
— Obj (X) is the class of prefixed points of F.
— for each (A, ), (4 ,0) e Obj (X), Homy (A, o), (A", &) is the set of arrows f in
Homg (A, A", for which the following diagram commutes:

F(A) @ *A
F (f)l lf
. F@A) A’
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2. The category of fixed points of F, denoted FP (f), is the category X with
— Obj (X} is the class of fixed points of F
— arrows defined similarly to 1.

a
Note 2.21

1. It can easily be verified that both PFP (F)and FP (f}) are categories indeed. Identity and
composition are inherited from X,

2. As each fixed point of F is also a prefixed point of F, it follows that FP (F) is a full sub-
category of PFP (F) .

3. The objects of PFP (F) are also called F-algebras.
a

We are now ready to formulate and prove Lemma 2.22, which is a generalization of Lemma 1.14.
The structure of the proof parallels that of Lemnma 1.14 as much as possible:

Steps 1- 6 correspond exactly

Steps 7-14  correspond to step 7 in the proof of Lemma 1.14: proving an
arrow {0 be an isomorphism is the counterpart of using the
antisymmetry of .

Steps  15-18  correspond 1o steps 8 - 11 of Lemma 1.14.

Lemma 2.22 [initial prefixed point is also initial fixed point; compare with Lemma 1.14]
Let X be a category; F a functor from X to X.
If (A, @) is an initial object of PFP (F), then it is an initial object of FP (F).

a

Proof

1.  Fis a funcior from X to X.
2. (A, ) is aninitial object of PFP (F).

["(A, @) € Obj (FP (F))"]

3. AeObjK)Yra:F(A)> A {2, Def. 2.20.1]
4.  F(A)e Obj (K)AF(0): F(F(A)) > F(A) (3,11

5. (F(A),F(x)) € Obj (PFP (F)) [4, Def. 2.20.1]
6. @!fe@,0)>F@),F () (5,2]

7. Letfe (A,0) = (F(A),F () [6]

8. diagram (1) commutes ' [7, Def. 2.20.1]
9. diagram (2) commutes [trivial]

10. o:(FA),F@)—=(A,0) S, Def. 2.20.1]
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1. o f=I, [2,6,7,10]
12. foa
=F(a}o F(f) {8}
=F(ao f) [1]
=F (1) [11]
=1y [1]
13.  eis an isomorphism with inverse f (11,12]
4. (A,u)e Obj (FP(F) [3.13, Def. 2.20.2]
Fa) T4 F(FA) F@  FA)
£ )| | lf F (“)1 la o
F(F(A) F(® E(4) F(A) o A
(1) @)
["(A, @) is an initial object of FP (F)"]
15, (V(B,B)e Obj (PFP (F)} | GIf:(A,0) > (B, P)) 2 ]
16.  Obj (FP(F))is a subclass of Obj (PFP (F)) [Def. 2.19, 2.20]
I7. (V(B,P)e Obj (FP(F)) | Glf:A, ) =(B,BY)) 115,16}
18. (A, is an initial object of FP ) [14,17]

a

Finally we present the main result of this chapter, viz. a generalization to categories of the least
fixed point theorem 1.16. The proof of theorem 2.23 fesembles that of theorem 1.16 as much as
possible. Stepé 1-14 are in exact correspondence; the remaining part deals with the initiality of
the fixed point and is of course more involved than its counterpart in theorem 1.16.

Theorem 2.23 [initial fixed point theorem; compare with Theorem 1.16]
Let X be an e-category;

F an w-cocontinuous functor from X to X

U an initial object of X;

u the unique arrow from U to 7 (U) .
Then

a4 <(F*U),F"u)) >y is an o-chain,

b.  Let(A, ) be a colimit of < (F*(U), F*(u)) >.
(Bae Hom (F(A),A) 1 (A, «) is an initial object in FP (F)).

O
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Proof

a,

Induction on n:
base step

1.u e Hom (U, F(U))

2. F%u) e Hom (F°(U), F1(U))

induction step

3.Letn>0

4. F™u) € Hom (F™(U), F**\(U) [ind. hyp.]
5.F (F™(u)) € Hom (F(F™(U)), FF"*\(UY) [4, F functor]
6. F**1(u) e Hom (F"*\(U), F™3(U)) [5]

7.(Vn 1 n20 | F*"(u)e Hom (F™(U), F**\(U))) [2, 3-6, induction]

bl. ["(Jae Hom (F(A),A) | (A, o) € Obj (FP (F)))"]

8. (A, <p,>a19) is a colimit of <(F™(U), F*u))>rwp

9. (A, <p,>q21) is 2 colimit of <(F" (), F*u))>oy {note 2.14.4]
10. F(A), <Mn41>5p) is a colimit of <(F**1(U), AP w)>2 (9]

12. (F(A), <F (W),> ) is a colimit of <(F"*'(U), F**' (u))>>y [8, F w-cocont.]

13. (A'ae Hom (F(A), A) | o is mediating and isomorphism) [10, 12]
14. Jo.c Hom(F(A),A) L (A, o) € Obj (FP(F))) 13

b2. ["(A, o) is initial in FP (F)"]
15. Let o be the mediating isomorphism between F (A) and A. [13]
16. Let (B ,B) € Obj (FP(F)).
[We have to show : (3!'E e Hompp @ (A,0),B,B)).
The proof proceeds in three steps,
~ In step ¢1 we construct a cocone (B, v) for A and take
the mediating morphism from A to B as candidate for £,
— In step ¢2 we show & € Homgp @ (A, 0),(B,B)
— In step ¢3 we show that £ is the only element of
Hompgp ¢y (4, 0), (B, B)
]
cl. ["construction of a cone (B, v) for A"]
17. Let vy be the unique arrow from U to B,
18.Forall n= 0, let v, =B o F(v,)

[We show by induction : (Va | 120 | v, 0 F*)=v,)]
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base step
19. v; o Fom)
=Bo Flvglo u
=v
induction step
20.Letn>0
21. Vol © F"(u) =V,
22, Vo F™(w)
=Bo F(Vau)o F™ ()
=B o F(Vas o F(u))
=Bo F(vs)

=Vai

23.(Vn 1 n20 1 vy 0 F*u)=v,)

