
Computational Complexity; slides 5, HT 2022
Reductions, NP-hardness

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg reductions 1 / 17

NP-Completeness Proofs

To prove that a problem X is NP-complete, we now just have to
perform two steps:

1 Show that X ∈ NP usually easy

2 Find a known NP-complete problem X ′ and reduce X ′ ≤p X .
the FUN part

Thousands of problem have now been shown to be NP-complete
(See Garey and Johnson for an early survey); Karp 1972,
“reducibility among combinatorial problems” kicked-off this work

A relevant quote

Proving NP-completeness results is an important ingredient of our
methodology for studying computational problems. It is also
something of an art form.

start of chapter 9 of Papadimitriou’s textbook

Paul Goldberg reductions 2 / 17

NP-Completeness Proofs

Coming up next: some examples.

CNF-SAT≤p3-SAT (BTW, goes back to Cook’s paper)

{X1,X2, . . . ,Xn} 7→ {X1,X2,Xnew}, {¬Xnew ,X3, . . . ,Xn}
repeat until clause lengths ≤ 3

3-SAT is a more convenient starting-point of reductions than
unrestricted SAT.

3-SAT≤pINTEGER PROGRAMMING (simple but important)
3-SAT≤pIND SET≤pCLIQUE
3-SAT≤pDIRECTED HAMILTONIAN PATH
3-SAT≤pSUBSET SUM≤pKNAPSACK

Paul Goldberg reductions 3 / 17

NP-Completeness of INTEGER PROGRAMMING

IP: Input: a set of linear constraints, Question: can we satisfy
them with integer values?
3-SAT≤pIP

Xi in 3-SAT instance 7→ xi in IP instance.

∀i , include constraints 0 ≤ xi ≤ 1
(idea: 0 means F, 1 means T)

{Xi ,Xj ,Xk} 7→ xi + xj + xk ≥ 1
{Xi ,¬Xj ,Xk} 7→ xi + (1− xj) + xk ≥ 1
and similarly for more than one negated literal

Example

{{X1,X2,X3}, {¬X1,¬X2,X4}}
is reduced to the following IP:
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1
x1 + x2 + x3 ≥ 1, (1− x1) + (1− x2) + x4 ≥ 1

Paul Goldberg reductions 4 / 17

NP-Completeness of CLIQUE

Clique: Given G , k, does G contain a clique of order ≥ k?

Theorem

Clique is NP-complete.

It’s convenient to reduce from 3-SAT to IND SET and from there
to Clique.

3-SAT≤pIND SET: each clause of a 3-SAT instance becomes a
triangle in the graph. Label vertices with the literals.
If the formula had m clauses, the graph now has 3m vertices. Is
there an independent set of size m?

(idea: choice of vertex in each triangle corresponds to choice of
literal that gets satisfied)

Add new edges between any pair of vertices labelled by a variable
Xi and its negation ¬Xi .
Any n-independent set corresponds to a satisfying assignment.

Paul Goldberg reductions 5 / 17

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G : directed graph.

Problem: Is there a directed path in G containing every
vertex exactly once?

Theorem

Directed Hamiltonian Path is NP-complete

Proof.

1 Directed Hamiltonian Path ∈NP.

Take the path to be the certificate.

2 Directed Hamiltonian Path is NP-hard.

3-Satisfiability ≤p Directed Hamiltonian Path

Paul Goldberg reductions 6 / 17

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G : directed graph.

Problem: Is there a directed path in G containing every
vertex exactly once?

Theorem

Directed Hamiltonian Path is NP-complete

Proof.

1 Directed Hamiltonian Path ∈NP.

Take the path to be the certificate.

2 Directed Hamiltonian Path is NP-hard.

3-Satisfiability ≤p Directed Hamiltonian Path

Paul Goldberg reductions 6 / 17

NP-Completeness of Directed Hamiltonian Path

Directed Hamiltonian Path
Input: G : directed graph.

Problem: Is there a directed path in G containing every
vertex exactly once?

Theorem

Directed Hamiltonian Path is NP-complete

Proof.

1 Directed Hamiltonian Path ∈NP.

Take the path to be the certificate.

2 Directed Hamiltonian Path is NP-hard.

3-Satisfiability ≤p Directed Hamiltonian Path

Paul Goldberg reductions 6 / 17

from 3-SAT to DIRECTED HAMILTONIAN PATH

Paul Goldberg reductions 7 / 17

from 3-SAT to DIRECTED HAMILTONIAN PATH

Paul Goldberg reductions 8 / 17

Digression: how to design reductions

Show that problem X (Dir. Hamiltonian Path) is NP-hard.

Which problem to reduce to X :

Arguably, the most important part is to decide where to start
from; e.g. which problem to reduce to Directed
Hamiltonian Path — something graph-theoretic?

Considerations:
Is there an NP-complete problem similar to X ?

(E.g. Clique and Independent Set)
It is not always beneficial to choose a problem of the same type

(E.g. reducing a graph problem to a graph problem)
For instance, Clique, Independent Set are “local”
problems (is there a set of vertices inducing some structure)
Hamiltonian Path is a “global” problem

(find a structure containing all vertices)

How to design the reduction:

Does your problem come from an optimisation problem?
If so: a maximisation problem? a minimisation problem?

Paul Goldberg reductions 9 / 17

NP-Completeness of Subset Sum

Subset Sum
Input: A collection of positive integers

S := {a1, . . . , ak} and a target integer t.
Problem: Is there a subset T ⊆ S such that

∑
ai∈T ai = t?

Theorem. Subset Sum is NP-complete

Proof.

1 Subset Sum ∈ NP.

Take T to be the certificate.

