Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Computation

Alan Turing considered gn. of “What is computation?” in 1936.

He argued, that any computation can be done using the following
steps (writing on a sheet of paper):

@ Concentrate on one part of the
problem (one symbol on the paper)

@ Depending on what you read there

e Change into a new state
(memorise a finite

amount of information) = = z

e Modify this part of the
problem

e Move to another part of the
input

@ Repeat until finished

Paul Goldberg Turing machines, undecidability 2/26

Key points

Why we care about TMs:
@ precise notion of “runtime”, “memory usage”

o well-defined operations on algorithms (when represented as
TMs) — (operations such as pass output of Alg 1 to Alg 2,
etc)

e variants of TM (e.g. NTM) define important classes of
problems

Sometimes we'll use pseudocode but with understanding that
there’s an equivalent TM

Next: detailed definition

Paul Goldberg Turing machines, undecidability

3/26

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,%,T,9,qo, F) where
@ @ is a finite set of states
@ X is input alphabet — a finite alphabet of symbols
o [D X U {[} is working tape alphabet (finite)
@ § is the transition function
@ qo € Q is the inijtial state
@ F C Q is a set of final states

Paul Goldberg Turing machines, undecidability 4/26

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,%,T,9,qo, F) where
@ @ is a finite set of states
@ X is input alphabet — a finite alphabet of symbols
o [D X U {[} is working tape alphabet (finite)
@ § is the transition function
@ qo € Q is the inijtial state
@ F C Q is a set of final states
Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from I’ (O : special “blank”
symbol)

Paul Goldberg Turing machines, undecidability

4/26

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,%,T,9,qo, F) where
@ @ is a finite set of states
@ X is input alphabet — a finite alphabet of symbols
o [D X U {[} is working tape alphabet (finite)
@ § is the transition function
@ qo € Q is the inijtial state
@ F C Q is a set of final states
Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from I’ (O : special “blank”
symbol)

1[NPlUTIoojoojoojoojojojojojoo] - - - -

Paul Goldberg Turing machines, undecidability

4/26

Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Ik x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right”)

I[N[PU[T[ojoojojojo|ojojo/ojojojoo] - - - -

o/ojoojojojojojojojojojojo/ojojojoo] - - - -

o/ojoojojojoojojojojojojo/ojojojog] - - - -

olojojofojofofofojo/ojojojojojojojojo] - - - -

o/ojoojojojoojojojojojojo/ojojojoo] - - - -

Paul Goldberg Turing machines, undecidability 5/26

Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x " — Q x Ik x {~1,0,1}*
(—1: “left” 0: “stay put” 1: “right”)

IN[PlU[T|o[olo/ojojojojojofojojajojo] - - - -

ojojojojofojojofojo/ojojojojojojojojo] - - - -

oojojojojojoojojojojojojo/ojojojoo] - - - -

oojoojojojojojojojojojojo/ojojojoo] - - - -

olojoojojojoojojojojojojo/ojojojoo] - - - -

Paul Goldberg Turing machines, undecidability 5/26

Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Mk x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right”)

IIN[PlU[T[o|o|ojojojo|ojojo/ojojojoo] - - - -

li|n[t/e|r[ojoojojojojojojo/ojojojoo] - - - -

mle[ojojojojojojojojojojojojojojojojo] - - - -

d|i [olojojojojojojojojojojo/ojojojoo] - - - -

:alt] e[ofofojojofojo/ojojojojojojojojo] - - - -

Paul Goldberg Turing machines, undecidability 5/26

Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Mk x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right”)

I[N U[T[o|0ojojojojojojo/ojojojoo] - - - -

Li|mpt e/ r[ojo0jojojojojojo/ojojojoo] - - - -

mre|0/o/ojojojojojojojojojojojojojojo] - - - -

d/ie0jojojoojojojojojojo/ojojojoo] - - - -

:alt] e[ofofojojofojo/ojojojojojojojojo] - - - -

Paul Goldberg Turing machines, undecidability 5/26

Deterministic TM (multiple tape version)

