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Randomised Algorithms

Randomised algorithms have access to a stream of random bits.

The running time and even the outcome may depend on random
choices.

We may allow randomised algorithms to

produce the wrong result, but only with small probability.

take more than polynomially many steps, but “not too often”

⇝ expected running time is polynomial.
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Some randomised classes

ZPPRP co-RP

BPP

PP

ZPP: “Las Vegas algorithms”; contains P. Poly expected time
RP: one-sided error; no-instance 7→“no”, yes-instance7→“yes” with
probability≥ p (for some constant p > 0)
PP: “majority-P”, contains NP, within PSPACE
BPP: allow error either way (constant probability < 1

2)
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Usage of randomised algorithms

In practice, not so much for language recognition, more for
simulation, crypto, stats/ML, or sampling for probability from
probability distributions of interest

search for approximate average via sampling

Find median element of list {a1, . . . , an}: To find k-th highest
element, randomly select “pivot” element and find k ′-th highest
element of sublist (for suitable k ′)

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)

given prime number as input, says “prime”

Given composite number as input, with prob. 1/4 says
“prime” (correct with prob. 3/4).

One-sided error; co-RP. Run it k times, say “composite” if we ever
get that result, else “prime”. Error prob is only (1/4)k .
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Language recognition problem where randomisation seems
to help

Polynomial identity testing:

E.g. (x2 + y)(x2 − y) ≡ x4 − y2

where ≡ means equality holds for x , y ∈ N.

In general, if we have many variables, no known deterministic and
efficient algorithm, but notice you can try plugging in random x , y
and checking for equality: if we find answer is “no” we are done;
moreover it turns out that for all no-instances you have good
chance of verifying that.

works for arithmetic circuits; consider question p(x1, . . . , xn) ≡ 0
for circuit with n inputs, 1 output, gates are +,−,×.
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Randomised Complexity Classes

RP⊆NP: accepting computation of an RP machine is a certificate
of yes-instance.

It’s unknown whether BPP⊆NP, but we argue that BPP represents
problems that are in a sense solvable in practice (we expect
NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances
are accepted with prob. > 1

2 ; no-instance with prob. ≤ 1
2 .

PP contains BPP (almost follows directly from the definitions)

It also contains NP: we can make a PP algorithm that solves
SAT. (consider X ∨ φ where φ is a SAT-instance)

PP is a subset of PSPACE.
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Probability amplification

BPP: problems that can be solved by a randomised algorithm

with polynomial worst-case running time

which has an error probability of ε < 1
2 .

For RP, easy to see how we can improve error probability of
algorithm (and evaluate the improvement):
RP: one-sided error; no-instance 7→“no”, yes-instance7→“yes” with
probability≥ p (for some constant p > 0)

For problem X with RP algorithm having (say) p = 10−6, run the
algorithm 106 times, finally output “yes” iff we see at least one
“yes” output. Error probability goes down to < 1

2 !

co-RP algorithm: similar trick, output “no” iff we see at least one
“no”
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Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p′(n)
(p′ a polynomial), and no-instances always give answer “no”. Then
X ∈RP.

Warm-up for BPP: BPP algorithm with error prob 1
2 − δ:

suppose we run it 3 times and take majority vote.

Pr[error ] = ( 1
2
− δ)3 + 3( 1

2
− δ)2( 1

2
+ δ)

= ( 1
2
− δ)2( 1

2
− δ + 3

2
+ 3δ) = ( 1

4
− δ + δ2)(2 + 2δ) = 1

2
− 3

2
δ + 2δ3

Theorem. If a problem can be solved by a BPP algorithm A
with polynomial worst-case running time

which has an error probability of 0 < ε < 1
2 .

then it can also be solved by a poly-time randomised algorithm

with error probability 2−p(n) for any fixed polynomial p(n).
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Probability Amplification

Proof.
Algorithm B: On input w of length n,

1 Calculate number k (to be determined; details to follow)

2 Run 2k independent simulations of A on input w

3 accept if more calls to the algorithm accept than reject.
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Probability Amplification

S := a1, . . . , a2k : sequence of results obtained by running A 2k times.

Suppose c of these are correct and i = 2k − c are incorrect.

S is a bad sequence if c ≤ i so that B gives the wrong answer.

The probability pS for any individual bad sequence S to occur is

pS ≤ εi (1− ε)c ≤ εk(1− ε)k

Hence: Pr[B gives wrong result on input w ] =∑
S bad

pS ≤ 22k · εk(1− ε)k = (4ε(1− ε))k

As ε < 1
2 we get 4ε(1− ε) < 1. Hence, to obtain probability 2−p(n)

we let

α = − log2(4ε(1− ε)) and choose k ≥ p(n)/α.
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General note

So, every problem that can be solved with error probability ε < 1
2

can be solved with error probability < 2−p(n).