24. (B, v}is a cocone for A

25. Qe Hom (A, B) 1 (W 1 n201v,=Eopw )
26. Let & be the mediating morphism from 4 to B

c2. [TO Show; § € HomFP(F) ((A ’ (X.) y (B , B)) » ie.
commutativity of the follo_wing diagram:

F(A) _Za WA
F@[ s
F(B)__=B B

|
27.(Vnin20lae Fu)=p.)
28.(Vn 1 nz01Bo F(v)=v,,)

29. Letn20.
30. Bo F® oo oy,
=Bo F® e Flu,)
=Bo F(Eo 1)
=B°F(Vn)
=Vu4l
31. (VR 1n211Bs FE)o o o py=v,)
32.Bo FE)o o o pg=vy
33.(Vn 1n201v,=Bo F(&)o o o 1)
M. Bo FEoa =t
35.£ e Hompppy (A, @), (B, BY)

(18]
(U initial]

[ind. hyp.)

(18]
[F functor]
[21]
(18]

[19,20-22,ind.]

[23, Def, 2.11]

{24, 8, colimit prop.]
[25]

{15]
[18]

[27]

[F functor]
[25/26]

[18]

[29, 30]

[17, U initial]
[31, 32]

[25/26, 33]

[34, Def. 2.20.2]
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c3. [To show :§ is the only element of Homgp gy (A, ), (B, B))]
36.Letre HomFP(F) ((A * 0") ’ (B » ﬁ))
37. ko aa=Bo F(N) {36, Def. 2.20.2]

[We show by induction : (va | 1201 Lo y,=v,)]

base siep
38. %0 uy=v, [17, U initial}
induction step
39. Letnz0
40. Lo pu,=v, : [ind. hyp.]
41, de puy
=hko oo F(u,) (27]
=Bo F(A)o Fu,) (371
=Po F(hoy,) [F functor ]
=Bo F(v,) [40]
=Vpa 118)
42.(Wn 1 n=20 ko p,=v,) 38, 39-41,ind.]

43.0=t [25/26, 42]
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§ 3. O-categories and local criteria for initiality and continuity

Since in general it is difficult to verify whether a given category is an e-category and similarly
whether a functor is e-continuous we shall introduce the concept of an O-category.

With an O-category we can associate a "derived" category of so-called projection pairs. Our main
interest is in these categories, for there are relatively easy (local) criteria to see whether these
categories are e-categories and also whether functors between these categories are e-continuous.

In sections 3.1, 3.2 and 3.3 many theoretical results are given. In section 3.4 these results are
applied to present some examples of w-categories while in section 3.5 several functors are shown
to be e-continuous.

3.1. O-categories and the initiality theorem

Definition 3.1 [O-category]

An Q-category is a category s.L.

—  every hom-set is a poset in which every ascending w-chain has a Lu.b.
—  composition is e-continuous in the sense of definition 1.12.

ad

Definition 3.2 [projection pair]

Let K be an O-category; A, B € Obj (K) .

A projection pair from A to B is a pair (f, g) s.t.

—  fe Homg(A,B)
- £ € Homyg (B ,A)
- go f=1I4

= fegE=1lp

O

Definition 3.3 [embedding, projection]
Let (f, g) be a projection pair. Then fis called an embedding and g a projection.

d

Notation 3.4
The first coordinate of a projection pair o is denoted by of and the second coordinate by of .

a

Lemma 3.5
Let X be an O-category; A, B € Obj (K) ;(f,g) and (f , g”) projection pairs from A to B. Then

. f=Efegyg
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1.  Assume f= f'. Since composition is continuous, hence monotonic we find:
g§=g°IzgDgo(fog)=(g0 fsupprime)o g’ D (goflo g’ =l4og' =g .
Assumeg = g°.
fefela=fo (g efYE folgefI=(fog)e f Sl f=f.

2. f=f > fCfAfEfegDg rg Dg=g=¢".

a

Definition 3.6 [Kpg. category of projection pairs]

Let X be an O-category.

The category Ky is the category M s.t.

- Obj (M)= 0bj(K)

— ForallA,B e Obj(M):

Homy (A, B) is the set consisting of all projection pairs from A to B.

—  The composition of B e Homy (B, C) and a. € Homy (A , B) is the pair (-« of , o o B¥). This
is indeced a projection pair from A to C.

—  The identity of Homy (A,A) is (14, 1,) .

O

Note 3.7
It is casily verified that Kz is indeed a category.

a

Remark 3.8

Since by lemma 3.5 a projection pair is uniquely determined by its embedding part, the category
Kpp is isomorphic to the subcategory of X consisting of all objects of K but with as morphisms
only the embeddings. This category is sometimes denoted by X% . A similar remark holds when
we replace embeddings by projections (not: projection pairs!).

The reason for choosing Kpy instead of K% is two-fold: First of all the treatment becomes more
symmetric. Secondly, if we would have chosen X% there would be more chance to confuse mor-
phisms from K% with those of K.

1

Lemmaz 3.9

Let X be an O-category; A an o-chain in Kpg ; (D , o) and (£ , ) cocones for A.

Then <of o Bf>,. ¢ is an ascending chain in Homg (E , D) .

Moreover, if f= L_J (oo ¥y thenforalln>0:
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af o £=pE and
fopBi=ak.
a
Proof
LetA=<(D;, f)>moandn=>0.
L. ofoph
= (031 © £ 0 Bpar o fi)F
=0T-‘:1'+1 o ﬁi" fr?; o B£+1
= og o Ip,, o BRy
=af, o pR,; .
2. Q (aF o BR) exists. [1, X is an O-category]
3. Letf= Q (cfopPyandletn> 0.
ko f |
=[3]

ono || @heBh)

={1, o-continuity of o |
Ll @ o uf o Bf)

=[o,=0o fiyo <+ o f, foralliz n]
Ll es

Bx -
Similarly fo B =k .
D .
If we take (£, B) = (D, o) then f= Q (oFoafy.
Of course f = I,,. In the "limit-case" where equality holds we have the following result :

Theorem 3.10

Let K be an O-category; A= <(D;,f)>»¢ an w-chain in Ky ; (D »a) a cocone for A. Suppose
L] efeofy=1p.