Transition function: §: (Q\ F) x K — Q x Ik x {—1,0,1}*
(—1: “left” 0: “stay put” 1: “right")

1[clPlu[T[ojoojojojojojojo/ojojojoo] - - - -

lilh[t|e|r[ojoojojojojojojo/ojojojoo] - - - -

‘ ~*

maoojojojoojojojojojojo/ojojojog] - - - -

d[n|ojojojojojojojojojojojo/ojojojoo] - - - -

\alg|elnjojojoojojojojojojo/ojojojoo] - - - -
p

Paul Goldberg Turing machines, undecidability 5/26

Turing Machine operation

@ At each step of operation the machine is in one state g € Q
@ Initially:
e Machine is in state go € Q

e the input is contained on tape 1
e all other tape symbols are [J

© The machine is reading one symbol on each tape: s ... sk

@ To execute one step, the machine looks up

6(q,s1,. . 86) == (', (Lo - -5 sp), (ma, - . -, mk))
© The machine:

e changes to state ¢’

o replaces each s; by s/

e moves the heads on the individual tapes according to m;

(1 = move right, —1 = move left, 0 = stay)

Execution stops when a final state is reached.

In this case, the content of the last tape k contains the output.

Paul Goldberg Turing machines, undecidability 6/26

more general points

| assume you've seen examples of TMs already.

@ TM: general-purpose notion of “algorithm”, “computational
procedure”

@ equivalence of alternative defs of TM assure us of above

@ Algorithm pseudocode is readable, usually we use it to
describe algorithms, tacit assumption: can be converted to
T™

@ TMs ~~ precise notion of runtime/space. Used in various
theorems in this course.

Paul Goldberg Turing machines, undecidability 7/26

Configurations (definition, notation)

For M :=(Q,%,T,6, qo, F), what's going on is described by
@ the current state
@ the contents of all tapes
@ the position of all its heads
(q, (wa,...,wg), (p1,--- ,pk)) where g€ Q,w; €I, p;e N

where [* denotes words over alphabet I

Start configuration on input w: (qo, (w,¢,...,¢),(0,...,0))

where ¢ denotes empty word

Stop (or, halt) configuration:
Configuration (q, (wa,...,wk),(p1,... ,pk)) such that g € F.

Paul Goldberg Turing machines, undecidability 8/26

@ Ctp C'if M can change from configuration C to

Notation: C' in one step.

e Ct3, C'if M can change from configuration C to
C’ in arbitrarily many steps.

Computation

@ Ctyp C'if M can change from configuration C to

Notation: C’ in one step.

e Ct3, C'if M can change from configuration C to

C’ in arbitrarily many steps.
The computation of a TM M on input w € ¥* is either

@ an infinite sequence Co Fpy Gy Fpy G, ... of configurations, or
@ a finite sequence Co Fp Gi by G-+ -y G,
In the latter case we say that M halts on input w.
Notation: Tp(w) :=n number of steps upon input w.
C,: stop configuration Co: start config of M on input w.

Paul Goldberg Turing machines, undecidability 9/26

Computation

@ Ctyp C'if M can change from configuration C to

Notation: C’ in one step.

e Ct3, C'if M can change from configuration C to

C’ in arbitrarily many steps.
The computation of a TM M on input w € ¥* is either

@ an infinite sequence Co Fpy Gy Fpy G, ... of configurations, or
@ a finite sequence Co Fp Gi by G-+ -y G,
In the latter case we say that M halts on input w.
Notation: Tp(w) :=n number of steps upon input w.
C,: stop configuration Co: start config of M on input w.

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(qa(le"'vWk*lao)v(plv"'vpk)) with qe F.

Paul Goldberg Turing machines, undecidability 9/26

Run-time of a TM

Let M be a Turing machine with alphabet -
f:r -3
g:N—>N
M computes f in time g(n) if for every w € ¥* M halts on input
w after at most g(|w|) steps with f(w) on its output (last) tape.

