Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Nondeterministic Turing Machines

Definition.
A non-deterministic (1-tape) Turing machine is a 6-tuple
(Q,X,I,A, qo, F) where
@ Q is a finite set of states
@ 2 is a finite alphabet of symbols
I O XU {} is a finite alphabet of symbols
AC(Q\F)xTxQxTlx{-1,0,1} transition relation
go € Q is the initial state
F C Q is a set of final states

As before, we assume ¥ :={0,1} and [:= %X U {(J}.
The computation of a non-deterministic Turing machine

M= (Q,X,T,A, qo, F) on input w is a “computation tree"
analogy with NFA, (N)PDA

Paul Goldberg nondeterminism, Cook-Levin 2/27

Non-Deterministic Turing Acceptor

Computation path:
Any path from the start configuration to a stop configuration in
the configuration tree.

accepting path: the stop configuration is in an accepting state.
(also called an accepting run)

rejecting path otherwise
Language accepted by an NTM M:
L(M) :={w € L*: there exists an accepting path of M on w}

Simulation: Variants of definition of NTM can be simulated with
polynomial (runtime) overhead.
Can also simulate with deterministic TM, but not in poly-time

Paul Goldberg nondeterminism, Cook-Levin 3/27

From P to NP

NP: languages accepted by NTM in polynomially-many steps;
equivalently, decision problems whose yes-instances are accepted by
(poly-time) NTM

o e.g. 3-SAT, 3-COLOURABILITY, TSP, SAT, etc

@ No polynomial time algorithms for these problems are known

@ but are in NP

“Guess and test”: generic NP algorithm. As for P, pseudocode
algorithms are convenient, but don't forget underlying TM model

Paul Goldberg nondeterminism, Cook-Levin 4/27

Non-Deterministic Complexity Classes

@ Time classes:
o NP (a.ka. NPTIME) := |, NTIME(n?)
o NEXPTIME := [J, NTIME(2"")

@ Space classes:

o NLOGSPACE := |J oy NSPACE(d log n)
o NPSPACE := |,y NSPACE(n)

o NEXPSPACE := |, NSPACE(2"")

where NTIME(T) (etc.) means what you think it means. Note
that all accepting/non-accepting computations of a NTIME(T)
TM should have length at most T

Paul Goldberg nondeterminism, Cook-Levin 5/27

Non-Deterministic Complexity Classes

@ Time classes:
o NP (a.ka. NPTIME) := |, NTIME(n?)
o NEXPTIME := [J, NTIME(2"")

@ Space classes:

o NLOGSPACE := |J oy NSPACE(d log n)
o NPSPACE := |,y NSPACE(n)

o NEXPSPACE := |, NSPACE(2"")

where NTIME(T) (etc.) means what you think it means. Note
that all accepting/non-accepting computations of a NTIME(T)
TM should have length at most T

We have:
P C NP C PSPACE C NPSPACE C EXP

(hierarchy: sort-of good news)

Paul Goldberg nondeterminism, Cook-Levin 5/27

More Examples of Problems in NP

COMPOSITE (NoN-pPRIME) NUMBER
Input: A positive integer n > 1
Question: Are there integers u, v > 1 such that u-v = n?

SUBSET SUM
Input: A collection of positive integers
S:={a1,...,ax} and a target integer t.
Question: s there a subset T C S such that Za;eT aj = t?

Paul Goldberg nondeterminism, Cook-Levin 6/27

Deterministic vs. Non-Deterministic Time

Clearly, PCNP.

. : ? . .
Question: The question P = NP is among the most important open
problems in computer science and mathematics.

@ It is equivalent to determining whether or not the existence of
a short solution guarantees an efficient way of finding it.

@ Most people are convinced that P # NP
But after ~50 years of effort there is still no proof.

@ Resolving the question (either way) would win a prize of $1
million — see
http://www.claymath.org/millennium-problems/

Paul Goldberg nondeterminism, Cook-Levin 7/27

http://www.claymath.org/millennium-problems/

poly-time reductions amongst NP problems

Recall polynomial-time reduction.
o A<, B: “Ais poly-time reducible to B": B is (in a sense) at
least as hard as A

o If we have A <, B and B <, A, we can say A and B are
“inter-reducible”, or “polynomial-time equivalent

@ Equivalence classes are partially ordered by the reduction
relation.

@ Problems in the maximal class are called complete for NP (we
will see that there is indeed a maximal class!)

Paul Goldberg nondeterminism, Cook-Levin 8/27

NP-Hardness and NP-Completeness

Definition.

@ A language H is NP-hard, if £ <, H for every language
L € NP.

@ A language C is NP-complete, if C is NP-hard and C € NP.

NP-Completeness:
@ NP-complete problems are the hardest problems in NP.

@ They are all equally difficult — an efficient solution to one
would solve them all.

Lemmea. If £ is NP-hard and £ <, L', then L' is NP-hard as well.

Paul Goldberg nondeterminism, Cook-Levin 9/27

Proving NP-Completeness

To show that £ is NP-complete, we must show that every
language in NP can be reduced to £ in polynomial time.

