
Computational Complexity; slides 6, HT 2022
variants of NP

Prof. Paul W. Goldberg (Dept. of Computer Science,
University of Oxford)

HT 2022

Paul Goldberg reductions 1 / 10

Pseudo-Polynomial Time

Knapsack can be solved in time O(n`) using dynamic
programming
(recall ` is weight limit, n is number of items)
... but, ` can be exponential in the input description length!

Pseudo-Polynomial Time: Algorithms polynomial in the
maximum of the input length and the value of numbers occurring
in the input.

If Knapsack is restricted to instances with ` ≤ p(n) for some
polynomial p, then we obtain a problem in P.

Equivalently: Knapsack is in polynomial time for unary encoding
of numbers.

Strong NP-completeness: Problems (e.g. Clique, SAT) which
remain NP-complete even if all numbers are bounded by a
polynomial in the input length
(equivalently, for unary encoding of numbers).

Paul Goldberg reductions 2 / 10

Pseudo-Polynomial Time

Knapsack can be solved in time O(n`) using dynamic
programming
(recall ` is weight limit, n is number of items)
... but, ` can be exponential in the input description length!

Pseudo-Polynomial Time: Algorithms polynomial in the
maximum of the input length and the value of numbers occurring
in the input.

If Knapsack is restricted to instances with ` ≤ p(n) for some
polynomial p, then we obtain a problem in P.

Equivalently: Knapsack is in polynomial time for unary encoding
of numbers.

Strong NP-completeness: Problems (e.g. Clique, SAT) which
remain NP-complete even if all numbers are bounded by a
polynomial in the input length
(equivalently, for unary encoding of numbers).

Paul Goldberg reductions 2 / 10

digression: dealing with NP-hardness

Maybe a pseudo-polynomial time algorithm is OK

Move from exact to approximate optimisation: it may be hard
to find optimal solution, but finding one within fact 2 (say) of
optimal of optimal, is in P.

fixed-parameter tractability

model data as noisy (e.g. in smoothed analysis)

Paul Goldberg reductions 3 / 10

NP and co-NP

Notation. For a language L ⊆ Σ∗ let L := Σ∗ \ L be its
complement.

Definition.
If C is a complexity class, we define

co-C := {L : L ∈ C}.

coNP: In particular, co-NP := {L : L ∈ NP}

A problem belongs to co-NP, if no-instances have short certificates.

Paul Goldberg reductions 4 / 10

co-NP-completeness

Examples of problems in co-NP:

No Hamiltonian Cycle
Given: Graph G
Question: Is it true that G contains no Hamiltonian cycle?

Tautology
Given: Formula ϕ
Question: Is ϕ a tautology, i.e. satisfied by all assignments?

Definition. A language C ∈ co-NP is co-NP-complete, if L ≤p C for
all L ∈ co-NP.

Tautology is co-NP-complete: any reduction from an NP
problem to SAT can convert to a reduction from a co-NP problem
to Tautology

co-NP-complete decision problems are as hard as NP-complete
ones.

Paul Goldberg reductions 5 / 10

co-NP-completeness

Examples of problems in co-NP:

No Hamiltonian Cycle
Given: Graph G
Question: Is it true that G contains no Hamiltonian cycle?

Tautology
Given: Formula ϕ
Question: Is ϕ a tautology, i.e. satisfied by all assignments?

Definition. A language C ∈ co-NP is co-NP-complete, if L ≤p C for
all L ∈ co-NP.

Tautology is co-NP-complete: any reduction from an NP
problem to SAT can convert to a reduction from a co-NP problem
to Tautology

co-NP-complete decision problems are as hard as NP-complete
ones.

Paul Goldberg reductions 5 / 10

P, NP, and co-NP

Proposition.

1 P = co-P

2 Hence, P ⊆ NP ∩ co-NP

Question:

NP = co-NP?

Most people do not think so (c.f. research in propositional
proof theory).

P = NP ∩ co-NP?

Again, most people do not think so.

Later: Ladner’s theorem: assuming P6=NP, there are
“NP-intermediate” problems.

Paul Goldberg reductions 6 / 10

Search versus decision

Problem 1: boolean formula ϕ — is ϕ satisfiable?

Problem 2: Given a formula ϕ, find a satisfiable assignment, or
answer “no”.

Problem 2 is at least as hard.
But — we can say: “problem 2 is no harder than NP”; solve
problem 2 with oracle for problem 1.

“oracle”: an imaginary black-box that supports queries to a
computational problem: given an input, will (in one step) tell you
correct output.

Paul Goldberg reductions 7 / 10

FNP, reducing search to decision

FNP: problems of computing a function that can be checked in
polynomial time: find a certificate, not just answer “yes”

An FNP problem comprises a polynomially balanced relation R for
which R(x , y) can be checked in time polynomial in |x |, |y |.
Given x , search for y with R(x , y).
Note: it’s asking too much to solve a NP search problem X using
a single decision oracle (why?).
But can solve X using multiple oracle calls to corresponding
decision problem.

So, “FNP is as hard as NP”

Paul Goldberg reductions 8 / 10

Reducibility amongst FNP problems

Informally, X ≤p Y means: given an oracle for problem Y , can
reconstruct a solution to X .

In detail, reduction needs 2 functions f , g , where f maps instances
of X to instances of Y , and g maps solutions of Y to solutions of
X .
If X and Y correspond with relations R1 and R2 respectively, want

(x , g(z)) ∈ R1 iff (f (x), z) ∈ R2.

I’ll come back to this in the final lecture. Meanwhile, think about
how to compare Factoring in base-2 with Factoring in
base-10.

FSAT problem: given a boolean formula, compute a satisfying
assignment.
FSAT is FNP-complete. Factoring seems to be hard, but is
unlikely to be FNP-complete!

Paul Goldberg reductions 9 / 10

Optimisation

“Is there a k-clique” is (in a sense) equally hard as “find a
k-clique”

“What’s the size of the largest clique?” is (in a sense) harder!

If we told the answer is some value k, an NP machine can verify
k-clique(s) exist

Need also a co-NP machine to verify: no k + 1-clique exists!

NP, or co-NP alone, don’t seem to be sufficient, more later.

In exercises later, will make a start at classifying problems like this

Definition: For complexity classes A and B let AB denote problems
solved by an A-machine with oracle access to B.

As a start, we can put the problem in PNP

Paul Goldberg reductions 10 / 10

