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The polynomial-time hierarchy

NP: given an existentially-quantified QBF, is it true?

co-NP: given a universally-quantified QBF, is it true?

PSPACE: given an unrestricted QBF, is it true?

“intermediate” problems:

Evaluate formula of the form ∃x1, . . . , xn∀y1, . . . , yn φ
Evaluate formula of the form ∀x1, . . . , xn∃y1, . . . , yn φ
Evaluate formula of the form
∃x1, . . . , xn∀y1, . . . , yn∃z1, . . . , zn φ
etc.

⇝ yet more complexity classes! (seemingly)

Sipser, chapter 10.3 (brief mention); Arora/Barak Chapter 5
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The polynomial-time hierarchy

There are multiple equivalent definitions of the classes of the
polynomial hierarchy. — Wikipedia

Model of computation for (say) ∃x1, . . . , xn∀y1, . . . , yn φ?

—Yes, poly-time alternating TM where ∃ states must precede ∀
states, in any computation.
Any such formula has ATM of this kind that solves it; any ATM
can be converted to equivalent ∃ . . . ∀-formula.

—Another answer: in terms of oracle machines...
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The polynomial-time hierarchy

diagram taken from Wikipedia

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i , i.e. co − ΣP
i+1

∆P
i+1 := PΣP

i

AB : problems solved by A-machine with
oracle for B-complete problem

Warm-up: consider PP, NPP, PNP,...

PNP seems to be more than just NP;
indeed there are classes of interest
intermediate between NP and PNP!
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Examples

Many diverse problems are complete for low levels of PH (link to
compendium on course web page)

Example of a ΣP
2 -complete problem: MIN-DNF: consists of a DNF

formula φ and integer k.
Question: is there a DNF formula ψ for which ψ ≡ φ and ψ has
size at most k?

Containment in ΣP
2 : note that the problem is of the form

∃ (bit-string describing ψ) ∀ (valuations β of boolean variables)
φ and ψ agree on β

Hardness requires ∃x∀y(formula over variables x , y) to be
efficiently encoded as (φ, k), instance of MIN-DNF...
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The polynomial-time hierarchy

PH denotes the union of class in the hierarchy

Some key facts:

PH lies below PSPACE; if any problem is complete for PH, it
must belong to the k-th level of the hierarchy, and PH would
“collapse” to that level

Classes in PH are characterised by restricted alternating TMs

If P is equal to NP, then PH would collapse to P (next slide)

If NP is equal to co-NP, then PH collapses to NP. (hints that
NP ̸= co-NP.)

If the graph isomorphism problem is NP-complete, then the PH
collapses to the second level (Schöning 1987)
...evidence that the problem is not in fact NP-complete.
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The polynomial-time hierarchy

Theorem: If P is equal to NP, then PH would collapse to P

Proof: If P is equal to NP, it’s also the same as co-NP

Recall the expressions

ΣP
i+1 := NPΣP

i

ΠP
i+1 := co-NPΣP

i

∆P
i+1 := PΣP

i

and proceed by induction on i

i.e. ΣP
2 = NPΣP

1 = NPNP (by def, ΣP
1 = NP)

= PP (by assumption of the theorem)
= P
etc.
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PH is “structure between NP and PSPACE”: a sequence of classes
that “seem” to all be different.

Next: Logarithmic space: structure within P
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Logarithmic Space

Polynomial space: seems more powerful than NP.

Linear space: we noted is similar to polynomial space

Sub-linear space?
To be meaningful, we consider Turing machines with separate
input tape and only count working space.

LOGSPACE (or, L) Problems solvable by logarithmic space
bounded TM

NLOGSPACE (or, NL) Problems solvable by logarithmic space
bounded NTM

Not hard to show that L⊆NL⊆P

(Sipser Chapter 8.4, Arora/Barak, p.80)
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Problems in L and NL

What sort of problems are in L and NL?

In logarithmic space we can store

a fixed number of counters (up to length of input)

a fixed number of pointers to positions in the input string.

Hence,

LOGSPACE contains all problems requiring only a constant
number of counters/pointers for solving.

