
64 3 Diagonalization

3.3 Ladner’s Theorem: Existence of NP-intermediate problems

One of the striking aspects of NP-completeness is that a surprisingly large number of NP
problems —including some that were studied for many decades— turned out to be NP-
complete. This phenomenon suggests a bold conjecture: every problem in NP is either in P
or NP complete. If P = NP then the conjecture is trivially true but uninteresting. In this
section we show that if (as widely believed) P != NP, then this conjecture is false— there
is a language L ∈ NP \ P that is not NP-complete. An interesting feature of the proof is
an interesting and Gödelian definition of a language SATH which ”encodes” the difficulty
of solving itself.

Theorem 3.3 (“NP intermediate” languages [Lad75])
Suppose that P != NP. Then there exists a language L ∈ NP\P that is not NP-complete.

Proof: For every function H : N→ N, we define the language SATH to contain all length-n

satisfiable formulae that are padded with nH(n) 1’s; that is, SATH =
{

ψ01nH(n)
: ψ ∈ SAT and n = |ψ|

}

.

We now define a function H : N→ N as follows:

H(n) is the smallest number i < log log n such that for every x ∈ {0, 1}∗ with
|x| ≤ log n, Mi outputs SATH(x) within i|x|i steps.1 If there is no such number
i then H(n) = log log n.

H is well-defined since H(n) determines membership in SATH of strings whose length is
greater than n, and the definition of H(n) only relies upon checking the status of strings of
length at most log n. In fact, the definition of H directly implies an O(n3)-time recursive
algorithm that computes H(n) from n (see Exercise 3.6).2 We defined H in this way to
ensure the following claim:

Claim: SATH ∈ P iff H(n) = O(1) (i.e., there’s some C such that H(n) ≤ C for every n).
Moreover, if SATH !∈ P then H(n) tends to infinity with n.

Proof of Claim:

(SATH ∈ P ⇒ H(n) = O(1)): Suppose there is a machine M solving SATH

in at most cnc steps. Since M is represented by infinitely many strings, there
is a number i > c such that M = Mi. The definition of H(n) implies that for

n > 22i
, H(n) ≤ i. Thus H(n) = O(1).

(H(n) = O(1) ⇒ SATH ∈ P): If H(n) = O(1) then H can take only one
of finitely many values, and hence there exists an i such that H(n) = i for
infinitely many n’s. But this implies that the TM Mi solves SATH in ini-time:
for otherwise, if there was an input x on which Mi fails to output the right
answer within this bound, then for every n > 2|x| we would have H(n) != i.
Note that this holds even if we only assumed that there’s some constant C such
that H(n) ≤ C for infinitely many n’s, hence proving the “moreover” part of
the claim.

Using this claim we can show that if P != NP then SATH is neither in P nor NP
complete:

• Suppose that SATH ∈ P. Then by the claim, H(n) ≤ C for some constant C, implying
that SATH is simply SAT padded with at most a polynomial (namely, nC) number
of 1’s. But then a polynomial-time algorithm for SATH can be used to solve SAT in
polynomial time, implying that P = NP!

1Recall that Mi is the machine represented by the binary expansion of i, and SATH(x) is equal to 1 iff
x ∈ SATH .

2“Recursive algorithm” is a term borrowed from standard programming practice, where one calls a
program “recursive” if it has the ability to call itself on some other input.

3.4 Oracle machines and the limits of diagonalization 65

• Suppose that SATH is NP-complete. This means that there is a reduction f from
SAT to SATH that runs in time O(ni) for some constant i. Since we already concluded
SATH is not in P, the claim above implies that H(n) tends to infinity. Since the
reduction works in O(ni) time only, for large enough n it must map SAT instances of
size n to SATH instances of size smaller than nH(n). Thus for large enough formulae
ϕ, the reduction f must map it to a string of the type ψ01H(|ψ|) where ψ is smaller
by some fixed polynomial factor, say, smaller than 3

√
n. But the existence of such a

reduction yields a simple polynomial-time recursive algorithm for SAT, contradicting
the assumption P != NP! (Completing the details is left as Exercise 3.6.)

!

Though the theorem shows the existence of some non NP-complete language in NP \P
if NP != P, this language seems somewhat contrived, and the proof has not been strength-
ened to yield a more natural language. In fact, there are remarkably few candidates for such
languages, since the status of most natural languages has been resolved thanks to clever algo-
rithms or reductions. Two interesting exceptions are the Factoring and Graph isomorphism
languages (see Example 2.3). No polynomial-time algorithm is currently known for these
languages, and there is strong evidence that they are not NP complete (see Chapter 8).

3.4 Oracle machines and the limits of diagonalization

Quantifying the limits of diagonalization is not easy. Certainly, the diagonalization in Sec-
tions 3.2 and 3.3 seems more clever than the one in Section 3.1 or the one that proves the
undecidability of the halting problem in Section 1.5.

For concreteness, let us say that “diagonalization” is any technique that relies solely
upon the following properties of Turing machines:

I The existence of an effective representation of Turing machines by strings.

II The ability of one TM to simulate any another without much overhead in running time
or space.

Any argument that only uses these facts is treating machines as black boxes: the ma-
chine’s internal workings do not matter. We now show a general way to define variants of
Turing Machines called oracle Turing Machines that still satisfy the above two properties.
However, one way of defining the variant results in TMs for which P = NP, whereas another
way results in TMs for which P != NP. We conclude that to resolve P versus NP we need
to use some other property in addition to I and II.

Oracle machines are TMs that are given access to a black box or “oracle” that can
magically solve the decision problem for some language O ⊆ {0, 1}∗. The machine has a
special oracle tape on which it can write a string q ∈ {0, 1}∗ and in one step gets an answer
to a query of the form “Is q in O?”. This can be repeated arbitrarily often with different
queries. If O is a difficult language (say, which cannot be decided in polynomial time, or
even undecidable) then this oracle gives an added power to the TM.

Definition 3.4 (Oracle Turing Machines) An oracle Turing machine is a TM M that has
a special read/write tape we call M ’s oracle tape and three special states qquery, qyes, qno. To
execute M , we specify in addition to the input a language O ⊆ {0, 1}∗ that is used as the
oracle for M . Whenever during the execution M enters the state qquery, the machine moves
into the state qyes if q ∈ O and qno if q !∈ O, where q denotes the contents of the special
oracle tape. Note that, regardless of the choice of O, a membership query to O counts only
as a single computational step. If M is an oracle machine, O ⊆ {0, 1}∗ a language, and
x ∈ {0, 1}∗, then we denote the output of M on input x and with oracle O by MO(x).

Nondeterministic oracle TMs are defined similarly. ♦

