
Computational Complexity; slides 1, HT 2023
Introduction, motivation, background, Turing
machines, deterministic complexity classes

Paul W. Goldberg (Dept. of CS, Oxford)

HT 2023

Paul Goldberg Introduction, TMs, deterministic complexity classes 1 / 61

Administrative notes

www.cs.ox.ac.uk/people/paul.goldberg/CC/index.html

Slides, exercise sheets, often updated

www.cs.ox.ac.uk/teaching/courses/2022-2023/complexity/

General info

Problem sheets: classes in weeks 3 – 8
Available on web page by Monday of previous week
check hand-in deadlines

Paul Goldberg Introduction, TMs, deterministic complexity classes 2 / 61

Aims

(from the web page)

Introduce the most important complexity classes

Give you tools to classify problems into appropriate complexity
classes

Enable you to reduce one problem to another

Above terminology to be made precise

We will see there are major gaps in our understanding of
computation!

here, mostly focus on time/space requirements; there is also “communication
complexity”, “query complexity”, ...

note usage of word “complexity”

Paul Goldberg Introduction, TMs, deterministic complexity classes 3 / 61

Aims

(from the web page)

Introduce the most important complexity classes

Give you tools to classify problems into appropriate complexity
classes

Enable you to reduce one problem to another

Above terminology to be made precise

We will see there are major gaps in our understanding of
computation!

here, mostly focus on time/space requirements; there is also “communication
complexity”, “query complexity”, ...

note usage of word “complexity”

Paul Goldberg Introduction, TMs, deterministic complexity classes 3 / 61

Background, other courses

algorithms, big-O notation, “problem”, TM, propositional logic.
See e.g. chapter 7.1 in Sipser’s textbook

Models of Computation (part A)

Introduce Turing machines as a universal computing device
Classification of problems into decidable/undecidable
further classification of undecidable problems

Intro to Formal Proof (prelims)

SAT, CNF, etc

Algorithms (part A)

address “intractability” studied here

Design and Analysis of Algorithms (prelims)

design of efficient algorithms
asymptotic runtime analysis

Paul Goldberg Introduction, TMs, deterministic complexity classes 4 / 61

Polynomial-time computation, the class P

problems solvable in time O(n), O(n log n), O(n10), ...

Given a novel problem, usual Q1: is it in P?

Why do we like this concept?

nice closure/composition properties
composition of 2 poly-time algorithms is poly-time

P works surprisingly well as a model of “efficiently
computable”, “fast algorithm”
If a problem is solvable in time O(n100), usually it has a
genuinely efficient algorithm

We can ignore details of model of computation, representation
of input; “clean” analysis

poly-time algorithms highlight structure of a problem they
solve (quote on next slide)

Paul Goldberg Introduction, TMs, deterministic complexity classes 5 / 61

“poly-time” not just about computational efficiency

Poly-time algorithm tells you about the structure of a problem.
Contrast with “brute-force” algorithm

A relevant quote (context: looking for “equilibrium prices” in
markets)

What do we learn by proving that an equilibrium computation
problem is “difficult” in a complexity-theoretic sense? First,
assuming widely believed mathematical conjectures, it implies that
there will never be a fast, general-purpose computational method
for solving the problem. Second, it rules out many structural
results, such as convexity or duality, that are often used to
understand and justify economic models.

Tim Roughgarden: Computing equilibria: a computational complexity
perspective Economic Theory (2010)

Paul Goldberg Introduction, TMs, deterministic complexity classes 6 / 61

Some problems don’t seem to have efficient algorithms

Paul Goldberg Introduction, TMs, deterministic complexity classes 7 / 61

Road map (roughly)

1 [2 lectures] introduction, Turing machines, (un)decidability,
reductions

move swiftly from qualitative to quantitative considerations:

2 [1 lecture] Deterministic Complexity Classes. DTIME[t].
Linear Speed-up Theorem. PTime. Polynomial reducibility.

3 [3 lectures] NP, co-NP, (co-)NP-completeness.
Non-deterministic Turing machines. NTIME[t]. Polynomial
time verification. NP-completeness. Cook-Levin Theorem.

4 [3 lectures] Space complexity and hierarchy theorems.
DSPACE[s]. Linear Space Compression Theorem. PSPACE,
NPSPACE. PSPACE = NPSPACE. PSPACE-completeness.
Quantified Boolean Formula problem is PSPACE-complete. L,
NL and NL-completeness. NL = coNL. Hierarchy theorems.

Paul Goldberg Introduction, TMs, deterministic complexity classes 8 / 61

Road map

5 [2 lectures] Randomized Complexity. The classes BPP,
RP, ZPP. Interactive proof systems: IP = PSPACE.

6 Advanced topics. Randomised complexity, Circuit
complexity, total search

Paul Goldberg Introduction, TMs, deterministic complexity classes 9 / 61

Reading List

Primary:

S. Arora and B. Barak, Computational Complexity: A Modern
Approach, Cambridge University Press

M. Sipser, Introduction to the Theory of Computation, 2005

Further:

C.H. Papadimitriou, Computational Complexity, 1994.

I. Wegener, Complexity Theory, Springer, 2005.

O. Goldreich, Complexity Theory, CUP, 2008.

M.R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, 1979.

