Schedule A2, (Computer Science, CS and Philosophy, Maths and CS) Hilary Term 2023

COMPUTATIONAL COMPLEXITY

Exercise class 6: circuit complexity, BPP, RP

- 1. Prove that the complexity classes BPP and RP are closed under union. That is, for languages \mathcal{L}_1 and \mathcal{L}_2 in BPP, $\mathcal{L}_1 \cup \mathcal{L}_2$ is also in BPP, and similarly for RP.
- 2. Recall the definition of the complexity class P/poly: A language \mathcal{L} over the binary alphabet belongs to P/poly if there exists a sequence of boolean circuits C_1, C_2, \ldots where C_i has *i* inputs, is of size polynomial in *i*, and for all natural numbers *i*, C_i accepts words in \mathcal{L} of length *i* (and does not accept words not in \mathcal{L}).

Prove that the complexity class BPP is a subset of P/poly. You may like to start by proving $RP\subseteq P/poly$.

3. A 3-HORN-formula is a propositional logic formula of the form $\phi := \bigwedge_{i=1}^{n} C_i$, where $C_i := \bigvee_{j=1}^{n_i}$ is a clause with at most 3 literals (i.e. $n_i \leq 3$) of which at most one is positive.

The problem 3-HORN-SAT is defined as the problem, given a 3-HORN formula ϕ , to decide if ϕ is satisfiable.

Show that 3-HORN-SAT is P-complete (under LOGSPACE reductions). To prove hardness, use the fact that MONOTONE-CVP is P-complete.

- 4. Show that BPP and RP are closed under polynomial-time reductions in the sense that if $P \leq_p Q$ and $Q \in BPP$ (or RP) then $P \in BPP$ (or RP).
- 5. The aim of this question is to show that if NP \subseteq BPP then NP=RP. We pursue this question in several steps.
 - (a) Show that if there is a (deterministic) polynomial-time algorithm for deciding whether a SAT-instance is satisfiable then there is also a (deterministic) polynomial-time algorithm for computing a satisfying assignment.
 - (b) Show that the same is true for BPP algorithms. That is, if there is a bounded error polynomial time algorithm for deciding whether an instance to SAT is satisfiable then there is also such an algorithm which constructs a satisfying assignment with bounded error probability.

Hint. Use probability amplification.

- (c) Show that if $NP \subseteq BPP$ then $NP \subseteq RP$.
- (d) Show that $RP \subseteq NP$.