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NP-Completeness Proofs

To prove that a problem X" is NP-complete, we now just have to
perform two steps:

@ Show that X € NP

@ Find a known NP-complete problem X’ and reduce X’ <, X.

Thousands of problem have now been shown to be NP-complete
(See Garey and Johnson for an early survey); Karp 1972,
“reducibility among combinatorial problems” kicked-off this work

A relevant quote

Proving NP-completeness results is an important ingredient of our
methodology for studying computational problems. It is also
something of an art form.

start of chapter 9 of Papadimitriou’s textbook
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NP-Completeness Proofs

Coming up next: some examples.

CNF-SAT<,3-SAT (BTW, goes back to Cook’s paper)

{X17X27 000 7Xn} = {X17X27Xnew}7 {_‘XneW7X37 000 7Xn}
repeat until clause lengths < 3

3-SAT is a more convenient starting-point of reductions than
unrestricted SAT.

3-SAT<,INTEGER PROGRAMMING (simple but important)
3-SAT<,IND SET<,CLIQUE

3-SAT<,DIRECTED HAMILTONIAN PATH
3-SAT<,SUBSET SUM<,KNAPSACK
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NP-Completeness of INTEGER PROGRAMMING

IP: Input: a set of linear constraints, Question: can we satisfy
them with integer values?

3-SAT<,IP

X; in 3-SAT instance — x; in IP instance.

Vi, include constraints 0 < x; <1

(idea: 0 means F, 1 means T)

{X,',Xj,Xk} = X+ X+ X 2 1

{X,',ﬁXj,Xk} ’—)X,'—I—(]. —><J')+Xk >1

and similarly for more than one negated literal

Example

{{X17X27X3},{—|X1,—\X2,X4}}

is reduced to the following IP:
0§X1§1,0§X2§1

xitx2+x3>1 (L—x1)+(1-—x)+x>1
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NP-Completeness of CLIQUE

CLIQUE: Given G, k, does G contain a clique of order > k7

Theorem
CLIQUE is NP-complete.

It's convenient to reduce from 3-SAT to IND SET and from there
to CLIQUE.

3-SAT<,IND SET: each clause of a 3-SAT instance becomes a
triangle in the graph. Label vertices with the literals.

If the formula had m clauses, the graph now has 3m vertices. Is
there an independent set of size m?

(idea: choice of vertex in each triangle corresponds to choice of
literal that gets satisfied)

Add new edges between any pair of vertices labelled by a variable
X; and its negation —.X;.
Any n-independent set corresponds to a satisfying assignment.
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DIRECTED HAMILTONIAN PATH
Input:  G: directed graph.
Problem: s there a directed path in G containing every
vertex exactly once?

DIRECTED HAMILTONIAN PATH is NP-complete l




NP-Completeness of DIRECTED HAMILTONIAN PATH

DIRECTED HAMILTONIAN PATH
Input:  G: directed graph.
Problem: s there a directed path in G containing every
vertex exactly once?

Theorem
DIRECTED HAMILTONIAN PATH is NP-complete J

Proof.
@ DIRECTED HAMILTONIAN PATH €NP.

Take the path to be the certificate.
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NP-Completeness of DIRECTED HAMILTONIAN PATH

DIRECTED HAMILTONIAN PATH
Input:  G: directed graph.
Problem: s there a directed path in G containing every
vertex exactly once?

Theorem
DIRECTED HAMILTONIAN PATH is NP-complete J

Proof.
@ DIRECTED HAMILTONIAN PATH €NP.

Take the path to be the certificate.

@ DIRECTED HAMILTONIAN PATH is NP-hard.

3-SATISFIABILITY <, DIRECTED HAMILTONIAN PATH

Paul Goldberg reductions 6/17



from 3-SAT to DIRECTED HAMILTONIAN PATH
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from 3-SAT to DIRECTED HAMILTONIAN PATH

&/VG-/@-
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Digression: how to design reductions

Show that problem X (Dir. HAMILTONIAN PATH) is NP-hard.

Which problem to reduce to X:

@ Arguably, the most important part is to decide where to start
from; e.g. which problem to reduce to DIRECTED
HAMILTONIAN PATH — something graph-theoretic?

o Considerations:

o Is there an NP-complete problem similar to X7
(E.g. CLIQUE and INDEPENDENT SET)
e It is not always beneficial to choose a problem of the same type
(E.g. reducing a graph problem to a graph problem)
o For instance, CLIQUE, INDEPENDENT SET are “local”
problems (is there a set of vertices inducing some structure)

@ Hamiltonian Path is a “global” problem
(find a structure containing all vertices)

How to design the reduction:

@ Does your problem come from an optimisation problem?
If so: a maximisation problem? a minimisation problem?
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NP-Completeness of SUBSET SUM

SUBSET SUM
Input: A collection of positive integers
S:={a1,...,ak} and a target integer t.
Problem: s there a subset T C S such that >, a; =t?

