Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Reducing SAT to USAT with the aid of randomness

We give another example of a task where randomisation seems to
be useful.
Also, interesting technique; illustration of probabilistic reasoning.

USAT: given a formula ¢ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)

So, USAT is no harder than SAT, and in a sense it's also no easier.

Afterwards: a quick look at interactive proofs, another setting
where randomisation is important

Paul Goldberg Randomisation 2/14

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“strong exponential time hypothesis” asserts that you need time
proportional to 2.1

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

!(non-strong) ETH: for 3SAT, 2" needed for some k > 0
Paul Goldberg Randomisation 3/14

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“strong exponential time hypothesis” asserts that you need time

proportional to 2.1

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Challenge: Given ¢, construct ¥ such that ¢) has a unique
satisfying assignment iff ¢ is satisfiable.

!(non-strong) ETH: for 3SAT, 2" needed for some k > 0
Paul Goldberg Randomisation 3/14

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“strong exponential time hypothesis” asserts that you need time
proportional to 2.1

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Challenge: Given ¢, construct ¥ such that ¢) has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := v A p, where p is some other formula over the same
variables.

!(non-strong) ETH: for 3SAT, 2" needed for some k > 0

Paul Goldberg Randomisation 3/14

Reducing SAT to USAT

Challenge: Given ¢, construct 1 such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := ¢ A p, where p is some other formula over the same
variables.

Extension of the idea: ¢1 := p A p1, ... Yk := © A pk; look for
satisfying assignment of any of these...

Problem: Think of ¢ as having been chosen by an opponent.

Given a choice of p1, ..., pk, he can pick a ¢ that fails for your
choice. This is where randomness helps!

Paul Goldberg Randomisation 4/14

Reducing SAT to USAT

Challenge: Given ¢, construct 1 such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := ¢ A p, where p is some other formula over the same
variables.

Extension of the idea: ¢1 := p A p1, ... Yk := © A pk; look for
satisfying assignment of any of these...

Problem: Think of ¢ as having been chosen by an opponent.
Given a choice of p1, ..., pk, he can pick a ¢ that fails for your
choice. This is where randomness helps!

(random) parity functions: let x1, ..., x, be the variables of .
Let 7 := @xer(x) ® b where each x; is added to R with prob. 2,
and b is chosen to be TRUE/FALSE with equal probability %

Think of R as standing for “relevant attributes”

Paul Goldberg Randomisation 4/14

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
7, the expected number of satisfying assighments of ¢ A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets
eliminated with probability .

Paul Goldberg Randomisation 5/14

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
m, the expected number of satisfying assignments of o A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets

eliminated with probability .

Corollary: letting py := 71 A ... A 7, for independently
randomly-chosen 7;, the expected number of satisfying
assignments to o A py is |S|/2.

Paul Goldberg Randomisation 5/14

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
m, the expected number of satisfying assignments of o A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets
eliminated with probability .

Corollary: letting py := 71 A ... A 7, for independently
randomly-chosen 7;, the expected number of satisfying
assignments to o A py is |S|/2.

This suggests the following approach:
@ Generate pj as above, foreach k=1,2,... ., n+ 1.
@ Search for a satisfying assignment to ¢ A p.

Need to argue that for k ~ log, |S|, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Randomisation 5/14

Pairwise independence of random p.f's:

Given x # x’ € S, and a random parity function 7, we have:

Pr[x satisfies 7] = 3 Pr[x’ satisfies 7] = 3

In addition:
Pr[x satisfies 7|x’ satisfies] = 3

Proof:

For any x, m(x) = v.x (or, =v.x) where v is characteristic vector
of relevant attributes R of 7.

(v.x denotes sum (XOR) of entries of x where corresponding entry
of vis 1)

Let i be a bit position where x/ =1 and x; = 0. i gets added to R
with probability % so value of m(x’) gets flipped with probability %

similarly for conjunctions of random parity functions

Paul Goldberg Randomisation 6/14

Reducing SAT to USAT

For some k, we have 2k72 < |§| < 2k—1,

Lemma: Pr[there is unique x € S satisfying ¢ A px] > %
(probability is w.r.t. random choice of p).

Proof: Let p =27% be the probability that x € S satisfies pj

Let N be the random variable consisting of the number of s.a’s of © A pk
EIN =|Slp €133

)

Pr[N > 1] > ZPr[x E o] — Z Prix = px A X' |= pi] = ISlp — <|2|>p2
x€S x<x'€S

By pairwise independence and union bound, we have Pr[N > 2] < (I3!)p?. So

Pr[N = 1] = Pr[N > 1] — Pr[N > 2] > |S|p — 2<| |>p > |S|p— |SPp %

(where the last inequality uses ; < |S|p < 3.)

Paul Goldberg Randomisation 7/14

Interactive proofs

@ an important application of randomisation in context of
computational complexity

NP problems as “one-round interrogation™:

skeptic: show me a solution
prover: (solution)

skeptic can easily check prover's solution.
prover is “all-powerful”.