T.H. Cormen, S. Clifford, C.E. Leiserson and R. L. Rivest,
Introduction to Algorithms, 2001.

Paul Goldberg Introduction, TMs, deterministic complexity classes 10 / 61

Classifying problems according to membership of P

SHORTEST PATH

Given a weighted graph and two vertices s, t, find a shortest path
between s and t.

Can be solved efficiently (for instance with Dijkstra’s algorithm)

LONGEST PATH

Given a weighted graph and two vertices s, t, find a longest simple
(cycle-free) path between s and t.

LENGTH CONSTRAINED DISJOINT PATHS

Given a graph, two vertices s, t and c , k ∈ N, find k disjoint paths
between s and t of length ≤ c .

No efficient solution known (and conjectured not to exist)

Paul Goldberg Introduction, TMs, deterministic complexity classes 11 / 61

Problem: solving polynomial equations over integers

DIOPHANTINE EQUATIONS

Given a system of Diophantine equations, check whether it has an
integer solution.

Example:

xyz − y3 + z2 = 2

y − 3z = 5

Undecidable — no algorithmic solution!

https://en.wikipedia.org/wiki/Diophantine_equation

https://en.wikipedia.org/wiki/Hilbert’s_tenth_problem

Paul Goldberg Introduction, TMs, deterministic complexity classes 12 / 61

https://en.wikipedia.org/wiki/Diophantine_equation
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem

A graph problem: CLIQUE

A clique in a graph G is a complete subgraph of G .

MAX CLIQUE

Input: Graph G
Find: largest clique C ⊆ G

That’s an search problem. Corresponding decision problem would
specify a number k and ask for a “k-clique”.

https://en.wikipedia.org/wiki/Clique_problem

...another notoriously hard problem; although has an obvious
brute-force (exponential time) algorithm.

Paul Goldberg Introduction, TMs, deterministic complexity classes 13 / 61

https://en.wikipedia.org/wiki/Clique_problem

A graph problem: CLIQUE

Can search for a k-clique of an n-vertex graph in time O(nk .k2),
poly(n) if k is constant.

Follow-up question:
Can we search for a k-clique in time f (k).p(n), where p(·) is a
polynomial?
Unlikely — CLIQUE is “fixed parameter intractable”.

Paul Goldberg Introduction, TMs, deterministic complexity classes 14 / 61

General observations

Why are some problems so much harder to solve than other –
seemingly very similar – problems?

Are they really harder to solve?

Or have we just not found the right method to do so?

Computational Complexity: classify problems according to the
amount of resources (runtime, space, communication, etc) needed

Relies on various mathematical conjectures of which the most
famous is the “P ̸=NP” belief. Others include the “exponential
time hypothesis”, used to prove that k-CLIQUE cannot be solved
in time no(k).

Lower bounds on runtime requirements are hard to show! Needs
details of model of computation. More progress is often possible
for lower bounds on query complexity and communication
complexity of various problems.

Paul Goldberg Introduction, TMs, deterministic complexity classes 15 / 61

General observations

Why are some problems so much harder to solve than other –
seemingly very similar – problems?

Are they really harder to solve?

Or have we just not found the right method to do so?

Computational Complexity: classify problems according to the
amount of resources (runtime, space, communication, etc) needed

Relies on various mathematical conjectures of which the most
famous is the “P ̸=NP” belief. Others include the “exponential
time hypothesis”, used to prove that k-CLIQUE cannot be solved
in time no(k).

Lower bounds on runtime requirements are hard to show! Needs
details of model of computation. More progress is often possible
for lower bounds on query complexity and communication
complexity of various problems.

Paul Goldberg Introduction, TMs, deterministic complexity classes 15 / 61

Turing machines

Alan Turing considered qn. of “What is computation?” in 1936.

He argued, that any computation can be done using the following
steps (writing on a sheet of paper):

Concentrate on one part of the
problem (one symbol on the paper)

Depending on what you read there

Change into a new state
(remember a finite amount of
information)
Modify this part of the
problem
Move to another part of the
input

Repeat until finished

Next: detailed definition, notation, basic results

Paul Goldberg Introduction, TMs, deterministic complexity classes 16 / 61

Key points

Why we care about TMs:

precise notion of “runtime”, “memory usage”

well-defined operations on algorithms (when represented as
TMs) — (operations such as pass output of Alg 1 to Alg 2,
etc)

variants of TM (e.g. NTM) define important classes of
problems

Sometimes we’ll use pseudocode but with understanding that
there’s an equivalent TM

Paul Goldberg Introduction, TMs, deterministic complexity classes 17 / 61

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {□} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states (each of which either accepts or
rejects)

Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from Γ (□ : special “blank”
symbol)

Paul Goldberg Introduction, TMs, deterministic complexity classes 18 / 61

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {□} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states (each of which either accepts or
rejects)

Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from Γ (□ : special “blank”
symbol)

Paul Goldberg Introduction, TMs, deterministic complexity classes 18 / 61

Deterministic Turing Machines

Definition. (one of many variants, all “equivalent”)
A (deterministic) k-tape Turing machine is a 6-tuple
(Q,Σ, Γ, δ, q0,F) where

Q is a finite set of states

Σ is input alphabet – a finite alphabet of symbols

Γ ⊇ Σ ∪ {□} is working tape alphabet (finite)

δ is the transition function

q0 ∈ Q is the initial state

F ⊆ Q is a set of final states (each of which either accepts or
rejects)

Tape. Infinite tape, bounded to the left.