...practically useful?

Arguably yes:

the probability that an algorithm with error probability of
2−100 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

hardware failures,
random bit mutations in the memory
...
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Hoeffding’s inequality

Consider a (biased) coin that comes up heads with probability p.
So, if we toss it n times, should get p.n heads on average. Letting
random variable H(n) be number of heads seen after n coin tosses,
it turns out that

Pr[H(n) ≤ (p − ε)n] ≤ exp(−2ε2n)

and similarly,

Pr[H(n) ≥ (p + ε)n] ≤ exp(−2ε2n)

Probability that we’re off by a constant factor, is
inverse-exponential in n. Often useful in analysing randomised
algorithms!
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Relationships to other complexity classes

Recall we noted that RP⊆NP.
(convert a randomised algorithm to a non-deterministic one by
replacing coin flips with non-deterministic guesses.)

Doesn’t work for BPP.

We do have BPP⊆ ΣP
2 ∩ ΠP

2 (Sipser-Gács-Lautemann theorem)
Consequently, if P=NP, it would follow that P=BPP since if
P=NP, the polynomial hierarchy collapses to P.

We also know: BPP⊆P/poly (Adleman’s theorem).
“Any BPP language has polynomial-size circuits.”
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Next: A randomised algorithms for reducing a (satisfiable) SAT
instance to one having a unique solution

Then, a quick look at probabilistically checkable proofs
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Reducing SAT to USAT with the aid of randomness

We give another example of a task where randomisation seems to
be useful.
Also, interesting technique; illustration of probabilistic reasoning.

USAT: given a formula φ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)

So, USAT is no harder than SAT, and in a sense it’s also no easier.

Afterwards: a quick look at interactive proofs, another setting
where randomisation is important
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Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2n. The
“strong exponential time hypothesis” asserts that you need time
proportional to 2n.1

But: note Grover’s algorithm, a quantum algorithm solving USAT
in time poly(n)2n/2. Reducing SAT to USAT means that on a
quantum machine, SAT is also solved in time poly(n)2n/2!

Challenge: Given φ, construct ψ such that ψ has a unique
satisfying assignment iff φ is satisfiable.

Idea: ψ := φ ∧ ρ, where ρ is some other formula over the same
variables.

1(non-strong) ETH: for 3SAT, 2kn needed for some k > 0
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Reducing SAT to USAT

Challenge: Given φ, construct ψ such that ψ has a unique
satisfying assignment iff φ is satisfiable.
Idea: ψ := φ ∧ ρ, where ρ is some other formula over the same
variables.
Extension of the idea: ψ1 := φ ∧ ρ1, ... ,ψk := φ ∧ ρk ; look for
satisfying assignment of any of these...

Problem: Think of φ as having been chosen by an opponent.
Given a choice of ρ1, . . . , ρk , he can pick a φ that fails for your
choice. This is where randomness helps!

(random) parity functions: let x1, . . . , xn be the variables of φ.
Let π := ⊕x∈R(x)⊕ b where each xi is added to R with prob. 1

2 ,
and b is chosen to be true/false with equal probability 1

2 .

Think of R as standing for “relevant attributes”
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Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider φ with set S of satisfying assignments. For random p.f.
π, the expected number of satisfying assignments of φ ∧ π is 1

2 |S |.

To see this, note that any satisfying assignment of φ gets
eliminated with probability 1

2 .

Corollary: letting ρk := π1 ∧ . . . ∧ πk for independently
randomly-chosen πi , the expected number of satisfying
assignments to φ ∧ ρk is |S |/2k .

This suggests the following approach:

Generate ρk as above, for each k = 1, 2, . . . , n + 1.

Search for a satisfying assignment to φ ∧ ρk .
Need to argue that for k ≈ log2 |S |, we have reasonable chance of
producing a formula with a unique s.a.
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Pairwise independence of random p.f’s:

Given x ̸= x ′ ∈ S , and a random parity function π, we have:

Pr[x satisfies π] = 1
2 Pr[x ′ satisfies π] = 1

2

In addition:
Pr[x satisfies π|x ′ satisfies π] = 1

2

Proof:
For any x , π(x) = v .x (or, ¬v .x) where v is characteristic vector
of relevant attributes R of π.
(v .x denotes sum (XOR) of entries of x where corresponding entry
of v is 1)
Let i be a bit position where x ′i = 1 and xi = 0. i gets added to R
with probability 1

2 , so value of π(x ′) gets flipped with probability 1
2 .

similarly for conjunctions of random parity functions
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Reducing SAT to USAT

For some k, we have 2k−2 ≤ |S | ≤ 2k−1.
Lemma: Pr[there is unique x ∈ S satisfying φ ∧ ρk ] ≥ 1

8
(probability is w.r.t. random choice of ρk).