NLOGSPACE contains all problems requiring only a constant
number of counters/pointers for verifying solutions.
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Examples: Problems in L

Example. The language {0n1n : n ≥ 0}

Algorithm.

Check that no 1 is ever followed by a 0

Requires no working space. (only movements of the read head)

Count the number of 0’s and 1’s.

Compare the two counters.

Example. PALINDROMES ∈ LOGSPACE

(words that read the same forward and backward)

Algorithm.

Use two pointers, one to the beginning and one to the end of

the input.

At each step, compare the two symbols pointed to.

Move the pointers one step inwards.

Paul Goldberg PH; (N)LOGSPACE; circuits 11 / 42



Examples: Problems in L

Example. The language {0n1n : n ≥ 0}

Algorithm.

Check that no 1 is ever followed by a 0

Requires no working space. (only movements of the read head)

Count the number of 0’s and 1’s.

Compare the two counters.

Example. PALINDROMES ∈ LOGSPACE

(words that read the same forward and backward)

Algorithm.

Use two pointers, one to the beginning and one to the end of

the input.

At each step, compare the two symbols pointed to.

Move the pointers one step inwards.

Paul Goldberg PH; (N)LOGSPACE; circuits 11 / 42



Example: A Problem in NL

Example. The following problem is in NL:

REACHABILITY a.k.a. PATH
Input: Directed graph G , vertices s, t ∈ V (G )

Problem: Does G contain a path from s to t?

Algorithm.
Set counter c := |V (G )|
Let pointer p point to s

while c ̸= 0 do

if p = t then halt and accept

else

nondeterministically select a successor p′ of p

set p := p′

c := c − 1

reject.
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LOGSPACE Reductions

Polynomial-time reductions are too “coarse” to compare poly-time
vs. log-space computability.

Definition. A LOGSPACE-transducer M is a TM with

a read-only input tape

a write only, write once output tape

a memory tape of size O(log(n))

M computes a function f : Σ∗ → Σ∗, where f (w) is the content of
the output tape of M running on input w when M halts.

f is called a logarithmic space computable function.

Definition.
A LOGSPACE reduction from L ⊆ Σ∗ to L′ ⊆ Σ∗ is a log space
computable function f : Σ∗ → Σ∗ such that for all w ∈ Σ∗:

w ∈ L ⇐⇒ f (w) ∈ L′

We write L ≤L L′
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NLOGSPACE (or, NL)-Completeness

A problem L ∈ NL is complete for NL, if every other language in
NL is log space reducible to L.

Theorem. REACHABILITY (or, PATH ) is NL-complete.

Proof idea. (details to follow)

Let M be a non-deterministic LOGSPACE TM deciding L.

On input w :

1 construct a graph whose nodes are configurations of M and

edges represent possible computational steps of M on w

2 Find a path from the start configuration to an accepting

configuration.
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NL-Completeness of PATH

some more details.

Construct ⟨G , s, t⟩ from M and w using a LOGSPACE-transducer:

1 A configuration (q,w2, (p1, p2)) of M can be described in

c log n space for some constant c and n = |w |.
2 List the nodes of G by going through all strings of length

c log n and outputting those that correspond to legal

configurations.

3 List the edges of G by going through all pairs of strings

(C1,C2) of length c log n and outputting those pairs where

C1 ⊢M C2.

4 s is the starting configuration of G .

5 Assume w.l.o.g. that M has a single accepting configuration t.

w ∈ L iff ⟨G , s, t⟩ ∈ REACHABILITY

(see Sipser Thm. 8.25)
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co-NLOGSPACE

As for time, we consider complement classes for space.

Recall
If C is a complexity class, we define

co-C := {L : L ∈ C}.

From Savitch’s theorem:

PSPACE = NPSPACE and hence co-NPSPACE = PSPACE
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NLOGSPACE = co-NLOGSPACE

However, from Savitch’s theorem we only know

NLOGSPACE ⊆ DSPACE(log2 n).

Theorem. (Immerman and Szelepcsényi ’87-8)

NLOGSPACE = co-NLOGSPACE

Proof idea.