Each cell contains one symbol from Γ (□ : special “blank”
symbol)

Paul Goldberg Introduction, TMs, deterministic complexity classes 18 / 61

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Introduction, TMs, deterministic complexity classes 19 / 61

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Introduction, TMs, deterministic complexity classes 19 / 61

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Introduction, TMs, deterministic complexity classes 19 / 61

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Introduction, TMs, deterministic complexity classes 19 / 61

Deterministic TM (multiple tape version)

Transition function: δ :
(
Q \ F

)
× Γk → Q × Γk × {−1, 0, 1}k

(−1: “left” 0: “stay put” 1: “right”)

Paul Goldberg Introduction, TMs, deterministic complexity classes 19 / 61

Turing Machine operation

1 At each step of operation the machine is in one state q ∈ Q
2 Initially:

Machine is in state q0 ∈ Q
the input is contained on tape 1
all other tape symbols are □

3 The machine is reading one symbol on each tape: s1 . . . sk
4 To execute one step, the machine looks up

δ(q, s1, . . . , sk) :=
(
q′, (s ′1, . . . , s

′
k), (m1, . . . ,mk)

)
5 The machine:

changes to state q′

replaces each si by s ′i
moves the heads on the individual tapes according to mi

(1 = move right, −1 = move left, 0 = stay)
Execution stops when a final state is reached.
In this case, the content of the last tape k contains the output.

Paul Goldberg Introduction, TMs, deterministic complexity classes 20 / 61

more general points

(I assume you’ve seen examples of TMs already)

TM: general-purpose notion of “algorithm”, “computational
procedure”

equivalence of alternative defs of TM assure us of above;
simulations have “polynomial overhead”

Algorithm pseudocode is readable, usually we use it to
describe algorithms, tacit assumption: can be converted to
TM

TMs ⇝ precise notion of runtime/space. Used in various
theorems in this course.

Paul Goldberg Introduction, TMs, deterministic complexity classes 21 / 61

Configurations (definition, notation)

For M := (Q,Σ, Γ, δ, q0,F), what’s going on is described by

the current state

the contents of all tapes

the position of all its heads(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
where q ∈ Q,wi ∈ Γ∗, pi ∈ N

where Γ∗ denotes words over alphabet Γ

Start configuration on input w :
(
q0, (w , ε, . . . , ε), (0, . . . , 0)

)
where ε denotes empty word

Stop (or, halt) configuration:
Configuration

(
q, (w1, . . . ,wk), (p1, . . . , pk)

)
such that q ∈ F .

Paul Goldberg Introduction, TMs, deterministic complexity classes 22 / 61

Computation

Notation:

C ⊢M C ′ if M can change from configuration C to
C ′ in one step.

C ⊢∗
M C ′ if M can change from configuration C to

C ′ in arbitrarily many steps.

The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 ⊢M C1 ⊢M C2 . . . of configurations, or

a finite sequence C0 ⊢M C1 ⊢M C2 · · · ⊢M Cn.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .

Paul Goldberg Introduction, TMs, deterministic complexity classes 23 / 61

Computation

Notation:

C ⊢M C ′ if M can change from configuration C to
C ′ in one step.

C ⊢∗
M C ′ if M can change from configuration C to

C ′ in arbitrarily many steps.
The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 ⊢M C1 ⊢M C2 . . . of configurations, or

a finite sequence C0 ⊢M C1 ⊢M C2 · · · ⊢M Cn.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .

Paul Goldberg Introduction, TMs, deterministic complexity classes 23 / 61

Computation

Notation:

C ⊢M C ′ if M can change from configuration C to
C ′ in one step.

C ⊢∗
M C ′ if M can change from configuration C to

C ′ in arbitrarily many steps.
The computation of a TM M on input w ∈ Σ∗ is either

an infinite sequence C0 ⊢M C1 ⊢M C2 . . . of configurations, or

a finite sequence C0 ⊢M C1 ⊢M C2 · · · ⊢M Cn.

In the latter case we say that M halts on input w .

Notation: TM(w) := n number of steps upon input w .

Cn: stop configuration C0: start config of M on input w .

A TM halts on input w (and generates output o) if the
computation of M on w terminates in configuration

(q, (w1, . . . ,wk−1, o), (p1, . . . , pk)
)

with q ∈ F .

Paul Goldberg Introduction, TMs, deterministic complexity classes 23 / 61

Run-time of a TM

Let M be a Turing machine with alphabet Σ
f : Σ∗ → Σ∗

g : N → N

M computes f in time g(n) if for every w ∈ Σ∗ M halts on input
w after at most g(|w |) steps with f (w) on its output (last) tape.