Theorem. SUBSET SUM is NP-complete

Proof.
@ SUBSET SuM € NP.

Take T to be the certificate.

@ SUBSET SUM is NP-hard.

CNF-SAT <, SUBSET SUM (example next slide)

Paul Goldberg reductions 10/17



Example

(X1 VXo VX3) A (X1 V=X) A (X VX5 V—=Xo V—X3)

X1 Xo X3 X4 X5 C1 G G5
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t =11111
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SAT <, SUBSET SUM (the general construction)

Given: p:= G A

-+ A Cg in conjunctive normal form.

(for numbers in base 10: at most 9 literals per clause)

Let Xi,...,
aj
tj:=ay...apcC1...cx where
G =
aj -
fi:=ay...anc1...Cx where
G-

Paul Goldberg

1l i
o =

[l o

t
{
{

reductions

X, be the variables in . For each X let

i=j
i #J
Xi occurs in C;

otherwise

i=j

i #J

—X; occurs in G

otherwise
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SAT <, SUBSET SUM (the general construction)

Further, for each clause C; take r := |C;| — 1 integers mj 1,...,mj ,

1 j=i
0 j#i

where m; j := ¢;...cx with ¢j := {

Definition of S: Let
5::{t,-,f,-:1§i§n}u{m,-7j:1§i§k, 1§j§’C,'|—1}

Target: Finally, choose as target
t:=ai...anC1...ck where 3; := 1 and ¢; := |C}]

Claim: Thereis T C S with >, a; = t iff ¢ is satisfiable.
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NP-Completeness of SUBSET SUM

Let o .= A G C;i: clauses
Show. If ¢ is satisfiable, then thereis T C S with 3 __ ;s =t.
Let B be a satisfying assigment for ¢
Set Ty := {t,':ﬁ(X,')Zl 1§i§m}U
{fi: B(Xi)=0 1<i<m}
Further, for each clause C; let r; be the number of satisfied literals
in C,'
(with resp. to 3).
SetT2::{m;J:1§i§k, 1§j§|C,"—I’,'}
and define T := T1 U T».

It follows: > ;s=1t
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NP-Completeness of SUBSET SUM

Show. If thereis T C S with ZseTs = t, then ¢ is satisfiable.

Let TCSsth. Y ;s=t

1 ifteT

Define B(X;) = {0 fEeT

This is well defined as for all i: t; € T or f; € T but not both.

Further, for each clause, there must be one literal set to 1 as for all
i, the m;; : mj; € S do not sum up to the number of literals in the
clause.
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NP-completeness of KNAPSACK

KNAPSACK
Input: A set | :=={1,...,n} of items
each of value v; and weight w; forl1 <i<n
target value t weight limit ¢
Problem: |s there T C | such that

® djervi>t
® D jerwi<{

Theorem. KNAPSACK is NP-complete
@ KNAPSACK € NP
Take T as certificate.
@ KNAPSACK is NP-hard
By reduction SUBSET SuM <, KNAPSACK
Key point: KNAPSACK is “more general/expressive” than SUBSET
SuM
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SUBSET SUM <, KNAPSACK (the details)

reminder: SUBSET SUM
Given: S:={a1,...,an} collection of positive integers

t target integer
Problem: s there a subset T C S such that Za’_eT aj =t?
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SUBSET SUM <, KNAPSACK (the details)

reminder: SUBSET SUM
Given: S:={a1,...,an} collection of positive integers

t target integer
Problem: s there a subset T C S such that Za’_GT aj =t?

Reduction: From this input to SUBSET SUM construct
o [ :={1,...,n} set of items
oV, =W, = g forall1<i<n

o target value t/ :=t weight limit ¢ :=t
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SUBSET SUM <, KNAPSACK (the details)

reminder: SUBSET SUM
Given: S:={a1,...,an} collection of positive integers
t target integer

Problem: s there a subset T C S such that Za’_GT aj =t?

Reduction: From this input to SUBSET SUM construct
o [ :={1,...,n} set of items
oV, =W, = g forall1<i<n
o target value t/ :=t weight limit ¢ :=t
Clearly: Forevery TC S
Dagerviztl =t
Z aj=t '

<~
aeT za,-eT Wi S £ =t

Hence: The reduction is correct and in polynomial time.
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