
Computational Complexity; slides 13, HT 2022
Randomisation (continued)

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg Randomisation 1 / 14

Reducing SAT to USAT with the aid of randomness

We give another example of a task where randomisation seems to
be useful.
Also, interesting technique; illustration of probabilistic reasoning.

USAT: given a formula ϕ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)

So, USAT is no harder than SAT, and in a sense it’s also no easier.

Afterwards: a quick look at interactive proofs, another setting
where randomisation is important

Paul Goldberg Randomisation 2 / 14

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“strong exponential time hypothesis” asserts that you need time
proportional to 2n.1

But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.

Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.

1(non-strong) ETH: for 3SAT, 2kn needed for some k > 0
Paul Goldberg Randomisation 3 / 14

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“strong exponential time hypothesis” asserts that you need time
proportional to 2n.1

But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.

Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.

1(non-strong) ETH: for 3SAT, 2kn needed for some k > 0
Paul Goldberg Randomisation 3 / 14

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“strong exponential time hypothesis” asserts that you need time
proportional to 2n.1

But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.

Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.

1(non-strong) ETH: for 3SAT, 2kn needed for some k > 0
Paul Goldberg Randomisation 3 / 14

Reducing SAT to USAT

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.
Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.
Extension of the idea: ψ1 := ϕ ∧ ρ1, ... ,ψk := ϕ ∧ ρk ; look for
satisfying assignment of any of these...

Problem: Think of ϕ as having been chosen by an opponent.
Given a choice of ρ1, . . . , ρk , he can pick a ϕ that fails for your
choice. This is where randomness helps!

(random) parity functions: let x1, . . . , xn be the variables of ϕ.
Let π := ⊕x∈R(x)⊕ b where each xi is added to R with prob. 1

2 ,
and b is chosen to be true/false with equal probability 1

2 .

Think of R as standing for “relevant attributes”

Paul Goldberg Randomisation 4 / 14

Reducing SAT to USAT

Challenge: Given ϕ, construct ψ such that ψ has a unique
satisfying assignment iff ϕ is satisfiable.
Idea: ψ := ϕ ∧ ρ, where ρ is some other formula over the same
variables.
Extension of the idea: ψ1 := ϕ ∧ ρ1, ... ,ψk := ϕ ∧ ρk ; look for
satisfying assignment of any of these...

Problem: Think of ϕ as having been chosen by an opponent.
Given a choice of ρ1, . . . , ρk , he can pick a ϕ that fails for your
choice. This is where randomness helps!

(random) parity functions: let x1, . . . , xn be the variables of ϕ.
Let π := ⊕x∈R(x)⊕ b where each xi is added to R with prob. 1

2 ,
and b is chosen to be true/false with equal probability 1

2 .

Think of R as standing for “relevant attributes”

Paul Goldberg Randomisation 4 / 14

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ϕ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of ϕ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of ϕ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to ϕ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to ϕ ∧ ρk .

Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Randomisation 5 / 14

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ϕ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of ϕ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of ϕ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to ϕ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to ϕ ∧ ρk .

Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Randomisation 5 / 14

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ϕ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of ϕ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of ϕ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to ϕ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to ϕ ∧ ρk .

Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Randomisation 5 / 14

Pairwise independence of random p.f’s:

Given x 6= x ′ ∈ S , and a random parity function π, we have:

Pr[x satisfies π] = 1
2 Pr[x ′ satisfies π] = 1

2

In addition:
Pr[x satisfies π|x ′ satisfies π] = 1

2

Proof:
For any x , π(x) = v .x (or, ¬v .x) where v is characteristic vector
of relevant attributes R of π.
(v .x denotes sum (XOR) of entries of x where corresponding entry
of v is 1)
Let i be a bit position where x ′i = 1 and xi = 0. i gets added to R
with probability 1

2 , so value of π(x ′) gets flipped with probability 1
2 .

similarly for conjunctions of random parity functions

Paul Goldberg Randomisation 6 / 14

Reducing SAT to USAT

For some k, we have 2k−2 ≤ |S | ≤ 2k−1.
Lemma: Pr[there is unique x ∈ S satisfying ϕ ∧ ρk] ≥ 1

8
(probability is w.r.t. random choice of ρk).

Proof: Let p = 2−k be the probability that x ∈ S satisfies ρk .
Let N be the random variable consisting of the number of s.a.’s of ϕ ∧ ρk .
E[N] = |S |p ∈ [1

4
, 1
2
].

Pr[N ≥ 1] ≥
∑
x∈S

Pr[x |= ρk]−
∑

x<x′∈S

Pr[x |= ρk ∧ x ′ |= ρk] = |S |p −

(
|S |
2

)
p2

By pairwise independence and union bound, we have Pr[N ≥ 2] ≤
(|S|

2

)
p2. So

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S |p − 2

(
|S |
2

)
p2 ≥ |S |p − |S |2p2 ≥ 1

8
.

(where the last inequality uses 1
4
≤ |S |p ≤ 1

2
.)

Paul Goldberg Randomisation 7 / 14

Interactive proofs

an important application of randomisation in context of
computational complexity

NP problems as “one-round interrogation”:

skeptic: show me a solution
prover: 〈solution〉

skeptic can easily check prover’s solution.
prover is “all-powerful”.

A problem X is in NP if there’s a poly-time TM (the skeptic), and
a function (the prover) that can convince the skeptic...

Can an extension of above protocol “capture” other complexity
classes?

Paul Goldberg Randomisation 8 / 14

Interactive proofs

General idea: multi-round interaction

c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there’s a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

for problem-instance I of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let’s limit
messages to polynomial length.

P and V’s messages may depend on previous interaction

V ends up accepting iff I is a yes-instance...