Show that REACHABILITY is in NL.
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NLOGSPACE = co-NLOGSPACE

Proof sketch. On input ⟨G , s, t⟩, let m = |V (G )|.
Define ci to be number of nodes reachable from s in ≤ i steps;
compute ci for increasing i = 1, 2, . . . ,m

1 Only node s is reachable in 0 steps, so c0 = 1
2 For each i = 1, . . . ,m, set ci = 1, remember ci−1, and for

each v ̸= s in G
1 d := 0
2 For each node u in G

1 guess if reachable from s in ≤ i − 1 steps, if so do (2,3):
2 Verify each “yes” guess by guessing an at most i − 1 step path

from s to u; if so, d := d + 1; reject if no such path found
3 If we guessed that u is reachable, and (u, v) ∈ E(G), then

increment ci and continue with next v

3 If total number d of u guessed is not equal to ci−1, then reject

Continued...
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NLOGSPACE = co-NLOGSPACE

Proof sketch (continued). On input ⟨G , s, t⟩
(at this stage we have cm)

Then try to guess cm nodes reachable from s and not equal to t:

1 For each node u in G , guess if reachable from s in m steps

2 Verify each “yes” guess by guessing a ≤ m step path from s
to u; reject if no such path found

3 If we guessed that u is reachable, and u = t, then reject

4 If total number d of u guessed not equal to cm, then reject

5 Otherwise accept

Algorithm stores (at one time) only 6 counters (u, v , ci−1, ci , d
and i) and a pointer to the head of a path; hence runs in logspace.

(more details in Sipser Theorem 8.27)
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To summarise

It’s unknown where L is equal to NL, or if NL is equal to P.

L ⊆ NL = co-NL ⊆ P

Still, we have that NL is closed under complement — contrast
with NP

By space hierarchy theorem, L ⊊ PSPACE
Indeed (from s.h.t. and Savitch’s theorem) NL ⊊ PSPACE

Next: more structure within P: Circuit complexity, NC, AC,
P-completeness
(also P/poly)
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Boolean Circuits: another model of computation

A standard mathematical model of “digital circuit”

A Boolean circuit is a DAG:

Inputs : nodes without incoming edges labeled with 0 or 1.

Gates : nodes with (one or two) incoming edges and one
outgoing edge labeled and, or, or not.

A single node is labeled as output.

side-note: here we focus on and, or, or not (the “standard basis”);
circuit classes with other operations are of interest, e.g. xor with
multiple inputs (counting mod 2 the number of 1’s in inputs), and
versions for counting mod k , for other values of k
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Boolean Circuits

Input-output behaviour described using Boolean functions

To each circuit C with n inputs is associated fC : {0, 1}n → {0, 1}
Example: parity function with 4 variables (returns 1 if and only if

the number of 1’s in the input is odd)
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Minimal Circuits

Some basic definitions:
Circuit Size: number of gates contained in the circuit

Circuit depth: Length of the longest path from an input to the
output gate

Size-minimal circuits: no circuit with fewer gates computes the
same function.

Depth-minimal circuits: no circuit with smaller depth computes the
same function.

Minimisation (given a circuit, find a smallest equivalent one) is a
hard problem in practice

Not known to be in P or even in NP.

Problem of current research interest: Minimum Circuit Size
Problem (MCSP):

Input: boolean function f presented as truth table; number s
Question: is there a circuit of size s computing f ?
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Families of Circuits

test membership in language L using circuits...