(i.e. Tm(w) < g(lwl))

Paul Goldberg Turing machines, undecidability 10 /26

Example (TM as transducer)

The following 2-tape Turing machine

M = ({qu a1, Qf}, {37 b}7 {37 b, D}v 9, qo, {qf})

where

(a0, (%), (%), (g)- %)

(a0, (%), (%), (o) %)

) (o (9. () o
) (@) () (7))
(a1 (%), (5), (1) 1)

(a1, (), (). o). ar)

computes the reverse-function reverse(ay ...ap) :== ap...a1 in

time g(n) =2n+2 = O(n).
For various alternative definitions of TM, including changes to
alphabet, runtimes needed are polynomially related.

Paul Goldberg Turing machines, undecidability 11/26

Decision problems as languages; Turing acceptors

Example

Travelling Salesman Problem (TSP): Given pairwise distances
between cities, we ask for the shortest tour, or the length of the
shortest tour

Decision version: given the pairwise distances and a number k, is
there a tour of length at most k7?7

General point: ability to solve the decision version is “good
enough” (why?).

For decision problem D, L£(D) denotes the yes-instances of D
(needs an agreed-on encoding).

TM M solves a decision problem if the language accepted by M
(M as a language acceptor) is the yes-instances of the decision
problem.

Paul Goldberg Turing machines, undecidability 12 /26

Recall: decidable languages

Definition/notation

The language £(M) C X* accepted by a Turing acceptor
M :=(Q,%,T,4, qo, F) is defined as

{w € X*: M accepts w}.

(Note that we do not require M to halt on rejected inputs.)

A language £ C ¥* is recursively enumerable, if there is an
acceptor M such that £ = L(M).

A language £ C X* is decidable (or, “recursive”) if there is an
acceptor M such that for all w € ¥*:

we L = M halts on input w in an accepting state
w¢& L = M halts on input w in a rejecting state

Paul Goldberg Turing machines, undecidability 13/26

Decidable and Enumerable Languages

Recall:
@ If a language L is decidable then it is recursively enumerable

@ If £ and X*\ L are recursively enumerable then L is decidable.

all lan-
guages

Paul Goldberg Turing machines, undecidability 14 /26

Decidable and Enumerable Languages

Recall:
@ If a language L is decidable then it is recursively enumerable

@ If £ and X*\ L are recursively enumerable then L is decidable.

all lan-
guages

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable

Paul Goldberg Turing machines, undecidability 14 /26

Problems as languages

Main points:
@ decision problems viewed as language recognition problems

We can use “decision problem” and “language”
interchangeably

e We're allowed to be vague about encoding of problems (e.g.
CLIQUE, TSP) — we will see that details of encoding don’t
affect the problem classifications of interest. Details of
alphabet also unimportant (but unary alphabet is too big a
restriction!). (“standard encoding”, should be sensible.)

Paul Goldberg Turing machines, undecidability 15/26

Undecidable Languages

Aim of this section
@ Recursion theory — a brief reminder

@ 2 techniques: diagonalisation and reductions — variants
appear in complexity-theory classification of problems

A counting argument (sketch):
@ The number of Turing machines is infinite but countable

@ The number of different languages is infinite but uncountable;
diagonalisation

@ Therefore, there are “more” languages than Turing machines

It follows that there are languages that are not decidable.
Indeed some aren’t even semi-decidable.

Paul Goldberg Turing machines, undecidability 16 / 26

The Halting Problem

previous argument shows that there are undecidable languages.

Can we find a concrete example?

Halting problem (HALT)

Input: A Turing machine M and an input string w
Question: Does M halt on w?