But: consider deterministic verifier. Prover can supply all answers
“upfront”: no need to interact.

Paul Goldberg Randomisation 9 / 14

Interactive proofs

General idea: multi-round interaction

c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there’s a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

for problem-instance I of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let’s limit
messages to polynomial length.

P and V’s messages may depend on previous interaction

V ends up accepting iff I is a yes-instance...

But: consider deterministic verifier. Prover can supply all answers
“upfront”: no need to interact.

Paul Goldberg Randomisation 9 / 14

The Complexity Class IP

Definition. A decision problem L belongs to the complexity class IP
if there is

a communication protocol C and

a randomised polynomial-time bounded algorithm V (the
verifier)

with the property that

1 there is a function P (the prover) such that if w ∈ L

Pr[P persuades V to accept w] ≥ 2

3

2 for all “prover” functions P ′, if w 6∈ L

Pr[P ′ persuades V to accept w] ≤ 1

3

L belongs to IP[k] if at most k communication rounds are
necessary.

Paul Goldberg Randomisation 10 / 14

Graph-Non-Isomorphism in IP

Recall. An isomorphism between two graphs H and G is a function
f : V (H)→ V (G) such that

1 f is a bijection between V (H) and V (G) and

2 for all u, v ∈ V (H): {u, v} ∈ E (H) ⇐⇒
{f (v), f (u)} ∈ E (G).

Graph isomorphism has no known poly-time algorithm

Graph isomorphism is easily seen to be in NP but unlikely to be
NP-complete, has subexponential algorithm

It’s also known that if GI is NP-complete, then ΣP
2 = ΠP

2 , thus PH
collapses

Paul Goldberg Randomisation 11 / 14

Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)

Input. Graphs G1 and G2.

Communication.

1 V randomly chooses i ∈ {1, 2}, randomly permutes vertices of
Gi to obtain new graph H isomorphic to Gi .

2 V sends H to P
3 P identifies the graph Gj to which H is isomorphic, and sends

j back.

4 V accepts if i = j .

Repeat (in parallel or sequentially) until V “reasonably convinced”.

Theorem. IP = PSPACE
(See Sipser, Theorem 10.29)
Arora/Barak: IP=PSPACE (Chapter 8.3)

Paul Goldberg Randomisation 12 / 14

Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)

Input. Graphs G1 and G2.

Communication.

1 V randomly chooses i ∈ {1, 2}, randomly permutes vertices of
Gi to obtain new graph H isomorphic to Gi .

2 V sends H to P
3 P identifies the graph Gj to which H is isomorphic, and sends

j back.

4 V accepts if i = j .

Repeat (in parallel or sequentially) until V “reasonably convinced”.

Theorem. IP = PSPACE
(See Sipser, Theorem 10.29)
Arora/Barak: IP=PSPACE (Chapter 8.3)

Paul Goldberg Randomisation 12 / 14

Zero-Knowledge Proofs

Applications.

1 Secure authentication. convince someone you know some
password etc without revealing it

2 Auctions.

Several companies place bids for items/frequencies/mining
rights ...

They place their bids simultaneously.

After the bidding process, each company wants to be
convinced that the winner really bid more than itself.

The winner doesn’t want to reveal their bid.

Next: graph isomorphism. Standard IP has prover reveal the
isomorphism: let’s disallow that!

Paul Goldberg Randomisation 13 / 14

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs G1,G2

Prover’s secret: An isomorphism π between G1,G2

Prover wants to prove to Verifier that G1
∼= G2 without revealing π.

Communication protocol.
1 P randomly selects i ∈ {1, 2} and computes a random

permutation of |V (Gi)| generating a graph H ∼= Gi

2 P sends H to V and keeps the isomorphism f : H ∼= Gi .
3 V randomly selects j ∈ {1, 2} and sends j back to P.
4 P computes an isomorphism πj (either f or π ◦ f) between Gj

and H, and sends it to V.
5 V accepts if H = πj(Gj)

If G1
∼= G2 then P can always convince V.

Otherwise, P fails with probability 1
2 , which again can be

amplified.

The computation can be done efficiently.

Paul Goldberg Randomisation 14 / 14

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs G1,G2

Prover’s secret: An isomorphism π between G1,G2

Prover wants to prove to Verifier that G1
∼= G2 without revealing π.

Communication protocol.
1 P randomly selects i ∈ {1, 2} and computes a random

permutation of |V (Gi)| generating a graph H ∼= Gi

2 P sends H to V and keeps the isomorphism f : H ∼= Gi .
3 V randomly selects j ∈ {1, 2} and sends j back to P.
4 P computes an isomorphism πj (either f or π ◦ f) between Gj

and H, and sends it to V.
5 V accepts if H = πj(Gj)

If G1
∼= G2 then P can always convince V.

Otherwise, P fails with probability 1
2 , which again can be

amplified.

The computation can be done efficiently.

Paul Goldberg Randomisation 14 / 14

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs G1,G2

Prover’s secret: An isomorphism π between G1,G2

Prover wants to prove to Verifier that G1
∼= G2 without revealing π.

Communication protocol.
1 P randomly selects i ∈ {1, 2} and computes a random

permutation of |V (Gi)| generating a graph H ∼= Gi

2 P sends H to V and keeps the isomorphism f : H ∼= Gi .
3 V randomly selects j ∈ {1, 2} and sends j back to P.
4 P computes an isomorphism πj (either f or π ◦ f) between Gj

and H, and sends it to V.
5 V accepts if H = πj(Gj)

If G1
∼= G2 then P can always convince V.

Otherwise, P fails with probability 1
2 , which again can be

amplified.

The computation can be done efficiently.

Paul Goldberg Randomisation 14 / 14