L may have strings of different lengths but circuits have fixed
inputs

Circuit family
An infinite list of circuits C = (C0,C1,C2, . . .) where Cn has n
inputs. Family C decides a binary language L if

w ∈ L if and only if Ck(w) = 1 (for every string w of length k)

Size (Depth) complexity of a circuit family C = (C0,C1, . . .)
Function f : N → N with f (n) size (depth) of Cn

Circuit-size (Circuit-depth) complexity of a language
Size (Depth) complexity of a circuit family for that language where
every component circuit Ci is size-minimal (depth-minimal).
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Circuit Complexity vs Time Complexity

Small time complexity ⇒ small circuit complexity

Theorem. If L ∈ DTIME(t(n)) with t(n) ≥ n then L has
circuit-size complexity O(t2(n))

Proof idea

1 Take a TM M that decides L in t(n)

2 For each n construct Cn that simulates M on inputs of length
n

3 Gates of Cn are organised in t(n) rows (one per configuration)

4 Wire each to the previous one to calculate the new
configuration from the previous row’s configuration as in the
transition function.
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Circuit Complexity vs. Time Complexity
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Consequences

This theorem and its proof yield surprisingly deep consequences.

1 It sheds some light on the P versus NP issue:

If we can find a language in NP that has super-polynomial
circuit complexity then P ̸= NP.

2 It allows us to identify a natural P-complete problem.

3 It provides an alternative proof for Cook-Levin theorem.

Yet another complexity class: P/poly — problems that can be
solved with polynomial-size circuit families

From the theorem, P ⊆ P/poly
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P-completeness

Definition. A language L is P-complete (or PTIME-complete) if

it is in P and

every other language in P is LOGSPACE reducible to L.

Circuit Value Problem (CVP) is the problem of checking, given
a circuit C and concrete input values, whether C outputs 1.

(Called MonotoneCVP if C does not include negation.)

Theorem. CVP is P-complete.

Proof Idea

1 Take the previous construction and some L ∈ P.

2 Given x , construct a circuit that simulates a TM M for L on
inputs of length x .

3 The reduction has repetitive structure and is feasible in
logarithmic space.
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NP-completeness via Circuits; Cook’s thm revisited

CIRCUIT-SAT is the problem of checking, given a circuit C ,
whether C outputs 1 for some setting of the inputs.

Theorem. CIRCUIT-SAT is NP-complete.

Proof idea Membership in NP is obvious so take any L ∈ NP.

1 There is a verifier VL(x , s) checking whether s is a solution
for x .

⇒ VL works in poly time in |x | and |s| is polynomial in |x |.
2 VL can be rendered as a circuit family C whose inputs encode

x , s.
⇒ C|x |+|s| returns 1 iff s is a solution for x .

3 To check x ∈ L, build C|x |+|s| leaving the bits for s unknown
⇒ the satisfying values for unknowns yield the solutions for

x .

CIRCUIT-SAT and SAT are inter-reducible (poly-time equivalent)
⇒ Cook-Levin theorem follows!
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The Power of Circuits

A key caveat of circuits. They are not a realistic model of
computation!

Theorem

There exist undecidable languages in P/poly (i.e. having
polynomial size circuits)

1 Consider any undecidable L ⊆ {0, 1}∗.
2 Let U = {1n : the binary expansion of n is in L }
3 U is undecidable: L reduces to it via an (exponential)

reduction.
4 U has a trivial family of polynomial circuits!

If 1n ∈ U then Cn consists of n − 1 and gates.
If 1n ̸∈ U then Cn outputs 0.
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Uniformity

The catch: Constructing the circuits involves solving an unsolvable
problem

Uniform circuit families
Given 1n as input, Cn can be constructed in LOGSPACE.

⇒ Circuits should be easy to construct!

With uniformity, circuits become a sensible model of computation.

Theorem

A language L is in P iff it has uniformly polynomial circuits.

Proof

1 Assume L has uniformly polynomial circuits and let w ∈ L.
2 Construct C|w | in log. space (and hence in poly. time).

3 Evaluate the circuit (CVP is in P).

Paul Goldberg PH; (N)LOGSPACE; circuits 31 / 42



Circuits and Parallel Computation

Boolean circuits are genuinely parallel

computational activity can happen concurrently at same-level gates.

Parallel time complexity of a circuit related to the circuit’s depth.