20

Then (D, o} is a colimit for A .

Moreover, if (E, B) is a cocone for A then

(g (BF o ofy, Q (o o BFY)

is the mediating morphism from D to E.
O
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Proof
1. Q (oo aly=1p [assumption]
2. Letf=|](@tepig={] Gfooh
20
3. fe Homg (E,D)and g € Homg (D ,E) {2, lemma 3.9]
4 gof
= [@-contimity of ¢ , 2]
Q (B o of o of o BF)
=[ofoof=1,]
L| %o %)
20
5. gofC g [4]
6. feg= Q (of o o) [4, symmetry]
7. fog=Ip [1, 6]
8.  (g.f)is aprojection pair from D to E [3,5,7]

[To show: (g, f) is the unique morphism n satisfying
(*) (Vn1nz0Inoa,=p,)]
a. ["(g,f)satisfies (x)"]
9. (8.f)e o,
= [ def. of composition in Kpz}
(go oz, aye f)
= [Lemma 3.9]
(8%, B%)
=B
b.  ['nsatisfies (x)=>n=(g,f)"]
10.

(b oy, Iponf)

=11, o-continuity of o }
Lo ¥ o R ‘!"o Ro R

(Q(n of a.LQ(a; af o n¥))
= [n satisfies ()]

(Q ®Fo of), Q (of o BFY)
=[2]

&.N

a

We would like to have the converse of theorem 3.10, possibly under certain conditions.
To present such a condition we need:
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Definition 3.11 [localized category]
An O-category X is called Jocalized fif for any o-chain A in Kpr and for any A-colimit (D, o) there
exists E € Obj (K) and a projection pair (i , g) from E to D s.t.

nlsl(a’;oaf)ﬂog

0

Theorem 3.12 {Initiality theorem]
Let X be alocalized O-category;

A=< (D; ,ﬂ) >=0 N o-chain in Kpp;
(D, o) a co-cone for A.

Then: (D, «) is a colimit for A <= g (eFoafy=1p,.

O
Proof
The ” < " part has already been proved (see Theorem 3.10).
["="]
1. Letf= !ﬂl (af o af)
2. Let(i,g): E—D be a projection pair
Stf=iog [K is localized]

[We want to show that f =1, . In order to do this, consider the following diagram:

. ) D, f Dna o
R /—u-&-l
' |
T(i, 8)
E

Since (i, g) is a projection pair we have g o ; =7, Thus t0 say that f=i o g =1, means that g is
the inverse of i, i.e. that (i, g) has an inverse. Conversely, if we could prove that (i, g) has an
inverse, then it is easy to show that =15, In fact it suffices to show that there exists a projection
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pairn s.t. (i, g) ¢ n={p,Ip). The proof has the following structure:

In part a. we construct a sequence of projection pairs B, : D, — E .
In part b. we show that (E, <B,>.0) iS a co-cone for A,

In part c. we use the hypothesis that (D, <a,>,0) is a colimit for A to show the existence of an

8.t (l,g) o nN= (]D ’ID) .
Inpartd. we show f=1, .
]

a.  ["construction of projection pairs 8, : D, — E"}
3.Letforalln>0,B,=(go of,afo i)
4. Bro By
= (afod)e (go )
= [2]
af o fo a’,;
= [Lemma 3.9]
Gt.f ° (xf;
= [a, is a projection pair from D, to D]
Ip, :
5. BroBh
= (goaf)o (e i)
= [uw, is a projection pair]
goi
= [2]
Ig
6. Forall n= 0, B, is a projection pair from D, to E

b.  ["(E,<B,>w0) is a co-cone for A"]
7. Bat1 o fa
= [3] .
(g0 “ﬁ'+1°.’£:f:° 0'-ﬁ+1"’ i)

(8° O © fo) 4 (Opar o F)¥ 0 1)
= [op41 0 fr=0]

(g0 a.ﬁ s aﬁ of)
= [3]

B.

8. (E, <P,>m0)is a co-cone for A

¢ ["existence of anm such that (¢, g) o = (I ,1p)"]
9. Letn:D — E be the unique projection pair
S.L (Vnlnz01no a,=B,)

{4, 5]

[7]

[8, (D, ) is a colimit]
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10. (i, g) > mis a projection pair from D 10 D [2, 9]
11, (,g)eomo oy
= {9
(6,8 Pa
= [3]

(iogoay,afoiog)

= [2]
(fo ok, oRo f)

= [Lemma 3.9]
(o » o)
Oy
12. G,9)en=({p,Ip) (10, 11, (D, &) is colimit]
d. ["f=Ip"]
13. I
Ine Ip
= [12]
ientonfog
=
iog
= [2]
f
14. f=1Ip 13, fE Ip]
15. ;Iil) (of e of)=1p [1, 14]

0

3.2. Functors and the continuity theorem

Let X', L be two O-categories and F : K —» L a functor. Since morphisms of Kpg are pairs of mor-
phisms of X, it seems likely that F induces a functor, say Fpg from Kpg to Lpp. However, this is
not quite true. If we define

Fpr(A)=F(A) (A< Obj(Kp))
and
Fpr{(F. g)=F (), Fg) ((f,g)aprojection pairin K)

then we would like to show that (F (f), F(g)) is a projection pair in L.
Supposing that (f,g) goes from D to E we know go f=Ip, hence
F(g)o F(f)=F(go f)=F(p)=1Ir(py; but from f o g = Ir we can in general not deduce that
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F(f)o F(g) = Irg - However, if F is locally monotonic (see Def. below), then the latter holds,
Definition 3.13 [local monotonicity]
Let K, L be O-categories;  F a functor from X to L.
F 18 locally monotonic fif
forallA,B e Obj (K):
F , viewed as a map: Homy (A , B) — Homy (F(A), F (B)), is monotonic.

0

Suppose that F is a locally monotonic functor from X to L where K and L are O-categories. Then
Fpp mapping an object A of Kpp 10 F (A) and a projection pairm to

Fpr(m)=(F @), Fn®)) 6]

is indeed a functor: Kpy — Lpg .

