
Computational Complexity; slides 2, HT 2022
Turing machines, undecidability (review/recall, for

general context)

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg Turing machines, undecidability 1 / 26

Computation

Alan Turing considered qn. of “What is computation?” in 1936.

He argued, that any computation can be done using the following
steps (writing on a sheet of paper):

Concentrate on one part of the
problem (one symbol on the paper)

Depending on what you read there

Change into a new state
(memorise a finite

amount of information)
Modify this part of the
problem
Move to another part of the
input

Repeat until finished

Paul Goldberg Turing machines, undecidability 2 / 26

Key points

Why we care about TMs:

precise notion of “runtime”, “memory usage”

well-defined operations on algorithms (when represented as
TMs) — (operations such as pass output of Alg 1 to Alg 2,
etc)

variants of TM (e.g. NTM) define important classes of
problems

Sometimes we’ll use pseudocode but with understanding that
there’s an equivalent TM

Next: detailed definition

Paul Goldberg Turing machines, undecidability 3 / 26

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {�} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states

Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from Γ (� : special “blank”
symbol)

Paul Goldberg Turing machines, undecidability 4 / 26

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {�} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states

Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from Γ (� : special “blank”
symbol)

Paul Goldberg Turing machines, undecidability 4 / 26

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {�} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states

Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from Γ (� : special “blank”
symbol)

Paul Goldberg Turing machines, undecidability 4 / 26

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 5 / 26

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 5 / 26

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 5 / 26

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 5 / 26

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Turing machines, undecidability 5 / 26

Turing Machine operation

1 At each step of operation the machine is in one state q ∈ Q
2 Initially:

Machine is in state q0 ∈ Q
the input is contained on tape 1
all other tape symbols are �

3 The machine is reading one symbol on each tape: s1 . . . sk
4 To execute one step, the machine looks up

δ(q, s1, . . . , sk) :=
(
q′, (s ′1, . . . , s

′
k), (m1, . . . ,mk)

)
5 The machine:

changes to state q′

replaces each si by s ′i
moves the heads on the individual tapes according to mi

(1 = move right, −1 = move left, 0 = stay)
Execution stops when a final state is reached.
In this case, the content of the last tape k contains the output.

Paul Goldberg Turing machines, undecidability 6 / 26

more general points

I assume you’ve seen examples of TMs already.

TM: general-purpose notion of “algorithm”, “computational
procedure”

equivalence of alternative defs of TM assure us of above

Algorithm pseudocode is readable, usually we use it to
describe algorithms, tacit assumption: can be converted to
TM

TMs precise notion of runtime/space. Used in various
theorems in this course.

Paul Goldberg Turing machines, undecidability 7 / 26

Configurations (definition, notation)

For M := (Q,Σ, Γ, δ, q0,F), what’s going on is described by

the current state

the contents of all tapes

the position of all its heads(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
where q ∈ Q,wi ∈ Γ∗, pi ∈ N

where Γ∗ denotes words over alphabet Γ

Start configuration on input w :
(
q0, (w , ε, . . . , ε), (0, . . . , 0)

)
where ε denotes empty word

Stop (or, halt) configuration:
Configuration

(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
such that q ∈ F .

Paul Goldberg Turing machines, undecidability 8 / 26

Computation

Notation:

C `M C ′ if M can change from configuration C to
C ′ in one step.

C `∗M C ′ if M can change from configuration C to
C ′ in arbitrarily many steps.

The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 `M C1 `M C2 . . . of configurations, or

a finite sequence C0 `M C1 `M C2 · · · `M Cn.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .

Paul Goldberg Turing machines, undecidability 9 / 26

Computation

Notation:

C `M C ′ if M can change from configuration C to
C ′ in one step.

C `∗M C ′ if M can change from configuration C to
C ′ in arbitrarily many steps.

The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 `M C1 `M C2 . . . of configurations, or

a finite sequence C0 `M C1 `M C2 · · · `M Cn.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .

Paul Goldberg Turing machines, undecidability 9 / 26

Computation

Notation:

C `M C ′ if M can change from configuration C to
C ′ in one step.

C `∗M C ′ if M can change from configuration C to
C ′ in arbitrarily many steps.

The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 `M C1 `M C2 . . . of configurations, or

a finite sequence C0 `M C1 `M C2 · · · `M Cn.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .

Paul Goldberg Turing machines, undecidability 9 / 26

Run-time of a TM

Let M be a Turing machine with alphabet Σ
f : Σ∗ → Σ∗

g : N→ N

M computes f in time g(n) if for every w ∈ Σ∗ M halts on input
w after at most g(|w |) steps with f (w) on its output (last) tape.

