
Schedule A2, (Computer Science, CS and Philosophy, Maths and CS)
Hilary Term 2023

Computational Complexity

Exercise class 1: background (TMs, (un)decidability); polynomial-time computability

1. Arrange the following functions in increasing order of order-of-growth. (Do any of them have
the same order of growth?)

(a.) n10 (b.) (n2)logn (c.) (1.1)n (d.) (log n)logn

(e.) nlogn (f.) 100n2 (g.) n!/(2n)

2. Consider boolean functions whose inputs are propositional variables x1, . . . , xn, which map n
boolean values to a single output value.

Prove that for any polynomial p(n), there exist functions that cannot be written down using a
formula of size at most p(n). (A formula is built up from x1, . . . , xn and the usual connectives
∧, ∨, ¬.)

3. Let L be a language and define a new language L′ as follows. For every word w ∈ L, include
w0|w|2 in L′. That is, a word in L′ consists of a word in L, extended with a sequence of 0’s
whose length is the square of the length of w.

Prove that L is recognisable in polynomial time if and only if L′ is recognisable in polynomial
time. (You may assume that 0 is not in the alphabet of L.)

4. A Turing machine with two-sided unbounded tapes is a Turing acceptor where the tapes are
unbounded to both sides. Show that such machines can be simulated by our standard model
of Turing machines.

Note: You do not have to give the formal definition of the Turing machine. A precise
description of what the machine does and how it simulates the original machine is sufficient.

5. Prove that if L is recognisable in polynomial time, then so is L∗, where

L∗ := {w ∈ Σ∗ : w = w1w2w3 . . . wk, wi ∈ L for all 1 ≤ i ≤ k}

6. (a) Prove that the following problem is undecidable: Given a (standard encoding of a)
Turing machine, the question is: does it run in polynomial time?

(b) Suggest a definition of “polynomial-time Turing machine” having the property that such
a machine is computationally easy to recognise, and such that every language in the class
P is accepted by such a machine. Explain how your definition achieves this.

7. Suppose the decision version of the Clique problem

CLIQUE
Input: Graph G, k ∈ N

Problem: Does G have a clique of size ≥ k?

1

can be solved in time T (n) for some function T : N → N with T (n) ≥ n.

Prove that the optimisation version

OPT-CLIQUE
Input: Graph G

Problem: Compute a clique in G of maximum order

can be solved in time O(nc · T (n)), for some c ∈ N.

2