We are interesied in establishing a relatively easy criterion for w-continuity of Fpg . For this the
initiality theorem looks promising. However in order to apply this theorem we have to assume
that the O-category X is localized. So let’s make this assumption. To investigate w-continuity of
Fpg let’s also fix an e-chain A = <(D;, f,)>;» ¢ in Kpz With colimit (D, <OG>inq) -

Since Fpp is a functor (Fpp(D),<Fpr{0)>iz0) iS a co-cone for the o-chain
A= <(Fpp (D;), Fpr (f;) >iz0 inLpg .

As (D, <o;>;5 ) 18 a colimit for A the initiality theorem shows

| @foady=1p @
Moreover, we have
(Fpg (D), <Fpg (o) >;5 ¢ ) is a colimit for A’
< [ theorem 3.10]
H (Fer (05)" o Fpp (0% )= Ir )
<= [ by (1) above Fpg (o,)" = F (af) and Fpg ()% = F (0f)]
Q (F (kYo F (@F)) =I5y
<= [F is a functor]

g (F (af o o) =F (Ip)

Q (F (af o af))=F(L4 (of o afy)

This derivation motivates the following definition.
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Definition 3.14 [Iocal continuity]
Let X and L be O0-categories;
F a functor from K to L.
F is locally continuous fif
forallA,B e Obj(K):
F, viewed as a map: Homg (A ,B) — Homy (F(A),F(B)),
is @-continuous.

0
An immediate consequence of the derivation preceding this definition is the following result.

Theorem 3.15 [continuity theorem]

Let X and L be O-categories;  F a functor from X 0 L.
Suppose that F is locally continuous and K is localized.
Then Fpg : Kpg — Lpg is w-continuous.

O

As an application, suppose X is a localized O-category and F : K — K is a locally continuous func-
tor. Then Fpg : Kpr — Kpg is w-continuous. Suppose in addition that Kpp is an o-category with ini-
tial object 1.

Then Fpp has an initial fixed point (A, o) where a is an isomorphism from £ (4) to A in Kpgz. Our
goal is to describe this isomorphism more explicitly. Recalling the proof of theorem 2.23 we
know there exists a colimit (A,<p,:F*(1) » A>5;} for a certain o-chain A, Also,
(F(A), <Fpplt,1):F* (1) - A>,,)is a colimit for A. Since (A, p) is a cotimit for A the initiality
theorem implies nlz_ll ML o pfy=1, and theorem 3.10 then shows that the mediating morphism from

A0 F (A) is given by
(,.lsl (Fpg (tay ) o 1R), ls! (u5 © Fpg (1 ))) hence by

{ U1 (F (L )oub), U1 (Lo F (uR_)) . Thus we have shown
n> n

Corollary 3.16
Let X be alocalized O-category;

F alocally continuous functor from X 10 X.
Suppose that Kp, is an w-category with initial object L and that (A, <p,: F* (L) »A >, )} is a col-
imit as in theorem 2.23.b.
Then (’g (F (& y)o ufy, nlsl (ko F(u2_,)) is the mediating isomorphism from A to F(A). Its

inverse is

(l_; (ko F @R )y, [ F wEo)o nf)).
n 21
O

One of the conditions of the continuity thcorem is that the O-category KX is localized. In proposi-
tion 3.18 below we shall present an easy criterion to guarantee this.
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Definition 3.17 [idempotent; split]
Let C be a category; D € 0bj (C); fe Hom (D ,D).

fis called an idempotent when fo f=7.

f is called split when there exist E e 0bj(C), g € Hom(D ,E), h € Hom(E ,D) such that
f=hogandgoe h=1Ig.

O

Note that any split morphism is idempotent.

Proposition 3.18

Let X be an O-category.

Suppose that every idempotent in X is split.
Then X is localized.

0

Proof
Let A be an w-chain in KPR;
(D ,a)aco-cone forA;

f=] @foof
L. fof
(Q (of o afy) o cg‘[ (of o ofy)
= [ e-continuity of - ]
Q (of o of o af o af)

=laf o ar=Ip)

L] @oad
=f

2. ThereexistE € Obj(K), g € Hom (D ,E),h € Hom(E ,D)

withgo h=lgpand ho g=f [1, idempotents split]
3. fEn
4.  (h,g)is aprojection pair from E to D s,

f=heog [2, 3]
5. Kislocalized (Def3.11]
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3.3. Some technical results

We are interested in constructing new localized O-categories from old ones. Below we shall
present two such constructions. Some notions used in these constructions are defined in the
Appendix.
Let us start with an arbitrary category K. By definition 2.4.3 X is the category which has the
same objects as X, but with the arrows reversed: i.e. given
A,B € Obj(K™)=0bj(K), Homg= (A , B) = Homy (B ,A) .
Composition of two arrows f and g in K is defined fif ¢ and  can be composed in XK. Moreover,
if we denote composition in K by o and in X% by %, then fx g=g o f (provided the latter is
defined). Clearly K’ is a category. Moreover, if X is an O-category then so is K.
We are interested in the relation between (X 7)pp and Kpg.
So let us consider a projection pair (f,g) from A to B in K%, ie.
f€ Homg= (A ,B)., g € Homg- (B ,A), g % f=1, and f % g = 1. Then
g€ Homg(A,B),fe Homg (B ,A),fo g=Iyand g o f= Ip,i.¢. (g, f): A - B is a projection pair
in K. It can now be verified that we get a functor § : (K”)pz — Kpg by defining

5 (A) = A for an object A, and

S{f,g)=(g.f) for a projection pair {f, g) .
Indeed, if n;= (£, g) is a projection pair of K (i=1,2) then n; % 1, = (fy % f», g2 % &) hence
SMsn2)=(g1°82.f20f1)=(1./1) e (g2.f2)=S01) ~ S(ny).
Since (K)* = K we also have a functor going from Kpr = ((K?)*)pr to (K7)pp which is the
inverse (see appendix, definition A.5) of §. '
Summarizing the above we have

Proposition 3.19
Let X be an O-category. Then so is K. Morcover, there is an isomorphism S : (K°?)pg — Kpg act-

ing as the identity on objects and interchanging the left and right part of projection pairs.
O

