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Computation

Alan Turing considered gn. of “What is computation?” in 1936.

He argued, that any computation can be done using the following
steps (writing on a sheet of paper):

@ Concentrate on one part of the
problem (one symbol on the paper)

@ Depending on what you read there

e Change into a new state
(memorise a finite

amount of information) = = z

e Modify this part of the
problem

e Move to another part of the
input

@ Repeat until finished
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Key points

Why we care about TMs:
@ precise notion of “runtime”, “memory usage”

o well-defined operations on algorithms (when represented as
TMs) — (operations such as pass output of Alg 1 to Alg 2,
etc)

e variants of TM (e.g. NTM) define important classes of
problems

Sometimes we'll use pseudocode but with understanding that
there’s an equivalent TM

Next: detailed definition
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Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,%,T,9,qo, F) where
@ @ is a finite set of states
@ X is input alphabet — a finite alphabet of symbols
o [ D X U {[} is working tape alphabet (finite)
@ § is the transition function
@ qo € Q is the inijtial state
@ F C Q is a set of final states
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Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,%,T,9,qo, F) where
@ @ is a finite set of states
@ X is input alphabet — a finite alphabet of symbols
o [ D X U {[} is working tape alphabet (finite)
@ § is the transition function
@ qo € Q is the inijtial state
@ F C Q is a set of final states
Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from I’ (O : special “blank”
symbol)
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Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,%,T,9,qo, F) where
@ @ is a finite set of states
@ X is input alphabet — a finite alphabet of symbols
o [ D X U {[} is working tape alphabet (finite)
@ § is the transition function
@ qo € Q is the inijtial state
@ F C Q is a set of final states
Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from I’ (O : special “blank”
symbol)

1[NPlUTIoojoojoojoojojojojojoo] - - - -
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Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Ik x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right”)

I[N[PU[T[ojoojojojo|ojojo/ojojojoo] - - - -

o/ojoojojojojojojojojojojo/ojojojoo] - - - -

o/ojoojojojoojojojojojojo/ojojojog] - - - -

olojojofojofofofojo/ojojojojojojojojo] - - - -

o/ojoojojojoojojojojojojo/ojojojoo] - - - -
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Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Mk x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right”)

IIN[PlU[T[o|o|ojojojo|ojojo/ojojojoo] - - - -

li|n[t/e|r[ojoojojojojojojo/ojojojoo] - - - -

mle[ojojojojojojojojojojojojojojojojo] - - - -

d|i [olojojojojojojojojojojo/ojojojoo] - - - -

:alt] e[ofofojojofojo/ojojojojojojojojo] - - - -
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Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Ik x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right")

1[clPlu[T[ojoojojojojojojo/ojojojoo] - - - -

lilh[t|e|r[ojoojojojojojojo/ojojojoo] - - - -

‘ ~*

maoojojojoojojojojojojo/ojojojog] - - - -

d[n|ojojojojojojojojojojojo/ojojojoo] - - - -

\alg|elnjojojoojojojojojojo/ojojojoo] - - - -
p
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Turing Machine operation

@ At each step of operation the machine is in one state g € Q
@ Initially:
e Machine is in state go € Q

e the input is contained on tape 1
e all other tape symbols are [J

© The machine is reading one symbol on each tape: s ... sk

@ To execute one step, the machine looks up

6(q,s1,. . 86) == (', (Lo - -5 sp), (ma, - . -, mk))
© The machine:

e changes to state ¢’

o replaces each s; by s/

e moves the heads on the individual tapes according to m;

(1 = move right, —1 = move left, 0 = stay)

Execution stops when a final state is reached.

In this case, the content of the last tape k contains the output.
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more general points

| assume you've seen examples of TMs already.

@ TM: general-purpose notion of “algorithm”, “computational
procedure”

@ equivalence of alternative defs of TM assure us of above

@ Algorithm pseudocode is readable, usually we use it to
describe algorithms, tacit assumption: can be converted to
T™

@ TMs ~~ precise notion of runtime/space. Used in various
theorems in this course.
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Configurations (definition, notation)

For M :=(Q,%,T,6, qo, F), what's going on is described by
@ the current state
@ the contents of all tapes
@ the position of all its heads
(q, (wa,...,wg), (p1,--- ,pk)) where g€ Q,w; €I, p;e N

where [* denotes words over alphabet I

Start configuration on input w: (qo, (w,¢,...,¢),(0,...,0))

where ¢ denotes empty word

Stop (or, halt) configuration:
Configuration (q, (wa,...,wk),(p1,... ,pk)) such that g € F.
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@ Ctp C'if M can change from configuration C to

Notation: C' in one step.

e Ct3, C'if M can change from configuration C to
C’ in arbitrarily many steps.