(i.e. TM(w) ≤ g(|w |))

Paul Goldberg Introduction, TMs, deterministic complexity classes 24 / 61

Example (TM as transducer)

The following 2-tape Turing machine

M :=
(
{q0, q1, qf }, {a, b}, {a, b,□}, δ, q0, {qf }

)
where

δ :=

(
q0,

(a
−
)
,
(a
−
)
,
(1
0

)
, q0

)(
q0,

(b
−
)
,
(b
−
)
,
(1
0

)
, q0

)(
q0,

(□
−
)
,
(□
−
)
,
(−1

0

)
, q1

)(
q1,

(a
−
)
,
(□
a

)
,
(−1

1

)
, q1

)(
q1,

(b
−
)
,
(□
b

)
,
(−1

1

)
, q1

)(
q1,

(□
−
)
,
(□
−
)
,
(0
0

)
, qf

)

computes the reverse-function reverse(a1 . . . an) := an . . . a1 in

time g(n) = 2n + 2 = O(n).
For various alternative definitions of TM, including changes to
alphabet, runtimes needed are polynomially related.

Paul Goldberg Introduction, TMs, deterministic complexity classes 25 / 61

Decision problems as languages; Turing acceptors

TM M solves a decision problem if the language accepted by M
(M as a language acceptor) is the yes-instances of the decision
problem.

For decision problem D, L(D) denotes the yes-instances of D
(needs an agreed-on encoding).

Search problems can generally be reduced to decision problems...

Example: Travelling Salesperson Problem (TSP)

Given pairwise distances between cities, we ask for the shortest
tour, or the length of the shortest tour

Decision version: given the pairwise distances and a number k , is
there a tour of length at most k?

Paul Goldberg Introduction, TMs, deterministic complexity classes 26 / 61

Recall: decidable languages

Definition/notation

The language L(M) ⊆ Σ∗ accepted by a Turing acceptor
M :=

(
Q,Σ, Γ, δ, q0,F

)
is defined as

{w ∈ Σ∗ : M accepts w}.

(Note that we do not require M to halt on rejected inputs.)

A language L ⊆ Σ∗ is recursively enumerable, if there is an
acceptor M such that L = L(M).

A language L ⊆ Σ∗ is decidable (or, “recursive”) if there is an
acceptor M such that for all w ∈ Σ∗:

w ∈ L =⇒ M halts on input w in an accepting state
w ̸∈ L =⇒ M halts on input w in a rejecting state

Paul Goldberg Introduction, TMs, deterministic complexity classes 27 / 61

Decidable and Enumerable Languages

Recall:

1 If a language L is decidable then it is recursively enumerable

2 If L and Σ∗ \L are recursively enumerable then L is decidable.

decidable rec. enum.
all lan-

guages

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable

Paul Goldberg Introduction, TMs, deterministic complexity classes 28 / 61

Decidable and Enumerable Languages

Recall:

1 If a language L is decidable then it is recursively enumerable

2 If L and Σ∗ \L are recursively enumerable then L is decidable.

decidable rec. enum.
all lan-

guages

Note: recursively enumerable a.k.a. semi-decidable, partially
decidable

Paul Goldberg Introduction, TMs, deterministic complexity classes 28 / 61

Problems as languages

Main points:

decision problems viewed as language recognition problems
We can use “decision problem” and “language”
interchangeably

We’re allowed to be vague about encoding of problems (e.g.
CLIQUE, TSP) — we will see that details of encoding don’t
affect the problem classifications of interest. Details of
alphabet also unimportant (but unary alphabet is too big a
restriction!). (“standard encoding”, should be sensible.)

Paul Goldberg Introduction, TMs, deterministic complexity classes 29 / 61

Undecidable Languages

Aim of this section

Recursion theory — a brief reminder

2 techniques: diagonalisation and reductions — variants
appear in complexity-theory classification of problems

A counting argument (sketch):

The number of Turing machines is infinite but countable

The number of different languages is infinite but uncountable;
diagonalisation

Therefore, there are “more” languages than Turing machines

It follows that there are languages that are not decidable.
Indeed some aren’t even semi-decidable.

Paul Goldberg Introduction, TMs, deterministic complexity classes 30 / 61

The Halting Problem

previous argument shows that there are undecidable languages.

Can we find a concrete example?

Halting problem (HALT)

Input: A Turing machine M and an input string w
Question: Does M halt on w?

Again, undecidability of HALT is proved by diagonalisation:
consider effective listing of TMs, new TM that differs from all in
listing
details in e.g. Sipser Chapter 4.2

Paul Goldberg Introduction, TMs, deterministic complexity classes 31 / 61

Classification of Languages

Definition. A language L ⊆ Σ∗ is co-recursively enumerable, or
co-r.e., if Σ∗ \ L is recursively enumerable.

Example: L(HALT) is co-r.e (but not r.e.).

All languages

r.e. co-r.e.

decidable

Looking ahead, relationship between NP and co-NP is more
complicated...

Paul Goldberg Introduction, TMs, deterministic complexity classes 32 / 61

Reductions

A major tool in analysing and classifying problems is the idea of
“reducing one problem to another”

As you expect — or have already seen — use undecidability of
HALT to prove undecidability of variants, e.g. TM acceptance
problem.

Informally, a problem A is reducible to a problem B if we can
use methods to solve B in order to solve A.

We want to capture the idea, that A is ”no harder” than B.
(as we can use B to solve A.)