The functor S can be used to show that X is a localized O-category if X is. First of all by exer-
cise A.6 § preserves colimits since § is an isomorphism. Secondly, if we keep the notation as in
definition 3.11 we have to show the existence of a projection pair (i,g) in X% st
nls})(uﬁ %af)=i % g . Now using that K is localized we know that there exists a projection pair

(g.)inKs.L LL(S(a,)Lo S(e))=goi.
n
Since § () = (&f , ok) this means that
L} (e sxafy=isg. Also (i,g)=5" (g,i) is a projection pair in K so we arc done. Thus we
n20
have proved

Corollary 3.20
Suppose X is a localized O-category. Then so is K%,

a
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Next suppose we are given two categories X and L. Then we can form the category K X L (see
Def. A.1) and if we assume that X and L are O-categories, then the same holds for X x L if we
give the hom-sets

Homgxi ((A,B),(A",B"))=Homy (A,A") x Hom; (B, B') the coordinate-wisc ordering

(F. = ¢ g)iff=fandg=g).

Then such a hom-set is a poset with Lu.b.’s for ascending chains. Also composition is continuous
since it is defined coordinate-wise.

To investigate the relation between (K X L)pp and Kpg X Lpg, use definition A.3 where the projec-
tion functors m; : K XL — K and mp : K x L — L are introduced. These functors are easily seen
to be locally continuous. Hence we get functors m pg:(KXL)pg —> Kpp and
iy, pr - (K XL)pg — Lpg . Of course if K x L were localized then n; pg Would be w-continuous.
On the other hand, in order to prove that K x L is localized, only assuming that X and L are local-
ized, we will need that =; pg is «-continuous. To prove the latter, consider the functor
(my pr %W PRY © Ak xp),, (5ee Def. A2, A7) from (K X L)pg 10 Kpg X Lpg acting as the identity
on objects and mapping a morphism o = (o, o) to ((ny (o), 7; (o)), (m (k) 73 (o)) . This
functor is an isomorphism : its inverse maps a morphism (f, g) to the projection pair
. e", " g"yink x L.

We also have projection functors from Kpp X Lpp to Kpg, resp. Lpp. Composing these by
(my, PR X2, PR) © Ak xL),, WE ZELT pR, TESP. Wy pg (bY definition of &y pr X 2 pR).

Now projection functors preserve colimits (see exercise A.4) and the same holds for fonctors
which are isomorphisms (A.6).

Hence n; pg, being the composition of two w-continuous functors, is also @w-continuous (j =1, 2).
We can now prove that K X L is localized if both K and L are : given an w-chain A in (K X L)pg
with colimit (D, <o,.>,>0) we have to show that nlg!)(a’; o aR)=i o g for a suitable projection

pair (i,g) in KxL We proceed as follows: since m pg is w-continuous

(my (D), <my pr(0,)>,>0) s a colimit for some e-chain in Kpg. Since K is localized it follows

that U (m1, PR (o) o Ty, PR (0 =iy 0 g for some projection pair (g1,{;) in K. Since
=0

7y pr (0,) = (my (@), =, (@f)) and since n; is a locally continuous functor we obtain

1o gy = nl'z‘lo (11 pr (o) 0 m_pr (0,)%)

= U m (ko of)
nz{
=m (L] ko afy)
n20)
Similarly
igo ga=m (g)(a’;o of), hencenLZJOm’,;o aR)=(i10 g1.i20 g82)=(i1, i2)° (21, g2) and

((i1,i2),(g1, g2)) is a projection pair in K x L.
Summarizing we have

Proposition 3.21
Suppose K and L are localized O-categories. Then so is K X L. There is an isomorphism from

(K xL)pp to Kpg X Lpr mapping an object A to A and a morphism f to
((y F2) . m (FF)), (mp (F2), 1 (FF))) where ; and n; are the projection functors from K X L to K,
resp. L.
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§ 4. Examples of localized O-categories

Let X be the category CPO where the objects are o-cpo’s and the morphisms are o-continuous
maps. In this case the hom-sets are again «-cpo’s and composition is e-continuous.
Thus is K an O-category. We even have

Theorem 3.22

CPQ is a localized O-category.

a

Proof

[By proposition 3.18 it suffices to show that every idempotent splits.]

1. Let(D,=)be an w-cpo;
f:D — D wo-continuous and fo f=f£;
E=f(D);
< the restrictionof = 10 E .

a. ["(E,<)isan -cpo"]

2. (E <) is a poset with smallest element f (1) . [E c D ,fis monotonic]
3. Let <x;> be an ascending chain in (E ,<) .

4. <x;>5 is an ascending chain in (0, =) [3, 1]

5. Q p X; EXists (4, D is an e-cpo]

6. E{!D Xi
= [fe f=fhence facts as the identity on
x € E=f(D)]

gpf(x;)

= [fis o-continuous]

f(gl)oxi)
€ [E=f(D)]
E
7. Q]Exi= Qn x; [6. (E.<) is a subposet
of 0, =)]
8. Defineg:D - E,x = f(x);
h:E 5>D,x — x,

9. g and h are o-continupus 11,7, 8]
10. hog=fandgoeh=1Ig [8,fIE=1Ig)
11, fissplit {9, 10]

12,  CPQis localized [1, 11, proposition 3.18)
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a

Given an O-category X we can form Kp; and we have a nice criterion (theorem 3.10) to see if cer-
tain cocones in Kpg are actually colimits. We shall use this criterion now to prove

Theorem 3.23

CPOpy is an w-category.
[

Proof

a.  ["existence of initial object"]
1. Let A be a cpo consisting of a single element a.
2. Let D be any cpo.
3.Definef:A - Dbyfla)=1lpandg:D —» A
by g(x)=a (Vxe D).

4.gof=I,andfog=1p. (3]

5. (f, g) is a projection pair from Ato D . [f and g are o-continuous, 4]
6. Let (f , g") be a projection pair from A to D.

