Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Measuring Complexity

Our general interest: detailed classification of decidable languages.

Goal: Classify languages according to the amount of resources
needed to solve them.

Resources: In this lecture we will primarily consider

@ time — the running time of algorithms (steps on a Turing
machine)

@ space — the amount of additional memory needed
(cells on the Turing tapes)

Next: basic complexity classes, polynomial-time reductions

Paul Goldberg Deterministic complexity classes 2/22

Measuring Complexity

Definition.
Let M be a Turing acceptor and let S, T : N — N be functions.

@ M is T-time bounded if it halts on every input w € ¥* after
< T(|w|) steps.

@ M is S-space bounded if it halts on every input w € ¥* using
< 5(|wl|) cells on its tapes.
(Here we assume that the Turing machines have a separate
input tape that we do not count in measuring space
complexity.)

Paul Goldberg Deterministic complexity classes 3/22

Deterministic Complexity Classes

Definition.
Let T,S : N — N be monotone increasing functions. Define
@ DTIME(T) as the class of languages L for which there is a
T-time bounded k-tape Turing acceptor deciding £, for some
k> 1
@ DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding £, k > 1.

Paul Goldberg Deterministic complexity classes 4/22

Deterministic Complexity Classes

Definition.
Let T,S : N — N be monotone increasing functions. Define
@ DTIME(T) as the class of languages L for which there is a
T-time bounded k-tape Turing acceptor deciding £, for some
k>1.
@ DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding £, k > 1.

Important Complexity Classes:
@ Time classes:

o P (or PTIME) := Uy DTIME(n?) polynomial time
o EXP := Uyen DTIME(2”d) exponential time
o 2-EXP = |,y DTIME(22") double exp time

@ Space classes:
o LOGSPACE := |,y DSPACE(d log n)
o PSPACE := |J,_, DSPACE(n)

o EXPSPACE := J . DSPACE(2"")

Paul Goldberg Deterministic complexity classes 4/22

Do these classes depend on exact def of “Turing machine”?

But wait...

Do these classes depend on exact def of “Turing machine”?

Yes, for DTIME(T), DSPACE(S);
No for the others

Indeed, usually don’t need to refer explicitly to “Turing machine”.
But watch out for nondeterminism (details later)

Paul Goldberg Deterministic complexity classes 5/22

Time Complexity Classes

Important Time Complexity Classes:

o P :=J ey DTIME(n?) polynomial time

o EXP := {J oy DTIME(2™) exponential time
Not quite so important:

o 2.EXP = J . DTIME(22") double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

PCEXPC2EXPC.-.--Ci-EXPC...

Paul Goldberg Deterministic complexity classes

6/22

Time Complexity Classes

Important Time Complexity Classes:

o P :=J ey DTIME(n?) polynomial time

o EXP := {J oy DTIME(2™) exponential time
Not quite so important:

o 2.EXP = J . DTIME(22") double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:
PCEXPC2EXPC..-Ci-EXPC...
Alternative definition/notation:

P := DTIME(n°W)

Paul Goldberg Deterministic complexity classes 6/22

Linear Speed-Up

Theorem. (Linear Speed-Up Theorem)
Let k >1and c >0 T:N—N LCY*bea
language.
If £ can be decided by a T(n) time-bounded k-tape TM
M = (Q,Z, I_7 q0757 F)

then £ can be decided by a (1 - T(n) + n + 2) time-bounded
k-tape TM

M* = (Q, X, I, q4, 0, F).

Paul Goldberg Deterministic complexity classes 7/22

Linear Speed-Up

Proof idea. Let [:= ¥ UT* where s := 6¢. To construct M*:
Step 1: Compress M'’s input.
Copy (in n+ 2 steps) the input onto tape 2, compressing s symbols
into one (i.e., each symbol corresponds to an s-tuple from I'*)
Step 2: Simulate M's computation, s steps at once.

@ Read (in 4 steps) symbols to the left, right and the current
position
and “store” (using |@ x {1,...,s}¥ x 3| extra states).

@ Simulate (in 2 steps) the next s steps of M (as M can only
modify the current position and one of its neighbours)

© M* accepts (rejects) if M accepts (rejects)

(see Papadimitriou Thm 2.2, page 32)

Paul Goldberg Deterministic complexity classes 8/22

A Hierarchy of Complexity Classes?

Questions we will study:
@ Can we always solve more problems if we have more resources?

@ If not, how much more resources do we need to be able to
solve strictly more problems?