Computation

@ Ctyp C'if M can change from configuration C to

Notation: C’ in one step.

e Ct3, C'if M can change from configuration C to

C’ in arbitrarily many steps.
The computation of a TM M on input w € ¥* is either

@ an infinite sequence Co Fpy Gy Fpy G, ... of configurations, or
@ a finite sequence Co Fp Gi by G-+ -y G,
In the latter case we say that M halts on input w.
Notation: Tp(w) :=n number of steps upon input w.
C,: stop configuration Co: start config of M on input w.
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Computation

@ Ctyp C'if M can change from configuration C to

Notation: C’ in one step.

e Ct3, C'if M can change from configuration C to

C’ in arbitrarily many steps.
The computation of a TM M on input w € ¥* is either

@ an infinite sequence Co Fpy Gy Fpy G, ... of configurations, or
@ a finite sequence Co Fp Gi by G-+ -y G,
In the latter case we say that M halts on input w.
Notation: Tp(w) :=n number of steps upon input w.
C,: stop configuration Co: start config of M on input w.

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(qa(le"'vWk*lao)v(plv"'vpk)) with qe F.
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Run-time of a TM

Let M be a Turing machine with alphabet -
f:r -3
g:N—>N
M computes f in time g(n) if for every w € ¥* M halts on input
w after at most g(|w|) steps with f(w) on its output (last) tape.

(i.e. Tm(w) < g(lwl))
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Example (TM as transducer)

The following 2-tape Turing machine

M = ({qu a1, Qf}, {37 b}7 {37 b, D}v 9, qo, {qf})

where

(a0, (%), (%), (g)- %)

(a0, (%), (%), (o) %)

) (o (9. () o
) (@) () (7))
(a1 (%), (5), (1) 1)

(a1, (), (). o). ar)

computes the reverse-function reverse(ay ...ap) :== ap...a1 in

time g(n) =2n+2 = O(n).
For various alternative definitions of TM, including changes to
alphabet, runtimes needed are polynomially related.

Paul Goldberg Turing machines, undecidability 11/26



Decision problems as languages; Turing acceptors

Example

Travelling Salesman Problem (TSP): Given pairwise distances
between cities, we ask for the shortest tour, or the length of the
shortest tour

Decision version: given the pairwise distances and a number k, is
there a tour of length at most k7?7

General point: ability to solve the decision version is “good
enough” (why?).

For decision problem D, L£(D) denotes the yes-instances of D
(needs an agreed-on encoding).

TM M solves a decision problem if the language accepted by M
(M as a language acceptor) is the yes-instances of the decision
problem.
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Recall: decidable languages

Definition/notation

The language £(M) C X* accepted by a Turing acceptor
M :=(Q,%,T,4, qo, F) is defined as

{w € X*: M accepts w}.

(Note that we do not require M to halt on rejected inputs.)

A language £ C ¥* is recursively enumerable, if there is an
acceptor M such that £ = L(M).

A language £ C X* is decidable (or, “recursive”) if there is an
acceptor M such that for all w € ¥*:

we L = M halts on input w in an accepting state
w¢& L = M halts on input w in a rejecting state
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Decidable and Enumerable Languages

Recall:
@ If a language L is decidable then it is recursively enumerable

@ If £ and X*\ L are recursively enumerable then L is decidable.

all lan-
guages
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Decidable and Enumerable Languages

Recall:
@ If a language L is decidable then it is recursively enumerable

@ If £ and X*\ L are recursively enumerable then L is decidable.

all lan-
guages

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable
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Problems as languages

Main points:
@ decision problems viewed as language recognition problems

We can use “decision problem” and “language”
interchangeably

e We're allowed to be vague about encoding of problems (e.g.
CLIQUE, TSP) — we will see that details of encoding don’t
affect the problem classifications of interest. Details of
alphabet also unimportant (but unary alphabet is too big a
restriction!). (“standard encoding”, should be sensible.)