7.8 =¢. [A={a}]
8.(F.8N=(.9. (Lemma 3.5]

9. A is an initial object of CPOpz . [5, 6, 8]

b. [“existence of colimits"]

10. Let A= <(D,, f.) >0 De an e~chain in CPOpz .

11. Let for all  ,r with n <r the projection pair
fra1e -r 0 fr:D, — D, beadenoted by £,, .

12, LetD = { <x,5>0 | (V1 10201 x,€ D, A2y = 7% (x241)) ) and
let = be the componentwise ordering on D.

bl. ["(D,=)is an o-cpo."]
13. (D ,=)is a poset. [by definition of =]
14. <1y >0 is the least element of D, IR 1p y=1p, as will be

shown in lemma 3.31]
15. Let <x®> 4 be an ascending chain in D and
let x® = <xP> 0 .

16. (Vn 1 n2 01 <x®>,4 is an ascending chain in D,).

17. Let x, = Q x$ for all n >0 [16, D, is an w-cpo]
18. (Vn 1n201x,€ Dy Az =fF (x,01)) . (17, /£ is o-continuous]
19 Let X=Xy 2o -
20.xeDandx = U x® [19, 18, 17, 15]
20
21. (D ,=)is an e-cpo. [13, 14, 15, 20]

b2. ["construction of projection pairs o, : D, — D for all n ."]
22 . Definen, : D — D, by m, (<x;>p0) =x, and
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Px :Dn — D by p,(t) = <y;>po Where
yi=fa@ifiznandy, =R @) ifi<n.

23. =, is o-continuous for all ».
24, p, is o-continuous for all n.

25. T, 0 Py =ID_

[To show p, o =, = Ip]
26.Letx= <X>mpe D
27. Foralli<n

fh )
= [fu=for0 " 0 fi]
flo oo i (x)

= [xe D,12]

X;

28. Forallizn

i (%)
= [n2isoby 27 £ (x) = x,]
i (s )

[f. is a projection pair]

X

29. p, o m, (x)

= [22,26]

Pn (x,)
[22,27,28]
<Xi >0

30.[),,0 n, = Ip .

3. a,=(p,, M) € Homcpo,, (Ds,D)

o

= [31]

Tcﬁ

= [22,12]
f: © Tp4y
= [31]

(Cpag o fn)R

33. Oy = Clpy1 © foy
34. (D, <a,>»p) is a cocone for A,
35.Foral i=0

o (L] (Pao mp))
n=0

= [w-continuity of » ]
’IEL (‘IC,- °Ppe )

{15, 20, 19, 17]
[/~ and /& are all o
continuous]

[fn = (ID, » ID,)]

[23, 24, 25, 30}

[Lemma 3.5]
[10, 31, 33]
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L] (G0 pa)o m,y)
nei
= [22]
Ll ¢& o m)
ne
= [11,12]

L| =
nz

LS
36.Leth= 0 Ty);
"IEL(p )

X=<x>p0 €D, h(x)=<y>p0
Then for all =0
x;

m; (x)
= [35]
(m; 0 B) (x)

Yi
37. 131 (Ono 7o) =Ip - [36]
38. (D, <0, >,20) is a colimit for A [34, 37, theorem 3.10]

O

There are certain subcategories of CPO for which theorem 3.22 and 3.23 also hold. The objects of
these subcategories are posets which have Lu.b.’s for more subsets then just the ascending chains.
Also, morphisms preserve more L.u.b.s than in the case of a-Cpo’s.
Before we give the precise definition of these categories we first give
Definition 3.24 [d-continuity]
Let A, B be either d-cpo’s orcl’s
A function f: A — B is d-continuous fif
- fis monotonic
— for each directed subset (see definition 1.6.)
Dofa:f(||Dy={]f).
O

The reason why we want f to be monotonic is that in case B is a d-cpo we only know that f (D)
has a l.u.b. when f (D) is directed. It is easily seen that the latter holds when fis monotonic.
On the other hand, if B is a cl, then we can deduce that £ is monotonic assuming only the 2™ part
of the definition: for suppose x,y € Aand x = y . Let D = {x, y). Then D is directed, hence
foy=r 1Dy

=Ll 7 @)
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= rw.fo0
Thus f (y) 2 f(x) and fis monotonic.

Definition 3.25 [DCPQ, CL}

— DCPQ is the category with as objects d-cpo’s and as morphisms the d-continuous maps
between d-cpo’s.

-  CL is the category with as objects cl’s and as morphisms the d-continuous maps between
cl’s.

O

It is trivially verified that DCPO and CL are categoriecs. Also we have
Obj (CL) ¢ Obj (DCPO) c 0b (CPO) and if A , B are cl’s then

Homey (A, B)=Hompcpo (A, B) while if C,D are d-cpo’s we only know that
Hompcpo (C, D) € Homcpo (C, D).

(In other words, DCPO and CL are subcategories of CPC, while CL is a full subcategory of DCPO.)
Just as for CPQ the hom-sets are w-cpo’s we have for K = DCPO or X = CL that hom-sets of X are
objects of K. Hence in particular these hom-sets are o-cpo’s.

Moreover, composition of morphisms of X is d-continuous. The verification of this, together with
the verification that Homyg (A ,B) € Obj(K) (A ,B € 0bj(K)), is left to the reader. In any case these
facts show that both DCPQ and CL are O-categories.

Theorem 3.26
DCPO and CL are localized O-categories.

O

Proof

In the case of DCPQ we get a proof by using the proof of theorem 3.22 only replacing ‘ascending
chain’ by ‘directed subset” and ‘e’ by ‘d’.