Proof: Let p = 2−k be the probability that x ∈ S satisfies ρk .
Let N be the random variable consisting of the number of s.a.’s of φ ∧ ρk .
E[N] = |S |p ∈ [ 1

4
, 1
2
].

Pr[N ≥ 1] ≥
∑
x∈S

Pr[x |= ρk ]−
∑

x<x′∈S

Pr[x |= ρk ∧ x ′ |= ρk ] = |S |p −

(
|S |
2

)
p2

By pairwise independence and union bound, we have Pr[N ≥ 2] ≤
(|S|

2

)
p2. So

Pr[N = 1] = Pr[N ≥ 1]− Pr[N ≥ 2] ≥ |S |p − 2

(
|S |
2

)
p2 ≥ |S |p − |S |2p2 ≥ 1

8
.

(where the last inequality uses 1
4
≤ |S |p ≤ 1

2
.)
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Interactive proofs

an important application of randomisation in context of
computational complexity

NP problems as “one-round interrogation”:

skeptic: show me a solution
prover: ⟨solution⟩

skeptic can easily check prover’s solution.
prover is “all-powerful”.

A problem X is in NP if there’s a poly-time TM (the skeptic), and
a function (the prover) that can convince the skeptic...

Can an extension of above protocol “capture” other complexity
classes?
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Interactive proofs

General idea: multi-round interaction

c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there’s a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

for problem-instance I of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let’s limit
messages to polynomial length.

P and V’s messages may depend on previous interaction

V ends up accepting iff I is a yes-instance...

But: consider deterministic verifier. Prover can supply all answers
“upfront”: no need to interact.
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The Complexity Class IP

Definition. A decision problem L belongs to the complexity class IP
if there is

a communication protocol C and

a randomised polynomial-time bounded algorithm V (the
verifier)

with the property that

1 there is a function P (the prover) such that if w ∈ L

Pr[ P persuades V to accept w ] ≥ 2

3

2 for all “prover” functions P ′, if w ̸∈ L

Pr[ P ′ persuades V to accept w ] ≤ 1

3

L belongs to IP[k] if at most k communication rounds are
necessary.
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Graph-Non-Isomorphism in IP

Recall. An isomorphism between two graphs H and G is a function
f : V (H) → V (G ) such that

1 f is a bijection between V (H) and V (G ) and

2 for all u, v ∈ V (H): {u, v} ∈ E (H) ⇐⇒
{f (v), f (u)} ∈ E (G ).

Graph isomorphism has no known poly-time algorithm

Graph isomorphism is easily seen to be in NP but unlikely to be
NP-complete, has subexponential algorithm

It’s also known that if GI is NP-complete, then ΣP
2 = ΠP

2 , thus PH
collapses
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Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)

Input. Graphs G1 and G2.

Communication.

1 V randomly chooses i ∈ {1, 2}, randomly permutes vertices of
Gi to obtain new graph H isomorphic to Gi .

2 V sends H to P
3 P identifies the graph Gj to which H is isomorphic, and sends

j back.

4 V accepts if i = j .

Repeat (in parallel or sequentially) until V “reasonably convinced”.

Theorem. IP = PSPACE
(See Sipser, Theorem 10.29)
Arora/Barak: IP=PSPACE (Chapter 8.3)
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Zero-Knowledge Proofs

Applications.

1 Secure authentication. convince someone you know some
password etc without revealing it

2 Auctions.

Several companies place bids for items/frequencies/mining
rights ...

They place their bids simultaneously.

After the bidding process, each company wants to be
convinced that the winner really bid more than itself.

The winner doesn’t want to reveal their bid.

Next: graph isomorphism. Standard IP has prover reveal the
isomorphism: let’s disallow that!
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A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs G1,G2

Prover’s secret: An isomorphism π between G1,G2

Prover wants to prove to Verifier that G1
∼= G2 without revealing π.

Communication protocol.
1 P randomly selects i ∈ {1, 2} and computes a random

permutation of |V (Gi )| generating a graph H ∼= Gi

2 P sends H to V and keeps the isomorphism f : H ∼= Gi .
3 V randomly selects j ∈ {1, 2} and sends j back to P.
4 P computes an isomorphism πj (either f or π ◦ f ) between Gj

and H, and sends it to V.
5 V accepts if H = πj(Gj)

If G1
∼= G2 then P can always convince V.

Otherwise, P fails with probability 1
2 , which again can be

amplified.

The computation can be done efficiently.
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