Paul Goldberg Introduction, TMs, deterministic complexity classes 33 / 61

Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A ≤T B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

⇝ Many-One Reductions (Sipser: “mapping reduction”) are
more informative: A ≤T B relates (un)decidability of problems;
use A ≤m B (next slide) to find out if a problem (or its
complement) is recursively enumerable.

Paul Goldberg Introduction, TMs, deterministic complexity classes 34 / 61

Turing Reductions

Informally, problem A is Turing reducible to B if we can solve A
using a program solving B as sub-program.

We write A ≤T B.

Example: HALT is Turing reducible to HALT.

take a Turing acceptor accepting HALT as sub-program
and reverse its output

Turing reductions are free/unrestricted; sometimes too much so for
our purposes.

⇝ Many-One Reductions (Sipser: “mapping reduction”) are
more informative: A ≤T B relates (un)decidability of problems;
use A ≤m B (next slide) to find out if a problem (or its
complement) is recursively enumerable.

Paul Goldberg Introduction, TMs, deterministic complexity classes 34 / 61

Many-One Reductions

Definition. A language A is many-one reducible to a language B if
there exists a computable function f such that for all w ∈ Σ∗:

x ∈ A ⇐⇒ f (x) ∈ B.

We write A ≤m B.

Observation 1. If A ≤m B and B is decidable, then so is A.

Proof. A many-one reduction is a Turing reduction, so it inherits
that functionality

Observation 2. If A ≤m B and B is recursively enumerable, then so
is A.

Many-one reductions can classify problems into:
decidable/r.e./co-r.e/neither.

Paul Goldberg Introduction, TMs, deterministic complexity classes 35 / 61

Properties of Many-One Reductions

1 ≤m is reflexive and transitive

(if A ≤m B and B ≤m C then A ≤m C, by composition of
functions.)

2 If A is decidable and B is any language apart from ∅ and Σ∗,
then A ≤m B.

As B ̸= ∅ and B ̸= Σ∗ there are wa ∈ B and wr ̸∈ B.

For w ∈ Σ∗, define f (w) :=

{
wa if w ∈ A
wr if w ̸∈ A

Hence, many-one reductions are too crude to distinguish between
decidable problems. later: “smarter” reductions

Paul Goldberg Introduction, TMs, deterministic complexity classes 36 / 61

Examples of Many-One Reductions

We will show the following chain of reductions:

HALT ≤m ε-HALT ≤m EQUIVALENCE

ε-HALT: Does M halt on the empty input?

EQUIVALENCE: L(M) = L(M ′)?

Hence, all these problems are undecidable.

Paul Goldberg Introduction, TMs, deterministic complexity classes 37 / 61

HALT ≤m ε-HALT

Proof.
Define function f such that w ∈ HALT ⇐⇒ f (w) ∈ ε-HALT

For w := ⟨M, v⟩ compute the following Turing machine Mw :

1 Write v onto the input tape.

2 Simulate M.

Clearly, Mw accepts the empty word if, and only if, M accepts v .

Let Mr be a TM that does not halt on the empty input.

Define f (w) :=

{
Mw if w = ⟨M, v⟩
Mr if w is not of the correct input form 1

1i.e. doesn’t encode a TM with word
Paul Goldberg Introduction, TMs, deterministic complexity classes 38 / 61

ε-HALT ≤m EQUIVALENCE

Proof.
Define f such that w ∈ ε-HALT ⇐⇒ f (w) ∈ EQUIVALENCE

Let Ma be a Turing machine that accepts all inputs.

For a TM M compute the following Turing machine M∗ :

1 Run M on the empty input

2 If M halts, accept.

M∗ is equivalent to Ma if, and only if, M halts on the empty input.

Define

f (w) :=

{
(⟨M∗⟩, ⟨Ma⟩) if w = ⟨M⟩
(w , ⟨Ma⟩) if w is not of the correct input form

Paul Goldberg Introduction, TMs, deterministic complexity classes 39 / 61

Decidable and Enumerable Languages

All languages

r.e. co-r.e.

decidable

Recursion Theory:
Study the border between decidable and undecidable languages
Study the fine structure of undecidable languages.

The work of Turing, Church, Post, ... pre-dated modern
computational machinery.

Complexity Theory:
Look at the fine structure of decidable languages.

Paul Goldberg Introduction, TMs, deterministic complexity classes 40 / 61

Decision vs. optimisation vs. search

Mostly, problems of interest are decision problems, equivalent to
language recognition problems.

But, recall e.g. TSP: naturally thought of as optimisation problem,
or for a specific tour length k , as a search problem

But they are efficiently reducible to a decision problem (“does
there exist a tour of length k”), and similarly for other
optimisation problems.

Hence our focus on decision problems, although note that problems
like FACTORING are naturally thought-of as search problems.

Paul Goldberg Introduction, TMs, deterministic complexity classes 41 / 61

Measuring Complexity

Our general interest: detailed classification of decidable languages.

Goal: Classify languages according to the amount of resources
needed to solve them.

Resources: In this lecture we will primarily consider

time – the running time of algorithms (steps on a Turing
machine)

space – the amount of additional memory needed

(cells on the Turing tapes)

Next: basic complexity classes, polynomial-time reductions

Paul Goldberg Introduction, TMs, deterministic complexity classes 42 / 61

Measuring Complexity

Definition.
Let M be a Turing acceptor and let S ,T : N → N be functions.