In the case of CL we have to make the additional observation that E, as defined in the proof of
theorem 322, is a cl. The latter follows by Knaster-Tarski (theorem 1.15), since
E={x e D | f(x)=x} and fis monotonic.

ad

Theorem 3.27

DCPOp; and CLpz are e-categories.
a

Proof

Again, a proof for DCPO is obtained by a trivial modification of the proof of theorem 3.23. And
again the proof for CL requires more, for we have to show that D as defined in the proof of
theorem 3.23 (def.no. 12 of the proof) is a cL

This can be seen as follows:

It is easy to show that the cartesian product "I;IU D, with the coordinate-wise ordering is a cl. More-

over, D is a subposet of this product and if the maps f& would preserve Lu.b.'s of arbitrary subsets
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of D, then Lu.b.’s of arbitrary subsets of D would exist (and equal the ‘component-wise’ Lu.b.).
Since ff is only known to preserve L.w.b.’s of directed subsets of D,,, we need another application
of Knaster-Tarski: observe that D is the set of fixed points of the monotonic map
f: T D, > II D, given by f(<x,>w0) =< f§ (Xns1)>mz0 -

nz( 20
a
Both categories DCPO and CL have fewer objects than CPO in the sense that there are ow-cpo’s
which are no d-cpo’s, hence also no cl’s.
A different way to obtain a new category is to form smaller hom-sets. To present an example we
need
Definition 3.28 [strict]
Let C,Dbe cpo’s; f: C — D afunction,
fis called strict fif f (L) =1p .
O
Definition 3.29 [CPO, ]
CPQ, is the category of all cpo’s with.as morphisms the e-continuous functions which are also
strict.

a

Since the composition of strict functions is again strict, CPO, is a subcategory of CPO and since
the L.u.b. of an ascending chain of strict functions is also strict, CPO, is an O-category.
If we arc only interested in projection pairs then we can restrict ourselves to CPO, , for we have

Proposition 3.30

(CPO, )pz = CPO .

O

Proof

It suffices to show that a projection pair « in CPO is also a projection pair in CPO,. Thus we only
have to show that o and of are strict. This follows from the lemma below.

]

Lemma 3.31

let X,Y be posets with least elements Ly, resp. ly. Let f:X — Y,g:¥ — X . Suppose g is
monotonic and g ¢ f = Iy . Then g is strict.

O

Proof

gUN = g (FLxN E Ly

O

Recalling the definition of localized O-category and knowing that CPO is such a category, it is

now clear from the proposition above that CPQ, is also such a category. As our interest is in
CPOpg (rather than in CPO) it may be convenient to start with CPQ, instead of CPQO (see for
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example proposition 3.34).

3.5. Examples of locally continuous functors

Now that we have a few examples of localized O-categories we shall present several functors
which turn out to be locally continuous,

We shall restrict ourselves to CPO and CPQ, (both localized) though everything carries over to
DCPO and CL.

letK=CPO andlet H : X% xK — K be the following functor:
Given two o-cpo’s X, Y define H (X, Y) = Homx (X, ¥) (i.e. the set of e-continuous functions from
X to ¥, which, with point-wise ordcring is an e-cpo).
Given a morphism (f,g) : (X, ¥Y) » (X' ,¥") of K” XK,
define H# (f, g) : Homg (X ,Y) — Homg (X' ,Y") by

H(f,g)()=g o hof
(Note that this is well-defined since f € Homyg (X', X}, h € Homg (X, Y) and g € Homg (Y ,Y") )
It is easy to check that A is indeed a functor (the so-called Hom functor). Moreover, K xX is a
localized O-category (by corollary 3.20 and proposition 3.21) and H (f, g) is w-continuous (since
composition is w-continuous). By definition 3.14 this means that # is a locally continuous functor,
Hence, by the continuity theorem 3.15
Hpp 1 (K %XK)pr — Kpp i$ an o-continuous functor.
We would like to compose Hpp with the isomorphism: Kpg X Kpp — (K xK)pp which can be
obtained by applying proposition 3.19 and proposition 3.21. As this isomorphism acts as the iden-
tity on objects, we shall describe it explicitly only on morphisms. To do so, let
F1:Kpp — (K)pg be the isomorphism of proposition 3.19. Thus F; {f, g) = (g . f) for a projec-
tion pair (f, g) of K. Now form F| X[ : Kpp x Kpg — (K°P)pg % Kpp where 7 is the identity functor
on Kpg. For a pair of projection pairs ((f, ), (k, £)) of K we then have

FyxI((f.8),(h . k) =(g.f).(h,K)).

Also,let Fy : (K7 )pg X Kpg — (K xK)pp be the isomorphism of proposition 3.21. Then

F2 ((g rf)1(h ’k))=((g-h)!(f!k))

Thus Fpo (Fi%XI): Kpp x Kpp — (K XK)pg maps

((F.8).(h.eNto(g. k), (f,K)).

Composing with Hpp gives the following result:

Proposition 3.32 [“Arrow’ functor]

Let K =CPO. Define A : Kpz X Kpg — Kpp oD an object (X,Y) as A(X,¥Y)=Homg(X,Y) and on a
morphism ((f, g), (h, k)) as

AW, 8).(h, k) =Hpr (g, 1).(f. k) =(H (g, h).H(f.k)}).

In more detail: if (f, g): X — X" and (#,k):Y — Y’ are both projection pairs of X, then
A((f.8).(h,k)): Homg (X ,Y) — Homy(X’,Y") is the projection pair with as first coordinate the
map H{g,h): Homg (X ,Y) — Homg(X ,Y’),s — ho se g and as second coordinate the map
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H(f,k): Homg (X', Y") = Homg(X,Y),t > kotof.
Then A is e-coniinuous.

O
We could also have started with X = CPO, and the Hom-functor SH# on K. In this way we would
obtain SA which differs from A only on objects: SA(X,Y) is the e-cpo of all strict and -
continuous functions from X to . (SA stands for ‘strict-arrow’ functor.)
As another example, consider the functor
Prod: K xK — K, mapping object (X, Y) to X x ¥ (the cartesian product of X and ¥)
and morphism (f,g): (X,¥) - (X', Y)to
Prod (f,8): X XY — X'xY' ,(x,y) —» (f(x).g()).
Since Prod(f,g) is wo-continuous, Prod is locally continuous, hence induces
Prodpg : (K XK)pg ~> Kpp . Composing with the isomorphism from Kpg x Kps to (K XK)pp we
obtain
Proposition 3.33 [ ‘Product’ functor)
The functor P : Kpg X Kpp ~> Kpp defined by
P(X,Y)=XxY {X,Y)an object) ; and
P (a, ) = (Prod (o , ), Prod (o® , B*)) ((a:, B) @ morphism)

is w-continuous,
O
Now let K = CPO, and define
SProd: K xK — K , mapping object

(X,Y)to [(Jc,)’)E XxYI xi_J_xAy ?ly] U {(lx,ly)]

and morphism (f, g): (X,¥) - X', ¥) to

SProd (f,g):SProd(X,Y) - SProd(X’',Y"),

V)G iffx) 21y Ag@)# Ly

©9) 2 Uyply,) iEFE =Ly veE)=Ly

It is easily verified that S Prod is a functor (which is false if we iry 1o extend S Prod to CPO!)
which is locally continuous.