But if we know one NP-complete language C, we can show that
another language £’ is NP-complete just by showing that

e C <, L
e L' e NP

Hence: The problem is to find the first one (c.f. undecidable
problems)

~» Next: the Cook-Levin Theorem

Paul Goldberg nondeterminism, Cook-Levin 10 /27

2 problems involving propositional logic

@ Given a formula ¢ on variables xi, ... x,, and values for those
variables, derive the value of ¢ — easy!

@ Search for values for xi, ..., x, that make ¢ evaluate to
TRUE — naive algorithm is exponential: 2" vectors of truth

assignments.
\~
I aé\

Cook's Theorem (1971) P vs NP Problem
or, Cook-Levin Theorem

Suppose that yc
accommodatiol
university stud:
hundred of the
dormitory. Toct

The second of these, called
SAT, is NP-complete.

provided you w
students, and r¢
appear in your {
‘what computer

Stephen Cook, Leonid Levin

Paul Goldberg nondeterminism, Cook-Levin 11/27

The challenge of solving boolean formulae

(side note:)

There's a HUGE theory literature on the computational challenge
of solving various classes of syntactically restricted classes of
boolean formulae, also circuits.

Likewise much has been written about their relative expressive
power

SAT-solver: software that solves input instances of SAT — OK, so
it's worst-case exponential, but aim to solve instances that arise in
practice.

@ “truth table” approach: clearly exponential

@ DPLL algorithm; resolution: worst-case exponential, often fast
in practice

Next: proof of Cook-Levin, then NP in terms of
certificates, verifiers; co-NP

Paul Goldberg nondeterminism, Cook-Levin 12 /27

Reducing an NP problem to SAT

Goal: fixing non-deterministic TM M, integer k, given w create in
poly-time a propositional formula CodesAcceptRuny(w) that is
satisfied by assignments that code an n* length accepting run of
M on w (where n = |w|)

Idea: introduce propositional variables
@ HasSymbol; j(a) : “at time i, tape has letter a at location j”

@ HasHead; j(q) : “at time i, TM is in location j, state q"

We'll assume M has “stay put” transitions for which it can change
tape contents; R and L moves don't change tape. Assume also
that to accept, M goes to LHS of tape and prints special symbol.

Paul Goldberg nondeterminism, Cook-Levin 13 /27

M has a “configuration table”

This corresponds to a
run where
Tape space j HasSymboh,1(w1)

)) Lk HasHead:,1(qo)
ot &t
o 5 " W b,1(wy
Time i . 1 (g1, w2) HasSymbob »(w»)
HasHead> >(q1)

...are true
(Others, e.g.

'k HasHead: »(qo) are
n false)

Idea: the search for “correct” non-deterministic choices for M
shall correspond to search for satisfying assignment for
CodesAcceptRuny(w).

CodesAcceptRuny(w) shall be a conjunction of clauses.

Paul Goldberg nondeterminism, Cook-Levin 14 /27

Getting started

To write the formula CodesAcceptRuny(w), let's start by
writing:
HasSymboly j(w;)

for each j = 1,...,|w|, where w; is the j-th letter of input w, also
—HasSymbol, j(a)
for any a where a is not the j-th letter of w.

Similarly
HasHead\ 1(qo)

says M is in state qg at time 1, location 1. Add a bunch of
negated “HasHead"” variables.

Paul Goldberg nondeterminism, Cook-Levin 15 /27

Include the following:
HasHead; j(q) = —HasHead; j/(q')

...for all states g, ¢, for all i,/, ;" with j # j'.

Moving head clauses: leftward-moving State

Leftward moving state. If M has transition rule
(g,a) = {(q1,a,L),(go2,a, L)} then we write:

HasHead;J(q) = [HasHead;+1J_1(q1) V HasHead,-HJ_l(qg)]

Write the above for all i,j € {1,2,3,...,n*}.

Tape space
j—1 j .. pk
1
Time)
j Wy (9,a)
i+1 (g1/q2, m2) a
nk

Paul Goldberg

nondeterminism, Cook-Levin 17 /27

Moving head clauses: Rightward-moving State or
Leftward-moving State

For every rightward or leftward state g, for every a we add the
clause:

HasSymbol; j(a) A HasHead; j(q) = HasSymbol;1 j(a)

meaning: if the head is at place j at step / and we are in a
rightward- or leftward moving state, symbol in place j at step i + 1

is the same.
Tape space
1 j nk
1
Time i (g,a) Wo
i+1 a (g1, w2)
nk

Paul Goldberg nondeterminism, Cook-Levin 18 /27

Moving head clauses: stay-same-place state

For every stay-and-write state g, if we have (say) transition
(g, wo) — {(q1, w1, Stay), (g2, w1, Stay)} then we add:

HasSymbol; j(wo) A HasHead; j(q) = HasSymbol; 1 j(w1)
(new symbol is written) and also:
HasHead; j(q) = [HasHead; 1 (q1) V HasHead; ;1 j(q2)]

(head does not move, although state may change)

1 ... j cee ...k
1
i (qWO)
i+1 (g1, w1)
nk

Paul Goldberg nondeterminism, Cook-Levin 19/27

More sub-formulae for Transitions: away from head clauses

Clauses stating that if the head is not close to place j at time i,
then symbol in place j is unchanged in the next time.