1 M is T -time bounded if it halts on every input w ∈ Σ∗ after
≤ T (|w |) steps.

2 M is S-space bounded if it halts on every input w ∈ Σ∗ using
≤ S(|w |) cells on its tapes.

(Here we assume that the Turing machines have a separate
input tape that we do not count in measuring space
complexity.)

Paul Goldberg Introduction, TMs, deterministic complexity classes 43 / 61

Deterministic Complexity Classes

Definition.
Let T ,S : N → N be monotone increasing functions. Define

1 DTIME(T) as the class of languages L for which there is a
T -time bounded k-tape Turing acceptor deciding L, for some
k ≥ 1.

2 DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:
Time classes:

P (or PTIME) :=
⋃

d∈N DTIME(nd) polynomial time

EXP :=
⋃

d∈N DTIME(2n
d

) exponential time

2-EXP :=
⋃

d∈N DTIME(22
nd

) double exp time

Space classes:
LOGSPACE :=

⋃
d∈N DSPACE(d log n)

PSPACE :=
⋃

d∈N DSPACE(nd)

EXPSPACE :=
⋃

d∈N DSPACE(2n
d

)

Paul Goldberg Introduction, TMs, deterministic complexity classes 44 / 61

Deterministic Complexity Classes

Definition.
Let T ,S : N → N be monotone increasing functions. Define

1 DTIME(T) as the class of languages L for which there is a
T -time bounded k-tape Turing acceptor deciding L, for some
k ≥ 1.

2 DSPACE(S) as the class of languages L for which there is a
S-space bounded k-tape Turing acceptor deciding L, k ≥ 1.

Important Complexity Classes:
Time classes:

P (or PTIME) :=
⋃

d∈N DTIME(nd) polynomial time

EXP :=
⋃

d∈N DTIME(2n
d

) exponential time

2-EXP :=
⋃

d∈N DTIME(22
nd

) double exp time

Space classes:
LOGSPACE :=

⋃
d∈N DSPACE(d log n)

PSPACE :=
⋃

d∈N DSPACE(nd)

EXPSPACE :=
⋃

d∈N DSPACE(2n
d

)

Paul Goldberg Introduction, TMs, deterministic complexity classes 44 / 61

But wait...

Do these classes depend on exact def of “Turing machine”?

Yes, for DTIME(T), DSPACE(S);
No for the others

Indeed, usually don’t need to refer explicitly to “Turing machine”.
But watch out for nondeterminism (details later)

Paul Goldberg Introduction, TMs, deterministic complexity classes 45 / 61

But wait...

Do these classes depend on exact def of “Turing machine”?

Yes, for DTIME(T), DSPACE(S);
No for the others

Indeed, usually don’t need to refer explicitly to “Turing machine”.
But watch out for nondeterminism (details later)

Paul Goldberg Introduction, TMs, deterministic complexity classes 45 / 61

Time Complexity Classes

Important Time Complexity Classes:

P :=
⋃

d∈NDTIME(nd) polynomial time

EXP :=
⋃

d∈NDTIME(2n
d
) exponential time

Not quite so important:

2-EXP :=
⋃

d∈NDTIME(22
nd

) double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

P ⊆ EXP ⊆ 2-EXP ⊆ · · · ⊆ i-EXP ⊆ . . .

Alternative definition/notation:

P := DTIME(nO(1))

Paul Goldberg Introduction, TMs, deterministic complexity classes 46 / 61

Time Complexity Classes

Important Time Complexity Classes:

P :=
⋃

d∈NDTIME(nd) polynomial time

EXP :=
⋃

d∈NDTIME(2n
d
) exponential time

Not quite so important:

2-EXP :=
⋃

d∈NDTIME(22
nd

) double exp time

Note: these are all classes of decision problems, i.e. languages.

Observation:

P ⊆ EXP ⊆ 2-EXP ⊆ · · · ⊆ i-EXP ⊆ . . .

Alternative definition/notation:

P := DTIME(nO(1))

Paul Goldberg Introduction, TMs, deterministic complexity classes 46 / 61

Linear Speed-Up

Theorem. (Linear Speed-Up Theorem)

Let k > 1 and c > 0 T : N → N L ⊆ Σ∗ be a
language.

If L can be decided by a T (n) time-bounded k-tape TM

M := (Q,Σ, Γ, q0, δ,F)

then L can be decided by a (1c · T (n) + n + 2) time-bounded
k-tape TM

M∗ := (Q ′,Σ, Γ′, q′0, δ
′,F ′).

Paul Goldberg Introduction, TMs, deterministic complexity classes 47 / 61

Linear Speed-Up

Proof idea. Let Γ′ := Σ ∪ Γs where s := 6c . To construct M∗:

Step 1: Compress M’s input.

Copy (in n+2 steps) the input onto tape 2, compressing s symbols
into one (i.e., each symbol corresponds to an s-tuple from Γs)

Step 2: Simulate M’s computation, s steps at once.

1 Read (in 4 steps) symbols to the left, right and the current
position
and “store” (using |Q × {1, . . . , s}k × Γ3sk | extra states).