Hence it induces S Prodpg : (K XK)pp — Kpp .

Composing with the isomorphism from Kpg x Kpg t0 (K xK)pg gives

Proposition 3.34 [ ‘Smashed Product’ functor)

The functor SP : Kpp X Kpp — Kpg (Where K = CPQ, ) defined by
SP(X,Y)=5Prod (X,Y)((X,Y) an object) ; and
SP (o, By = (S Prod (o« , ), § Prod (o , §*)) ((«, B) 2 morphism)

is e-continuous.
O
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Turning to K = CPQ, define

Plus: K xK -» K, mapping object
K. Nt {0.x)lxeXVu{,y)lyer}u {1} where L is a new symbol. The order-
ing on Plus (X ,Y) is such that L is the least element, elements of the form {0,x) and
(1,y) are incomparable while the ordering on {0} x X , resp. {1} x ¥ is inherited from X,
resp. Y.
Morphism (f, g): (X, ¥} — Plus (X’,Y") is mapped to
Plus(f,g) : Plus (X ,Y) — Plus (X", Y") mapping 1 to L, ©,x) 10 (0,f(x)) and (1,y) to
(1.g0)).
One can easily see that Pius is a locally continuous functor, As with the preceding examples we
get

Proposition 3.35 [ ‘Separated Sum’ functor]

The functor SS : Kpg XKpg — Kpp (K =CPO) mapping object (X ,¥) to Plus (X ,¥) and morphism
(o, B) to (Plus (o, B), Plus (¥ , B*)) is w-continuous.

O

As a slight variation of the above let K = CPO, and define

CPlus: K XK — K, mapping object
&.7Y) w ({0} xX)u ({1} xY) with identification (0, 1y)=(1, Ly). In the ordering this
element is to be the least while other elements of the form (0, x) and (1, y) are incompar-
able and the ordering on {0} x X, resp. {1) x ¥ is inherited from X, resp. Y.
Morphism (f, g): (X,Y) — (X’,Y")is mapped to
CPlus(f,g): CPlus(X,Y) — CPlus{X",Y") mapping (0,x) to (0,f()) and (1,y) to
(1, g ). (Note that this is well-defined : (0, Ly) = (1, Ly), but also (0, f (Ly) = (1, 2(Ly))
since fand g are strict!)

Again this is a locally continuous functor.

Proposition 3.36 [ “Coalesced Sum’ functor)

The functor CS : Kpp X Kpg — Kpp (K =CPO,) mapping object (X,Y) to € Plus(X,Y) and mor-

phism (a, B) to (C Plus (o , ), C Plus (o , B%)) is o-continuous.

|

Finally we have the ‘/ift’-functor

kit CPO — CPO, mapping object
XtoX v {1} where | is a new symbol, which is to be the least element of X w {L} .
Morphism f:X — Y is mapped to fift (f) : lift (X) — #ft (¥) mapping Lto L andx € X to
fx)e?, ’

Note that the map i : X — lifi (X}, x —> x i$ not strict, hence, even though i is continuous and

injective, it is no embedding (see definition 3.3 and lemma 3.31).

Still, lift is a useful functor since it is locally continuous:
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Proposition 3.37
UP : CPOpr — CPOpp mapping object X to fift(X) and morphism a to (lf (of), lift (@) is o-
continuous.

0
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4. Appendix

In this appendix we slightly extend the basic category theory presented in the previous chapters.
All of this will be very elementary; in fact just a couple of definitions which are given for com-
pleteness’ sake.

The reason why we give these definitions here, rather than in chapter 2 or 3, is that we did not
wish to disturb the main line of these chapters.

There are a few ways to define new categories from old ones. One construction is to take the pro-
duct defined below.

Definition A.1. [product of categories]
Let X, L be two categories. The product of K and L is the category X x L with as objects all pairs
(A, B) where A € 0bj(K) and B € Obj (L), while the morphisms from (4, 8) 1o (C, D) are all ele-
ments of Homg(A,C)xHomy(B,D). Composition and identity morphisms are defined
coordinate-wise.

O

That X x L indeed is a category is trivially verified.
Also in the other definitions of this appendix, it’s always very easy to check the (implicit) claim
that something newly defined is a category or a functor.

Related to the product of categories we have

Definition A.2, [product of functors]

Let F;:K; » L; be functors (i=1,2). The product of F, and F, is the functor
F1xF,:K)xK,; — L, XL, mapping a pair (u, , ¥;) (which may be an object as well as a mor-
phism) to (F, (41}, F5(uy) .

O

Definition A3, [projection functors]
Let X, , K, be categories. The projection functor »; : K; XK, — K; is defined by taking the i-th
coordinate of a pair (which may be an object or a morphism) (i=1,2).

a

Exercise A4,
Show that projection functors are o-continuous. In fact, an e-chain A in X; x X, has a colimit iff
m; A and =, A (defined in an obvious way) have colimits in K, resp. K.

a

Definition A.5. [composition, identity, isomorphism, inverse]

Let F:K - L,G:L - M be two functors. The composition of F and G is the functor
G - F:K — M obtained by first applying £ and then G, both on objects and morphisms.

The identity functor on X is the functor /x : K — K mapping an object and a morphism o itself.

F is an isomorphism iff there exists a functor# : L — KsuchthatH o F=Igand F o H=1;. Such
a H is unique and is called the inverse of F.
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O

Exercise A.6

Show that a functor which is an isomorphism is e-continuous.

a

In case we have functors F; : K — L; (i=1,2) we can also define F: X — Ly X L, mapping u to
(F1(u), F2(u)) where u may be an object or a morphism. We can relate F to F; x F,, via

Definition A.7. [diagonal functor]

Let X be a category. The diagonal functor is the functor A¢ : K — K x K mapping u to («, #) (u an
object or a morphism).

O

Note that # above is just (Fy XF,) o Ag . Also note that (with the notations as above)

(7 Xm) o Bk xk, =1k, xk, -
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