2 Subset Sum is NP-hard.

CNF-Sat ≤p Subset Sum (example next slide)

Paul Goldberg reductions 10 / 17

Example

(X1 ∨ X2 ∨ X3) ∧ (¬X1 ∨ ¬X4) ∧ (X4 ∨ X5 ∨ ¬X2 ∨ ¬X3)

X1 X2 X3 X4 X5 C1 C2 C3

t1 = 1 0 0 0 0 1 0 0
f1 = 1 0 0 0 0 0 1 0
t2 = 1 0 0 0 1 0 0
f2 = 1 0 0 0 0 0 1
t3 = 1 0 0 1 0 0
f3 = 1 0 0 0 0 1
t4 = 1 0 0 0 1
f4 = 1 0 0 1 0
t5 = 1 0 0 1
f5 = 1 0 0 0

m1,1 = 1 0 0
m1,2 = 1 0 0
m2,1 = 0 1 0
m3,1 = 0 0 1
m3,2 = 0 0 1
m3,3 = 0 0 1

t = 1 1 1 1 1 3 2 4

Paul Goldberg reductions 11 / 17

Sat ≤p Subset Sum (the general construction)

Given: ϕ := C1 ∧ · · · ∧ Ck in conjunctive normal form.

(for numbers in base 10: at most 9 literals per clause)

Let X1, . . . ,Xn be the variables in ϕ. For each Xi let

ti := a1 . . . anc1 . . . ck where

aj :=

{
1 i = j

0 i 6= j

cj :=

{
1 Xi occurs in Cj

0 otherwise

fi := a1 . . . anc1 . . . ck where

aj :=

{
1 i = j

0 i 6= j

cj :=

{
1 ¬Xi occurs in Cj

0 otherwise

Paul Goldberg reductions 12 / 17

Sat ≤p Subset Sum (the general construction)

Further, for each clause Ci take r := |Ci | − 1 integers mi ,1, . . . ,mi ,r

where mi ,j := ci . . . ck with cj :=

{
1 j = i

0 j 6= i
Definition of S: Let

S := {ti , fi : 1 ≤ i ≤ n} ∪ {mi ,j : 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci | − 1}

Target: Finally, choose as target

t := a1 . . . anc1 . . . ck where ai := 1 and ci := |Ci |

Claim: There is T ⊆ S with
∑

ai∈T ai = t iff ϕ is satisfiable.

Paul Goldberg reductions 13 / 17

NP-Completeness of Subset Sum

Let ϕ :=
∧

Ci Ci : clauses

Show. If ϕ is satisfiable, then there is T ⊆ S with
∑

s∈T s = t.

Let β be a satisfying assigment for ϕ

Set T1 := {ti : β(Xi) = 1 1 ≤ i ≤ m} ∪
{fi : β(Xi) = 0 1 ≤ i ≤ m}

Further, for each clause Ci let ri be the number of satisfied literals
in Ci

(with resp. to β).

Set T2 := {mi ,j : 1 ≤ i ≤ k, 1 ≤ j ≤ |Ci | − ri}
and define T := T1 ∪ T2.

It follows:
∑

s∈T s = t

Paul Goldberg reductions 14 / 17

NP-Completeness of Subset Sum

Show. If there is T ⊆ S with
∑

s∈T s = t, then ϕ is satisfiable.

Let T ⊆ S s.th.
∑

s∈T s = t

Define β(Xi) =

{
1 if ti ∈ T

0 if fi ∈ T

This is well defined as for all i : ti ∈ T or fi ∈ T but not both.

Further, for each clause, there must be one literal set to 1 as for all
i , the mi ,j : mi ,j ∈ S do not sum up to the number of literals in the
clause.

Paul Goldberg reductions 15 / 17

NP-completeness of Knapsack

Knapsack
Input: A set I := {1, . . . , n} of items

each of value vi and weight wi for 1 ≤ i ≤ n
target value t weight limit `

Problem: Is there T ⊆ I such that∑
i∈T vi ≥ t∑
i∈T wi ≤ `

Theorem. Knapsack is NP-complete

1 Knapsack ∈ NP
Take T as certificate.

2 Knapsack is NP-hard
By reduction Subset Sum ≤p Knapsack

Key point: Knapsack is “more general/expressive” than Subset
Sum

Paul Goldberg reductions 16 / 17

Subset Sum ≤p Knapsack (the details)

reminder: Subset Sum
Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to Subset Sum construct

I := {1, . . . , n}: set of items

vi = wi = ai for all 1 ≤ i ≤ n

target value t ′ := t weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t ⇐⇒
∑

ai∈T vi ≥ t ′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Paul Goldberg reductions 17 / 17

Subset Sum ≤p Knapsack (the details)

reminder: Subset Sum
Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to Subset Sum construct

I := {1, . . . , n}: set of items

vi = wi = ai for all 1 ≤ i ≤ n

target value t ′ := t weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t ⇐⇒
∑

ai∈T vi ≥ t ′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Paul Goldberg reductions 17 / 17

Subset Sum ≤p Knapsack (the details)

reminder: Subset Sum
Given: S := {a1, . . . , an} collection of positive integers

t target integer

Problem: Is there a subset T ⊆ S such that
∑

ai∈T ai = t?

Reduction: From this input to Subset Sum construct

I := {1, . . . , n}: set of items

vi = wi = ai for all 1 ≤ i ≤ n

target value t ′ := t weight limit ` := t

Clearly: For every T ⊆ S

∑
ai∈T

ai = t ⇐⇒
∑

ai∈T vi ≥ t ′ = t∑
ai∈T wi ≤ ` = t

Hence: The reduction is correct and in polynomial time.

Paul Goldberg reductions 17 / 17