2 Simulate (in 2 steps) the next s steps of M (as M can only
modify the current position and one of its neighbours)

3 M∗ accepts (rejects) if M accepts (rejects)

(see Papadimitriou Thm 2.2, page 32)

Paul Goldberg Introduction, TMs, deterministic complexity classes 48 / 61

A Hierarchy of Complexity Classes?

Questions we will study:

Can we always solve more problems if we have more resources?

If not, how much more resources do we need to be able to
solve strictly more problems?

How do the complexity classes relate to each other?

How do we show that some problem is in one of these classes
but not in another?

Are there any other interesting models of computation?

Non-deterministic computation
Randomised algorithms

Next: robustness of P
polynomial-time reductions

Paul Goldberg Introduction, TMs, deterministic complexity classes 49 / 61

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Introduction, TMs, deterministic complexity classes 50 / 61

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Introduction, TMs, deterministic complexity classes 50 / 61

Robustness of the definition of P

If P is to be the mathematical model of efficient computation, it
should not depend on

the exact computation-model we are using,

or how we encode the input (within reason).

Different Models of Computation:

1 We can simulate t steps of a k-tape Turing machine with an
equivalent 1-tape TM in t2 steps.

2 We can simulate t steps of a two-way infinite k-tape Turing
machine with an equivalent standard k-tape TM in O(t)
steps.

3 We can simulate t steps of a RAM-machine with a 3-tape TM
in O(t3) steps. Vice-versa in O(t) steps.

Consequence: P is the same for all these models (unlike linear time)

Paul Goldberg Introduction, TMs, deterministic complexity classes 50 / 61

Different Encodings

Observation.

1 For any n ∈ N, the length of the encoding of n in base b1 and
base b2 are related by a constant factor, for all b1, b2 ≥ 2.

2 For any graph G , the length of its encoding as an

adjacency matrix
list of edges
adjacency list
...

are all related by a polynomial factor.

Consequence: (for problems on numbers, graphs) P is the same for
all these encoding (unlike linear time)

Paul Goldberg Introduction, TMs, deterministic complexity classes 51 / 61

Different Encodings

Observation.

1 For any n ∈ N, the length of the encoding of n in base b1 and
base b2 are related by a constant factor, for all b1, b2 ≥ 2.

2 For any graph G , the length of its encoding as an

adjacency matrix
list of edges
adjacency list
...

are all related by a polynomial factor.

Consequence: (for problems on numbers, graphs) P is the same for
all these encoding (unlike linear time)

Paul Goldberg Introduction, TMs, deterministic complexity classes 51 / 61

Robustness of the definition of P

Strong Church-Turing Hypothesis

Any function which can be computed by any well-defined
procedure can be computed by a Turing machine with only
polynomial overhead.

(but doesn’t apply to quantum or randomised algorithms)

I also pointed out that “in P” corresponds well to existence of a
practical algorithm; problem is “tractable”

Paul Goldberg Introduction, TMs, deterministic complexity classes 52 / 61

Proving a problem is in P

Good news: proofs of “in P” are often cleaner than detailed
runtime analysis;
“in P” less specific than, e.g. “in DTIME(n2)”; some technical
details are avoided

The most direct way to show that a problem is in P is to
exhibit a polynomial time algorithm that solves it.

Even a naive polynomial-time algorithm often provides a good
insight into how the problem can be solved efficiently.

Because of robustness, we do not generally need to specify all
the details of the machine model or the encoding.

⇝ pseudo-code is sufficient.

Paul Goldberg Introduction, TMs, deterministic complexity classes 53 / 61

Example: Satisfiability

Some of the most important problems concern logical formulae

Recall propositional logic

Formulae of propositional logic are built up inductively

Variables: Xi i ∈ N
Boolean connectives:
If φ,ψ are propositional formulae then so are

(ψ ∨ φ)
(ψ ∧ φ)
¬φ

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)

Paul Goldberg Introduction, TMs, deterministic complexity classes 54 / 61

Conjunctive Normal Form

Formula φ is in conjunctive normal form (CNF) if

φ := C1 ∧ · · · ∧ Cm

where each Ci is a clause, that is, a disjunction of literals

Ci := (Li1 ∨ · · · ∨ Lik)

A literal is a variable Xi or a negated variable ¬Xi

k-CNF: CNF φ with at most k literals per clause.

3-CNF example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4) ∧ (X2 ∨ X3 ∨ X4) ∧ X6

common CNF notation:
φ :=

{
{X1,X2,¬X5}, {¬X2,¬X4}, {X2,X3,X4}, {X6}

}

Paul Goldberg Introduction, TMs, deterministic complexity classes 55 / 61

Conjunctive Normal Form

Formula φ is in conjunctive normal form (CNF) if

φ := C1 ∧ · · · ∧ Cm

where each Ci is a clause, that is, a disjunction of literals

Ci := (Li1 ∨ · · · ∨ Lik)

A literal is a variable Xi or a negated variable ¬Xi

k-CNF: CNF φ with at most k literals per clause.

3-CNF example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4) ∧ (X2 ∨ X3 ∨ X4) ∧ X6

common CNF notation:
φ :=

{
{X1,X2,¬X5}, {¬X2,¬X4}, {X2,X3,X4}, {X6}

}
Paul Goldberg Introduction, TMs, deterministic complexity classes 55 / 61

Satisfiability

Definition. A formula φ is satisfiable if there is a satisfying
assignment (a.k.a. model) for φ.