How do the complexity classes relate to each other?

@ How do we show that some problem is in one of these classes
but not in another?

Are there any other interesting models of computation?

o Non-deterministic computation
e Randomised algorithms

Next: robustness of P

Paul Goldberg Deterministic complexity classes 9/22

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

@ the exact computation-model we are using,

@ or how we encode the input (within reason).

Paul Goldberg Deterministic complexity classes 10 /22

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

@ the exact computation-model we are using,

@ or how we encode the input (within reason).

Different Models of Computation:

© We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t? steps.

© We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

© We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Paul Goldberg Deterministic complexity classes 10 /22

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

@ the exact computation-model we are using,

@ or how we encode the input (within reason).

Different Models of Computation:

© We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t? steps.

© We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

© We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Deterministic complexity classes 10 /22

Different Encodings

Observation.

@ For any n € N, the length of the encoding of n in base b; and
base b, are related by a constant factor, for all by, by > 2.
@ For any graph G, the length of its encoding as an
e adjacency matrix
e list of edges
e adjacency list
]

are all related by a polynomial factor.

Paul Goldberg Deterministic complexity classes 11/22

Different Encodings

Observation.

@ For any n € N, the length of the encoding of n in base b; and
base b, are related by a constant factor, for all by, by > 2.
@ For any graph G, the length of its encoding as an
e adjacency matrix
e list of edges
e adjacency list
]

are all related by a polynomial factor.

Consequence: (for problems on numbers, graphs) P is the same for
all these encoding (unlike linear time)

Paul Goldberg Deterministic complexity classes 11/22

Robustness of the definition of P

Strong Church-Turing Hypothesis

Any function which can be computed by any well-defined
procedure can be computed by a Turing machine with only
polynomial overhead.

(but doesn’t apply to quantum or randomised algorithms)

| also pointed out that “in P" corresponds well to existence of a
practical algorithm; problem is “tractable”

Paul Goldberg Deterministic complexity classes 12 /22

Growth Rate of Functions (Garey/Johnson

'79)

Size n
Time
complexity 10 20 30 40 50 60
function
.00001 .00002 .00003 .00004 .00005 .00006
n second | second second second second second
2 .0001 .0004 .0009 .0016 .0025 .0036
n second | second second second second second
3 .001 .008 .027 .064 125 216
second | second second second second second
5 B 3.2 243 1.7 5.2 “13.0
second | seconds | seconds | minutes minutes minutes
on .001 1.0 17.9 12.7 357 366
second | second | minutes days years centuries
3n 059 58 6.5 3855 2x108 1.3x10%
second | minutes years centuries | centuries | centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity

functiane

Paul Goldberg

Deterministic complexity classes

13/22

Proving a problem is in P

Good news: proofs of “in P" are often cleaner than detailed
runtime analysis;

“in P" less specific than, e.g. “in DTIME(n?)"; some technical
details are avoided

@ The most direct way to show that a problem is in P is to
exhibit a polynomial time algorithm that solves it.

@ Even a naive polynomial-time algorithm often provides a good
insight into how the problem can be solved efficiently.

@ Because of robustness, we do not generally need to specify all
the details of the machine model or the encoding.

~> pseudo-code is sufficient.

Paul Goldberg Deterministic complexity classes 14 /22

Example: Satisfiability

Some of the most important problems concern logical formulae

Recall propositional logic
Formulae of propositional logic are built up inductively
@ Variables: X; ieN

@ Boolean connectives:
If ¢, are propositional formulae then so are
° (YVe)
°o (Y Ay)
-] —\(,D

Example:
(X1 V Xo V —\X5) A (—|X2 V =Xy V —|X5) A (X2 VvV X3V X4)

Paul Goldberg Deterministic complexity classes 15/22

Conjunctive Normal Form

Formula ¢ is in conjunctive normal form (CNF) if
p:=CGA--NCp

where each C; is a clause, that is, a disjunction of literals
Ci:=(LaVv---VLyg)

A literal is a variable X; or a negated variable —.X;

k-CNF: CNF ¢ with at most k literals per clause.

3-CNF example:
(X1 VXoV=Xs) A (=XoV—=Xy) A (XoV X3V Xe) AXs

Paul Goldberg Deterministic complexity classes 16 /22

Conjunctive Normal Form

Formula ¢ is in conjunctive normal form (CNF) if
p:=CGA--NCp
where each C; is a clause, that is, a disjunction of literals
Ci:=(LaVv---VLyg)
A literal is a variable X; or a negated variable —.X;

k-CNF: CNF ¢ with at most k literals per clause.