A problem X is in NP if there's a poly-time TM (the skeptic), and
a function (the prover) that can convince the skeptic...

Can an extension of above protocol “capture” other complexity
classes?

Paul Goldberg Randomisation 8/14

Interactive proofs

@ General idea: multi-round interaction
c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there's a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

e for problem-instance Z of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let's limit
messages to polynomial length.

@ P and V's messages may depend on previous interaction

@ V ends up accepting iff Z is a yes-instance...

Paul Goldberg Randomisation 9/14

Interactive proofs

@ General idea: multi-round interaction
c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there's a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

e for problem-instance Z of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let's limit
messages to polynomial length.

@ P and V's messages may depend on previous interaction

@ V ends up accepting iff Z is a yes-instance...

But: consider deterministic verifier. Prover can supply all answers
“upfront”: no need to interact.

Paul Goldberg Randomisation 9/14

The Complexity Class IP

Definition. A decision problem L belongs to the complexity class IP
if there is

@ a communication protocol C and

@ a randomised polynomial-time bounded algorithm V' (the
verifier)

with the property that
@ there is a function P (the prover) such that if w € £

Pr[P persuades V to accept w] >

Wl N

@ for all “prover” functions P’, if w & L

Pr[P’ persuades V to accept w] < 3
L belongs to IP[k] if at most kK communication rounds are
necessary.

Paul Goldberg Randomisation 10/14

Graph-Non-Isomorphism in IP

Recall. An isomorphism between two graphs H and G is a function
f:V(H) — V(G) such that
© f is a bijection between V(H) and V(G) and
@ forall u,ve V(H): {u,v}e€EH) <<
{f(v),f(u)} € E(G).

Graph isomorphism has no known poly-time algorithm

Graph isomorphism is easily seen to be in NP but unlikely to be
NP-complete, has subexponential algorithm

It's also known that if Gl is NP-complete, then yP = ﬂg, thus PH
collapses

Paul Goldberg Randomisation 11/14

Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)
Input. Graphs G; and G,.
Communication.

© V randomly chooses i € {1,2}, randomly permutes vertices of
G; to obtain new graph H isomorphic to G;.

@ Vsends Hto P

© P identifies the graph G; to which H is isomorphic, and sends
J back.

Q@ V accepts if i = .

Repeat (in parallel or sequentially) until V “reasonably convinced”.

Paul Goldberg Randomisation 12 /14

Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)
Input. Graphs G; and G,.
Communication.

© V randomly chooses i € {1,2}, randomly permutes vertices of
G; to obtain new graph H isomorphic to G;.

@ Vsends Hto P

© P identifies the graph G; to which H is isomorphic, and sends
J back.

Q@ V accepts if i = .
Repeat (in parallel or sequentially) until V “reasonably convinced”.

Theorem. |P = PSPACE

(See Sipser, Theorem 10.29)
Arora/Barak: IP=PSPACE (Chapter 8.3)

Paul Goldberg Randomisation 12 /14

Zero-Knowledge Proofs

Applications.

@ Secure authentication. convince someone you know some
password etc without revealing it
@ Auctions.
e Several companies place bids for items/frequencies/mining
rights ...
e They place their bids simultaneously.

e After the bidding process, each company wants to be
convinced that the winner really bid more than itself.

e The winner doesn't want to reveal their bid.

Next: graph isomorphism. Standard IP has prover reveal the
isomorphism: let's disallow that!

Paul Goldberg Randomisation 13 /14

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs Gy, G
Prover’s secret: An isomorphism m between Gi, G

Prover wants to prove to Verifier that G; = G without revealing 7.

Paul Goldberg Randomisation 14 /14

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs Gy, G
Prover’s secret: An isomorphism m between Gi, G
Prover wants to prove to Verifier that G; = G without revealing 7.

Communication protocol.
@ P randomly selects i € {1,2} and computes a random
permutation of |V/(G;)| generating a graph H = G;
@ P sends H to V and keeps the isomorphism f : H =2 G;.
@ V randomly selects j € {1,2} and sends j back to P.

@ P computes an isomorphism 7; (either f or 7 o f) between G;
and H, and sends it to V.

@ V accepts if H = 7j(Gj)

Paul Goldberg Randomisation 14 /14

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs Gy, G
Prover’s secret: An isomorphism m between Gi, G
Prover wants to prove to Verifier that G; = G without revealing 7.

Communication protocol.
@ P randomly selects i € {1,2} and computes a random
permutation of |V/(G;)| generating a graph H = G;
@ P sends H to V and keeps the isomorphism f : H =2 G;.
@ V randomly selects j € {1,2} and sends j back to P.

@ P computes an isomorphism 7; (either f or 7 o f) between G;
and H, and sends it to V.

@ V accepts if H = 7j(Gj)

e If G; = G, then P can always convince V.

@ Otherwise, P fails with probability % which again can be
amplified.

@ The computation can be done efficiently.

Paul Goldberg Randomisation 14 /14