Simultaneous size-depth complexity of a language
L has simultaneous size-depth complexity (f (n), g(n)) if a uniform
circuit family exists for L with

size complexity f (n) and

depth complexity g(n).
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Parity

Parity is feasible in (O(n),O(log(n)))

XOR = 2-parity XOR = 2-parity

XOR = 2-parity
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The class NC

Definition. NC (“Nick’s Class”, after Nick Pippinger)
For i ≥ 0, NCi consists of all languages solvable in
(O(nk),O(log i (n))) with k an integer. Then, NC =

⋃
i NC

i .

“polylogarithmic” depth

Nice features of NC

Problems in NC are highly parallelisable with moderate
amount of processors.

Contains a wide range of relevant problems (e.g. standard
arithmetic and matrix operations)
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NC vs. L (or, LOGSPACE)

Theorem. NC1 ⊆ L

Proof: Consider L ∈ NC1 and an input w of length n.

General trick: Can construct “on the fly” Cn (and specific gates)
from the uniform NC1 family C deciding L.

1 Evaluate Cn on w in a depth-first manner from the output
gate.

and gate: evaluate recursively the first predecessor; if false,
then we are done. Otherwise evaluate the second predecessor.
or gate: same principle.
not: evaluate the unique predecessor and return opposite
value.

2 Record only the path to current gate and intermediate results
Amount we need to remember is logarithmic since the
circuit has logarithmic depth!
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NC vs. NL (or, NLOGSPACE)

Theorem. NL ⊆ NC2

Proof (incomplete, just some ideas): Consider w of length n and a
TM M for L ∈ NL.

1 Construct (in log. space) the graph Gn of all possible
configurations of M for an input of length n.

Nodes of Gn are the (polynomially many) configurations of M,
i.e.:

State
Contents of work tape
Input tape head position and work tape head position

Given nodes c1 and c2 with c1 input tape head position i

Add edge (c1, c2) labeled wi if c1 yields c2 when wi = 1
Add edge (c1, c2) labeled wi if c1 yields c2 when wi = 0
Add edge (c1, c2) unlabeled if c1 yields c2 regardless of wi .

2 Build circuit Cn computing reachability over Gn w.r.t. input w
Can be done in O(log2n) depth.
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NC vs. P

Theorem. NC ⊆ P

Proof
Let L ∈ NC be decided by a uniform circuit family C .
On input w of length n proceed as follows:

1 Construct Cn (using logarithmic space)

2 Evaluate (in polynomial time) the circuit on input w

Cn has nk gates for some k
Circuits can be evaluated in time polynomial in the number of
gates

An interesting open question is whether P ⊆ NC

We believe that this is not the case
⇒ not all tractable problems seem highly parallelizable!
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The Class AC0

So far we have restricted and and or gates to have 2 inputs.

Definition: The class ACi

analogous to NCi for circuits with arbitrary fan-in gates.

We have the following hierarchy:

NC0 ⊆ AC0 ⊆ NC1 ⊆ AC1 ⊆ . . .

NC0: functions that depend on O(1) input bits (“juntas”) — very
limited!

But AC0 is interesting:

Arbitrary fan-in and and or gates

Polynomial number of gates

Constant depth
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The power of AC0

AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ P

However, a great deal can be accomplished within AC0

Integer addition

Integer subtraction

Even the evaluation of a (fixed) Relational Algebra query.
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Addition in AC0

Construct a circuit C (xn, . . . , x1, yn, . . . , y1)

Input are binary numbers xn, . . . , x1 and yn, . . . , y1

We have n + 1 outputs zn+1, zn, . . . , z1 (a minor relaxation)

Notation:

andi = xi ∧ yi

ori = xi ∨ yi

xori = (xi ∧ ¬yi ) ∨ (¬xi ∧ yi )

Then, the “carried-over bit” ci and result zi are as follows (take
c0 = 0):

ci = andi ∨ (ori ∧ ci−1)

zi = (¬ori ∧ ci−1) ∨ (xori ∧ ¬ci−1) ∨ (andi ∧ ci−1)

Note that c1 = and1, z1 = xor1 and zn+1 = cn
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Sum in AC0
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The limits of AC0

Most interestingly, AC0 has provable limitations!

Theorem. Parity is not feasible in AC0

As a consequence AC0 ⊂ NC1

AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ P
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