3-CNF example:
(X1 VXoV=Xs) A (=XoV—=Xy) A (XoV X3V Xe) AXs

common CNF notation:
o= {{X1, X2, Xs}, {~X2,=Xa}, {Xo,X3,Xa}, {Xe}}

Paul Goldberg Deterministic complexity classes 16 /22

Satisfiability

Definition. A formula ¢ is satisfiable if there is a satisfying
assignment (a.k.a. model) for .

In the case of formulae in CNF:
An assignment 3 assigning values 0 or 1 to the variables of ¢ so
that every clause contains at least

@ one variable to which 3 assigns 1 or

@ one negated variable to which 3 assigns 0.

Example:
(X1 VXoV=Xs) A (mXaV =XV =Xs) A (XaV X3V Xa)

Satisfying assignment:
Xi—1 Xo—0 Xz—1 X4 —0 X5 —1

Paul Goldberg Deterministic complexity classes 17 /22

The Satisfiability Problem

In association with propositional formulae, the following two
problems are the most important:

SAT
Input: Propositional formula ¢ in CNF
Problem: s ¢ satisfiable?

k-SAT
Input: Propositional formula ¢ in k-CNF
Problem: Is ¢ satisfiable?

(Let us also note CIRCUIT SAT: given a circuit with n inputs, one
output, can we set input values to get output=TRUE?)

Paul Goldberg Deterministic complexity classes 18 /22

2-SAT isin P

Proof. The following algorithm solves the problem in poly time.

Let ¢ be the input formula

Repeat
If ¢ contains clauses {X} and {—=X}, halt and output “no";
If ¢ contains clauses {X} and {—=X, Y}, add clause {Y};
If ¢ contains clauses {X, Y} {=X,Z}, add clause {Y, Z};
Any clause {X, X} simplifies to {X}

Output “yes”.

Paul Goldberg Deterministic complexity classes 19 /22

2-SAT isin P

Proof. The following algorithm solves the problem in poly time.

Let ¢ be the input formula

Repeat
If ¢ contains clauses {X} and {—=X}, halt and output “no";
If ¢ contains clauses {X} and {—=X, Y}, add clause {Y};
If ¢ contains clauses {X, Y} {=X,Z}, add clause {Y, Z};
Any clause {X, X} simplifies to {X}

Output “yes”.

Poly-time:
e there are O(n?) iterations.
@ Each “if" test searches for O(n?) items in ¢
@ Each search is linear in length of ¢

above analysis is crude but does the job.

Paul Goldberg Deterministic complexity classes 19 /22

Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in P.

Definition. A language £1 C ¥* is polynomially reducible to
Ly € ¥*, denoted L1 <, Ly, if there is a polynomial-time
computable function f such that for all w € ¥*

w e L = f(w) € Ls.

Paul Goldberg Deterministic complexity classes 20/22

Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in P.

Definition. A language £1 C ¥* is polynomially reducible to
Ly € ¥*, denoted L1 <, Ly, if there is a polynomial-time
computable function f such that for all w € ¥*

we L — f(w) € Ls.

Lemmea. If L1 <, L and L, € P then £; € P.

Proof idea. The sum and composition of polynomials is a
polynomial.

Generally, members of P can be poly-time reduced to each other.

Paul Goldberg Deterministic complexity classes 20/22

Example: Colourability

Vertex Colouring:
A vertex colouring of G with k colours is a function

¢ V(G) — {1,... k)

such that adjacent nodes have different colours
i.e. {u,v} e E(G) implies c(u) # c(v)

k-COLOURABILITY
Input: Graph G, ke N
Problem: Does G have a vertex colouring
with k colours?

For k = 2 this is the same as BIPARTITE.

Paul Goldberg Deterministic complexity classes

21/22

A reduction to 3-SAT

Lemma. k-COLOURABILITY <, 3-SAT

Proof.
Introduce X, . to represent “in a solution, v gets colour c".

clauses impose constraints, e.g. X, = =X, (or rather,
KXve V _‘ch’)

Xve = =X, for (v, V') any edge
X1V X2 V...V Xy for each v

can replace e.g. X,1V Xy2 V Xy3V X4 with X,1 V X2 V Xpew and
“Xnew V Xv3 \ Xv4

Reducible to 2-SaT 77

Paul Goldberg Deterministic complexity classes 22/22