In the case of formulae in CNF:
An assignment β assigning values 0 or 1 to the variables of φ so
that every clause contains at least

one variable to which β assigns 1 or

one negated variable to which β assigns 0.

Example:
(X1 ∨ X2 ∨ ¬X5) ∧ (¬X2 ∨ ¬X4 ∨ ¬X5) ∧ (X2 ∨ X3 ∨ X4)

Satisfying assignment:
X1 7→ 1 X2 7→ 0 X3 7→ 1 X4 7→ 0 X5 7→ 1

Paul Goldberg Introduction, TMs, deterministic complexity classes 56 / 61

The Satisfiability Problem

Some important problems concerning propositional formulae:

SAT
Input: Propositional formula φ in CNF

Problem: Is φ satisfiable?

k-SAT
Input: Propositional formula φ in k-CNF

Problem: Is φ satisfiable?

Let us also note CIRCUIT SAT: given a circuit with n inputs, one
output, can we set input values to get output=TRUE?

Paul Goldberg Introduction, TMs, deterministic complexity classes 57 / 61

2-SAT is in P

Proof. The following algorithm solves the problem in poly time.

Let φ be the input formula
Repeat

If φ contains clauses {X} and {¬X}, halt and output “no”;
If φ contains clauses {X} and {¬X ,Y }, add clause {Y };
If φ contains clauses {X ,Y } {¬X ,Z}, add clause {Y ,Z};
Any clause {X ,X} simplifies to {X}

Output “yes”.

Poly-time:

there are O(n2) iterations.

Each “if” test searches for O(n2) items in φ

Each search is linear in length of φ

above analysis is crude but does the job.

Paul Goldberg Introduction, TMs, deterministic complexity classes 58 / 61

2-SAT is in P

Proof. The following algorithm solves the problem in poly time.

Let φ be the input formula
Repeat

If φ contains clauses {X} and {¬X}, halt and output “no”;
If φ contains clauses {X} and {¬X ,Y }, add clause {Y };
If φ contains clauses {X ,Y } {¬X ,Z}, add clause {Y ,Z};
Any clause {X ,X} simplifies to {X}

Output “yes”.

Poly-time:

there are O(n2) iterations.

Each “if” test searches for O(n2) items in φ

Each search is linear in length of φ

above analysis is crude but does the job.

Paul Goldberg Introduction, TMs, deterministic complexity classes 58 / 61

Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in P.

Definition. A language L1 ⊆ Σ∗ is polynomially reducible to
L2 ⊆ Σ∗, denoted L1 ≤p L2, if there is a polynomial-time
computable function f such that for all w ∈ Σ∗

w ∈ L1 ⇐⇒ f (w) ∈ L2.

Lemma. If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.

Proof idea. The sum and composition of polynomials is a
polynomial.

Generally, members of P can be poly-time reduced to each other.

Paul Goldberg Introduction, TMs, deterministic complexity classes 59 / 61

Polynomial-Time Reductions

As for decidability we can use many-one reductions to show
membership in P.

Definition. A language L1 ⊆ Σ∗ is polynomially reducible to
L2 ⊆ Σ∗, denoted L1 ≤p L2, if there is a polynomial-time
computable function f such that for all w ∈ Σ∗

w ∈ L1 ⇐⇒ f (w) ∈ L2.

Lemma. If L1 ≤p L2 and L2 ∈ P then L1 ∈ P.

Proof idea. The sum and composition of polynomials is a
polynomial.

Generally, members of P can be poly-time reduced to each other.

Paul Goldberg Introduction, TMs, deterministic complexity classes 59 / 61

Example: Colourability

Vertex Colouring:

A vertex colouring of G with k colours is a function

c : V (G) −→ {1, . . . , k}

such that adjacent nodes have different colours

i.e. {u, v} ∈ E (G) implies c(u) ̸= c(v)

k-COLOURABILITY
Input: Graph G , k ∈ N

Problem: Does G have a vertex colouring
with k colours?

For k = 2 this is the same as BIPARTITE.

Paul Goldberg Introduction, TMs, deterministic complexity classes 60 / 61

A reduction to 3-SAT

Proposition. k-COLOURABILITY ≤p 3-SAT

Proof. Introduce Xv ,c to represent “in a solution, v gets colour c”.

clauses impose constraints, e.g. Xvc ⇒ ¬Xvc ′ (or rather,
¬Xvc ∨ ¬Xvc ′)

Xvc ⇒ ¬Xv ′c for (v , v ′) any edge

Xv1 ∨ Xv2 ∨ . . . ∨ Xvk for each v

can replace e.g. Xv1 ∨ Xv2 ∨ Xv3 ∨ Xv4 with Xv1 ∨ Xv2 ∨ Xnew and
¬Xnew ∨ Xv3 ∨ Xv4

We also have k-SAT≤p3-SAT, and CIRCUIT-SAT≤p3-SAT.

Reducible to 2-SAT ??

Paul Goldberg Introduction, TMs, deterministic complexity classes 61 / 61