(i.e. TM(w) ≤ g(|w |))

Paul Goldberg Turing machines, undecidability 10 / 26

Example (TM as transducer)

The following 2-tape Turing machine

M :=
(
{q0, q1, qf }, {a, b}, {a, b,�}, δ, q0, {qf }

)
where

δ :=



(
q0,
(a
−
)
,
(a
−
)
,
(1
0

)
, q0
)(

q0,
(b
−
)
,
(b
−
)
,
(1
0

)
, q0
)(

q0,
(�
−
)
,
(�
−
)
,
(−1

0

)
, q1
)(

q1,
(a
−
)
,
(�
a

)
,
(−1

1

)
, q1
)(

q1,
(b
−
)
,
(�
b

)
,
(−1

1

)
, q1
)(

q1,
(�
−
)
,
(�
−
)
,
(0
0

)
, qf
)


computes the reverse-function reverse(a1 . . . an) := an . . . a1 in

time g(n) = 2n + 2 = O(n).
For various alternative definitions of TM, including changes to
alphabet, runtimes needed are polynomially related.

Paul Goldberg Turing machines, undecidability 11 / 26

Decision problems as languages; Turing acceptors

Example

Travelling Salesman Problem (TSP): Given pairwise distances
between cities, we ask for the shortest tour, or the length of the
shortest tour

Decision version: given the pairwise distances and a number k , is
there a tour of length at most k?

General point: ability to solve the decision version is “good
enough” (why?).

For decision problem D, L(D) denotes the yes-instances of D
(needs an agreed-on encoding).

TM M solves a decision problem if the language accepted by M
(M as a language acceptor) is the yes-instances of the decision
problem.

Paul Goldberg Turing machines, undecidability 12 / 26

Recall: decidable languages

Definition/notation

The language L(M) ⊆ Σ∗ accepted by a Turing acceptor
M :=

(
Q,Σ, Γ, δ, q0,F

)
is defined as

{w ∈ Σ∗ : M accepts w}.

(Note that we do not require M to halt on rejected inputs.)

A language L ⊆ Σ∗ is recursively enumerable, if there is an
acceptor M such that L = L(M).

A language L ⊆ Σ∗ is decidable (or, “recursive”) if there is an
acceptor M such that for all w ∈ Σ∗:

w ∈ L =⇒ M halts on input w in an accepting state
w 6∈ L =⇒ M halts on input w in a rejecting state

Paul Goldberg Turing machines, undecidability 13 / 26

Decidable and Enumerable Languages

Recall:

1 If a language L is decidable then it is recursively enumerable

2 If L and Σ∗ \L are recursively enumerable then L is decidable.

decidable rec. enum.
all lan-

guages

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable

Paul Goldberg Turing machines, undecidability 14 / 26

Decidable and Enumerable Languages

Recall:

1 If a language L is decidable then it is recursively enumerable

2 If L and Σ∗ \L are recursively enumerable then L is decidable.

decidable rec. enum.
all lan-

guages

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable

Paul Goldberg Turing machines, undecidability 14 / 26

Problems as languages

Main points:

decision problems viewed as language recognition problems
We can use “decision problem” and “language”
interchangeably

We’re allowed to be vague about encoding of problems (e.g.
CLIQUE, TSP) — we will see that details of encoding don’t
affect the problem classifications of interest. Details of
alphabet also unimportant (but unary alphabet is too big a
restriction!). (“standard encoding”, should be sensible.)

Paul Goldberg Turing machines, undecidability 15 / 26

Undecidable Languages

Aim of this section

Recursion theory — a brief reminder

2 techniques: diagonalisation and reductions — variants
appear in complexity-theory classification of problems

A counting argument (sketch):

The number of Turing machines is infinite but countable

The number of different languages is infinite but uncountable;
diagonalisation

Therefore, there are “more” languages than Turing machines

It follows that there are languages that are not decidable.
Indeed some aren’t even semi-decidable.

Paul Goldberg Turing machines, undecidability 16 / 26

The Halting Problem

previous argument shows that there are undecidable languages.

Can we find a concrete example?

Halting problem (HALT)

Input: A Turing machine M and an input string w
Question: Does M halt on w?

Again, undecidability of HALT is proved by diagonalisation:
consider effective listing of TMs, new TM that differs from all in
listing
details in e.g. Sipser Chapter 4.2

Paul Goldberg Turing machines, undecidability 17 / 26

Classification of Languages

Definition. A language L ⊆ Σ∗ is co-recursively enumerable, or
co-r.e., if Σ∗ \ L is recursively enumerable.