Again, undecidability of HALT is proved by diagonalisation:
consider effective listing of TMs, new TM that differs from all in
listing

details in e.g. Sipser Chapter 4.2

Paul Goldberg Turing machines, undecidability 17 /26

Classification of Languages

Definition. A language £ C ¥* is co-recursively enumerable, or
co-r.e., if ¥*\ L is recursively enumerable.

Example: L(HALT) is co-r.e (but not r.e.).

All languages

decidable

Looking ahead, relationship between NP and co-NP is more
complicated...

Paul Goldberg Turing machines, undecidability 18 /26

Reductions

A major tool in analysing and classifying problems is the idea of
“reducing one problem to another”

As you expect — or have already seen — use undecidability of
HALT to prove undecidability of variants, e.g. TM acceptance

problem.

@ Informally, a problem A is reducible to a problem B if we can
use methods to solve B in order to solve A.

@ We want to capture the idea, that A is "no harder” than B.

(as we can use B to solve A.)

Paul Goldberg Turing machines, undecidability 19/26

Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <7 B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Paul Goldberg Turing machines, undecidability

20/26

Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A <7 B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

~» Many-One Reductions (Sipser: “mapping reduction”) are
more informative: A <t BB relates (un)decidability of problems;
use A <., B (next slide) to find out if a problem (or its
complement) is recursively enumerable.

Paul Goldberg Turing machines, undecidability 20/26

Many-One Reductions

Definition. A language A is many-one reducible to a language B if
there exists a computable function f such that for all w € ©*:

xeAd < f(x)eB.
We write A <,,, B.

Observation 1. If A <,, B and B is decidable, then so is A.

Proof. A many-one reduction is a Turing reduction, so it inherits
that functionality

Observation 2. If A <., B and B is recursively enumerable, then so

is A.

Many-one reductions can classify problems into:
decidable/r.e./co-r.e/neither. J

Paul Goldberg Turing machines, undecidability 21/26

Properties of Many-One Reductions

Q@ <,, is reflexive and transitive
(if A <, Band B <, C then A <,, C, by composition of
functions.)
@ If A is decidable and B is any language apart from () and X*,
then A <., B.
As B # () and B # ¥* there are w, € B and w, ¢ B.
w, ifweAd

For w € ©*, define f(w) := _
w, ifwgA

Hence, many-one reductions are too crude to distinguish between
decidable problems. later: “smarter” reductions

Paul Goldberg Turing machines, undecidability 22/26

Examples of Many-One Reductions

We will show the following chain of reductions:
HALT <,, e-HALT <,, EQUIVALENCE

e-HALT: Does M halt on the empty input?
EQUIVALENCE: L(M) = L(M')?

Hence, all these problems are undecidable.

Paul Goldberg Turing machines, undecidability

23 /26

HALT <,, e-HALT

Proof.
Define function f such that w € HALT <= f(w) € e-HALT

For w := (M, v) compute the following Turing machine M,, :
© Write v onto the input tape.

@ Simulate M.
Clearly, M,, accepts the empty word if, and only if, M accepts v.

Let M, be a TM that does not halt on the empty input.
My, if w=(M,v)
M, if w is not of the correct input form !

Define f(w) := {

li.e. doesn’'t encode a TM with word
Paul Goldberg Turing machines, undecidability 24 /26

e-HALT <,, EQUIVALENCE

Proof.
Define f such that w € e-HALT <= f(w) € EQUIVALENCE
Let M, be a Turing machine that accepts all inputs.

For a TM M compute the following Turing machine M* :
©@ Run M on the empty input
@ If M halts, accept.

M* is equivalent to M, if, and only if, M halts on the empty input.

Define
(M), (Ma)) if w= (M)

w, (M3)) if w is not of the correct input form

Paul Goldberg Turing machines, undecidability 25/26

Decidable and Enumerable Languages

All languages

decidable

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.
The work of Turing, Church, Post, ... pre-dated modern
computational machinery.

Complexity Theory:
Look at the fine structure of decidable languages.

Paul Goldberg Turing machines, undecidability 26 /26