Paul Goldberg Turing machines, undecidability 15/26



Undecidable Languages

Aim of this section
@ Recursion theory — a brief reminder

@ 2 techniques: diagonalisation and reductions — variants
appear in complexity-theory classification of problems

A counting argument (sketch):
@ The number of Turing machines is infinite but countable

@ The number of different languages is infinite but uncountable;
diagonalisation

@ Therefore, there are “more” languages than Turing machines

It follows that there are languages that are not decidable.
Indeed some aren’t even semi-decidable.
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The Halting Problem

previous argument shows that there are undecidable languages.

Can we find a concrete example?

Halting problem (HALT)

Input: A Turing machine M and an input string w
Question: Does M halt on w?

Again, undecidability of HALT is proved by diagonalisation:
consider effective listing of TMs, new TM that differs from all in
listing

details in e.g. Sipser Chapter 4.2
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Classification of Languages

Definition. A language £ C ¥* is co-recursively enumerable, or
co-r.e., if ¥*\ L is recursively enumerable.

Example: L(HALT) is co-r.e (but not r.e.).

All languages

decidable

Looking ahead, relationship between NP and co-NP is more
complicated...
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Reductions

A major tool in analysing and classifying problems is the idea of
“reducing one problem to another”

As you expect — or have already seen — use undecidability of
HALT to prove undecidability of variants, e.g. TM acceptance

problem.

@ Informally, a problem A is reducible to a problem B if we can
use methods to solve B in order to solve A.

@ We want to capture the idea, that A is "no harder” than B.

(as we can use B to solve A.)
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Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <7 B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output
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Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <7 B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

~» Many-One Reductions (Sipser: “mapping reduction”) are
more informative: A <t BB relates (un)decidability of problems;
use A <., B (next slide) to find out if a problem (or its
complement) is recursively enumerable.
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Many-One Reductions

Definition. A language A is many-one reducible to a language B if
there exists a computable function f such that for all w € ©*:

xeAd < f(x)eB.
We write A <,,, B.

Observation 1. If A <,, B and B is decidable, then so is A.

Proof. A many-one reduction is a Turing reduction, so it inherits
that functionality

Observation 2. If A <., B and B is recursively enumerable, then so

is A.

Many-one reductions can classify problems into:
decidable/r.e./co-r.e/neither. J

Paul Goldberg Turing machines, undecidability 21/26



Properties of Many-One Reductions

Q@ <,, is reflexive and transitive
(if A <, Band B <, C then A <,, C, by composition of
functions.)
@ If A is decidable and B is any language apart from () and X*,
then A <., B.
As B # () and B # ¥* there are w, € B and w, ¢ B.
w, ifweAd

For w € ©*, define f(w) := _
w, ifwgA

Hence, many-one reductions are too crude to distinguish between
decidable problems. later: “smarter” reductions
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Examples of Many-One Reductions

We will show the following chain of reductions:
HALT <,, e-HALT <,, EQUIVALENCE

e-HALT: Does M halt on the empty input?
EQUIVALENCE: L(M) = L(M')?

Hence, all these problems are undecidable.
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HALT <,, e-HALT

Proof.
Define function f such that w € HALT <= f(w) € e-HALT

For w := (M, v) compute the following Turing machine M,, :
© Write v onto the input tape.

@ Simulate M.
Clearly, M,, accepts the empty word if, and only if, M accepts v.

Let M, be a TM that does not halt on the empty input.
My, if w=(M,v)
M, if w is not of the correct input form !

Define f(w) := {

li.e. doesn’'t encode a TM with word
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e-HALT <,, EQUIVALENCE

Proof.
Define f such that w € e-HALT <= f(w) € EQUIVALENCE
Let M, be a Turing machine that accepts all inputs.

For a TM M compute the following Turing machine M* :
©@ Run M on the empty input
@ If M halts, accept.

M* is equivalent to M, if, and only if, M halts on the empty input.

Define
(M), (Ma))  if w= (M)

w, (M3)) if w is not of the correct input form
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Decidable and Enumerable Languages

All languages

decidable

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.
The work of Turing, Church, Post, ... pre-dated modern
computational machinery.

Complexity Theory:
Look at the fine structure of decidable languages.
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