Example: L(HALT) is co-r.e (but not r.e.).

All languages

r.e. co-r.e.

decidable

Looking ahead, relationship between NP and co-NP is more
complicated...

Paul Goldberg Turing machines, undecidability 18 / 26

Reductions

A major tool in analysing and classifying problems is the idea of
“reducing one problem to another”

As you expect — or have already seen — use undecidability of
HALT to prove undecidability of variants, e.g. TM acceptance
problem.

Informally, a problem A is reducible to a problem B if we can
use methods to solve B in order to solve A.

We want to capture the idea, that A is ”no harder” than B.

(as we can use B to solve A.)

Paul Goldberg Turing machines, undecidability 19 / 26

Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A ≤T B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

 Many-One Reductions (Sipser: “mapping reduction”) are
more informative: A ≤T B relates (un)decidability of problems;
use A ≤m B (next slide) to find out if a problem (or its
complement) is recursively enumerable.

Paul Goldberg Turing machines, undecidability 20 / 26

Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A ≤T B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

 Many-One Reductions (Sipser: “mapping reduction”) are
more informative: A ≤T B relates (un)decidability of problems;
use A ≤m B (next slide) to find out if a problem (or its
complement) is recursively enumerable.

Paul Goldberg Turing machines, undecidability 20 / 26

Many-One Reductions

Definition. A language A is many-one reducible to a language B if
there exists a computable function f such that for all w ∈ Σ∗:

x ∈ A ⇐⇒ f (x) ∈ B.

We write A ≤m B.

Observation 1. If A ≤m B and B is decidable, then so is A.

Proof. A many-one reduction is a Turing reduction, so it inherits
that functionality

Observation 2. If A ≤m B and B is recursively enumerable, then so
is A.

Many-one reductions can classify problems into:
decidable/r.e./co-r.e/neither.

Paul Goldberg Turing machines, undecidability 21 / 26

Properties of Many-One Reductions

1 ≤m is reflexive and transitive

(if A ≤m B and B ≤m C then A ≤m C, by composition of
functions.)

2 If A is decidable and B is any language apart from ∅ and Σ∗,
then A ≤m B.

As B 6= ∅ and B 6= Σ∗ there are wa ∈ B and wr 6∈ B.

For w ∈ Σ∗, define f (w) :=

{
wa if w ∈ A
wr if w 6∈ A

Hence, many-one reductions are too crude to distinguish between
decidable problems. later: “smarter” reductions

Paul Goldberg Turing machines, undecidability 22 / 26

Examples of Many-One Reductions

We will show the following chain of reductions:

HALT ≤m ε-HALT ≤m EQUIVALENCE

ε-HALT: Does M halt on the empty input?

EQUIVALENCE: L(M) = L(M ′)?

Hence, all these problems are undecidable.

Paul Goldberg Turing machines, undecidability 23 / 26

HALT ≤m ε-HALT

Proof.
Define function f such that w ∈ HALT⇐⇒ f (w) ∈ ε-HALT

For w := 〈M, v〉 compute the following Turing machine Mw :

1 Write v onto the input tape.

2 Simulate M.

Clearly, Mw accepts the empty word if, and only if, M accepts v .

Let Mr be a TM that does not halt on the empty input.

Define f (w) :=

{
Mw if w = 〈M, v〉
Mr if w is not of the correct input form 1

1i.e. doesn’t encode a TM with word
Paul Goldberg Turing machines, undecidability 24 / 26

ε-HALT ≤m EQUIVALENCE

Proof.
Define f such that w ∈ ε-HALT⇐⇒ f (w) ∈ EQUIVALENCE

Let Ma be a Turing machine that accepts all inputs.

For a TM M compute the following Turing machine M∗ :

1 Run M on the empty input

2 If M halts, accept.

M∗ is equivalent to Ma if, and only if, M halts on the empty input.

Define

f (w) :=

{
(〈M∗〉, 〈Ma〉) if w = 〈M〉
(w , 〈Ma〉) if w is not of the correct input form

Paul Goldberg Turing machines, undecidability 25 / 26

Decidable and Enumerable Languages

All languages

r.e. co-r.e.

decidable

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.

The work of Turing, Church, Post, ... pre-dated modern
computational machinery.

Complexity Theory:
Look at the fine structure of decidable languages.

Paul Goldberg Turing machines, undecidability 26 / 26