For any state g and symbol ws, any i < n, and number hin a
certain range we have

HasHead; j(q) A HasSymbol; jpn(w3) = HasSymbol;1 jin(w3)

If g is a rightward-moving state, do this for nk —j>h>2and
—-(-1)<h<o0

If g is a leftward-moving state do this for nk —j>h>1and
—-(-1)<h<-1

If g is a stay put state, do this for h # 0

1 .- j oo j4+h - ¥
1
i (q,wo) -+ w3
i+1 (qr,wi) -+ ws
p

Paul Goldberg nondeterminism, Cook-Levin 20/27

Reducing an NP problem to SAT (conclusion)

Final configuration clause: let’s assume that whenever M accepts,
it accepts at LHS of tape and prints special symbol [J there

HasSymbol,« 1(0) A HasHead,x 1(qaccept)

At time n*, head is at the beginning and state is accepting with

special termination symbol
1 ..k

1 qo Wi wo

n (qaccepta D)

Paul Goldberg nondeterminism, Cook-Levin 21/27

Proof of the construction (overview, not details)

We started with M, w, constructed formula
CodesAcceptRuny,(w). Two items to establish:
e CodesAcceptRun,(w) is constructed in polynomial time

e CodesAcceptRuny,(w) is satisfiable iff M accepts w

For the first item, as | pointed out, many clauses were added, but
polynomially-many. (large polynomial blow-up may be
counter-intuitive)

For the second, the main point is that an accepting run gives rise
to a satisfying assignment of the formula (and vice versa) in a
direct way, according to our understanding of what the HasHead
and HasSymbol variables mean, for runs of M.

Paul Goldberg nondeterminism, Cook-Levin 22/27

Certificates

Every yes-instance of such problems has a short and easily
checkable certificate that proves it is a yes-instance.

@ SAT — a satisfying assignment
@ k-COLOURABILITY — a k-colouring
o HAMILTONIAN CIRCUIT — a Hamiltonian circuit

e TSP (decision-problem version) — a round trip (i.e.
permutation)

Paul Goldberg nondeterminism, Cook-Levin 23 /27

Verifiers

Definition.

@ A Turing acceptor M which halts on all inputs is called a
verifier for language L if

L ={w : M accepts (w, c) for some string c}
The string c is called a certificate (or witness) for w.

@ A polynomial time verifier for £ is a polynomially time
bounded Turing acceptor M such that

L ={w : M accepts (w, c) for some string ¢ with |c| < p(|w])}
for some fixed polynomial p(n).

All problems for the previous slide have verifiers that run in
polynomial time.

Paul Goldberg nondeterminism, Cook-Levin 24 /27

Equivalent definition of NP

The class of languages that have polynomial-time verifiers

Examples.
@ SAT isin NP
For any formula that can be satisfied, the satisfying
assignment can be used as a certificate.

It can be verified in polynomial time that the assignment
satisfies the formula.

@ k-COLOURABILITY is in NP

For any graph that can be coloured, the colouring can be used
as a certificate.

It can be verified in polynomial time that the colouring is a
proper colouring.

Paul Goldberg nondeterminism, Cook-Levin 25 /27

A Problem (probably) not in NP

NO HAMILTONIAN CYCLE
Input: A graph G
Question: s it true that G has no Hamiltonian cycle?

Note. Whereas it is easy to certify that a graph has a Hamiltonian
cycle, there does not seem to be a (general purpose) certificate
that it has not.

co-NP

co-NP problem: complement of an NP problem

In a co-NP problem, no-instances have (concise) certificates
Believed that NP is not equal to co-NP

The following result justifies guess and test approach to
establishing membership of NP:

Paul Goldberg nondeterminism, Cook-Levin 26 /27

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates

Proof. Suppose L € NP.
Hence, there is an NTM M such that

w € L <= there is an accepting run of M of length < n*

for some k. This path can be used as a certificate for w

(A DTM can check in polynomial time that a candidate for a
certificate is a valid accepting computation path.)

Paul Goldberg nondeterminism, Cook-Levin 27 /27

NP as languages having concise certificates

Theorem. NP as just defined, is languages having concise certificates

Proof. Suppose L € NP.
Hence, there is an NTM M such that

w € L <= there is an accepting run of M of length < n*
for some k. This path can be used as a certificate for w

(A DTM can check in polynomial time that a candidate for a
certificate is a valid accepting computation path.)

Conversely: If £ has a polynomial-time verifier M, say of length at
most nk,
then we can construct an NTM M* deciding L as follows:

@ M* guesses a string of length < n¥

@ M* checks in deterministic polynomial-time if this is a
certificate.

Paul Goldberg nondeterminism, Cook-Levin 27 /27

