Paul W. Goldberg (Dept. of CS, Oxford)

HT 2023

Randomised Algorithms

Randomised algorithms have access to a stream of random bits.

The running time and even the outcome may depend on random
choices.

We may allow randomised algorithms to

@ produce the wrong result, but only with small probability.

@ take more than polynomially many steps, but “not too often’

~> expected running time is polynomial.

Paul Goldberg Randomisation 2/27

Some randomised classes

PP

ZPP: "Las Vegas algorithms”; contains P. Poly expected time
RP: one-sided error; no-instance— “no", yes-instance— “yes” with
probability> p (for some constant p > 0)

PP: “majority-P", contains NP, within PSPACE

BPP: allow error either way (constant probability < %)

Paul Goldberg Randomisation 3/27

Usage of randomised algorithms

In practice, not so much for language recognition, more for
simulation, crypto, stats/ML, or sampling for probability from
probability distributions of interest

search for approximate average via sampling

Find median element of list {a1,...,a,}: To find k-th highest
element, randomly select “pivot” element and find k’-th highest
element of sublist (for suitable k’)

Miller-Rabin test for primality, subsequently superseded by 2002
AKS primality test (deterministic)
@ given prime number as input, says “prime”
e Given composite number as input, with prob. 1/4 says
“prime” (correct with prob. 3/4).

One-sided error; co-RP. Run it k times, say “composite” if we ever
get that result, else “prime”. Error prob is only (1/4).

Paul Goldberg Randomisation 4/27

Language recognition problem where randomisation seems
to help

Polynomial identity testing:

Eg (C+y)(*—y)=x*—y?
where = means equality holds for x, y € N.

In general, if we have many variables, no known deterministic and
efficient algorithm, but notice you can try plugging in random x, y
and checking for equality: if we find answer is “no” we are done;
moreover it turns out that for all no-instances you have good
chance of verifying that.

works for arithmetic circuits; consider question p(xi,...,xp) =0
for circuit with n inputs, 1 output, gates are +, —, X.

Paul Goldberg Randomisation 5/27

Randomised Complexity Classes

RPCNP: accepting computation of an RP machine is a certificate
of yes-instance.

It's unknown whether BPPCNP, but we argue that BPP represents
problems that are in a sense solvable in practice (we expect
NP-complete problems to lie outside BPP).

PP (Gill, 1977):
Languages recognised by a probabilistic TM for which yes-instances
are accepted with prob. > %; no-instance with prob. < %

@ PP contains BPP (almost follows directly from the definitions)

@ It also contains NP: we can make a PP algorithm that solves
SAT. (consider X V ¢ where ¢ is a SAT-instance)

@ PP is a subset of PSPACE.

Paul Goldberg Randomisation 6/27

Probability amplification

BPP: problems that can be solved by a randomised algorithm
@ with polynomial worst-case running time

@ which has an error probability of ¢ < %

For RP, easy to see how we can improve error probability of
algorithm (and evaluate the improvement):

RP: one-sided error; no-instance— “no”, yes-instance— “yes” with
probability> p (for some constant p > 0)

For problem X with RP algorithm having (say) p = 107, run the
algorithm 10° times, finally output “yes” iff we see at least one
“yes" output. Error probability goes down to < %!

co-RP algorithm: similar trick, output “no” iff we see at least one

" "

no

Paul Goldberg Randomisation 7/27

Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p'(n)

(p’ a polynomial), and no-instances always give answer “no”. Then
X €RP.

Paul Goldberg Randomisation 8/27

Probability Amplification

Corollary for RP algorithms:
Suppose A solves problem X in polynomial time p(n) and the
probability that a yes-instance gives answer “yes” is only 1/p'(n)

(p’ a polynomial), and no-instances always give answer “no”. Then
X €RP.

Warm-up for BPP: BPP algorithm with error prob % -0
suppose we run it 3 times and take majority vote.

Prlerror] = (5 — 6)° +3(3 — 6)*(3 +6)
=3 -0PGE-0+32+30)=(3—-6+6)(2+29)

1-35+25°
Theorem. If a problem can be solved by a BPP algorithm A
@ with polynomial worst-case running time
@ which has an error probability of 0 < ¢ < %

then it can also be solved by a poly-time randomised algorithm
with error probability 27P(") for any fixed polynomial p(n).

Paul Goldberg Randomisation 8/27

Probability Amplification

Proof.
Algorithm B: On input w of length n,

@ Calculate number k (to be determined; details to follow)
@ Run 2k independent simulations of A on input w

© accept if more calls to the algorithm accept than reject.

Paul Goldberg Randomisation 9/27

Probability Amplification

S :=a1,...,ax: sequence of results obtained by running A 2k times.
Suppose ¢ of these are correct and i = 2k — ¢ are incorrect.

S is a bad sequence if ¢ < i so that B3 gives the wrong answer.
The probability ps for any individual bad sequence S to occur is

ps <el(l—e) < ef1—e)k

Paul Goldberg Randomisation 10/ 27

Probability Amplification

S :=a1,...,ax: sequence of results obtained by running A 2k times.
Suppose ¢ of these are correct and i = 2k — ¢ are incorrect.

S is a bad sequence if ¢ < i so that B3 gives the wrong answer.
The probability ps for any individual bad sequence S to occur is
ps <el(l—e) < ef1—e)k

Hence: Pr[B gives wrong result on input w | =

d ps < 2K 1-e)k = (4e(1-2))*
S bad

As e < 3 we get 4¢(1 —¢) < 1. Hence, to obtain probability 2—p(n)
we let

a = —log,(4e(1 — €)) and choose k > p(n)/c. O

Paul Goldberg Randomisation 10/ 27

So, every problem that can be solved with error probability ¢ < %
can be solved with error probability < 27P(")

...practically useful?

General note

So, every problem that can be solved with error probability ¢ < %
can be solved with error probability < 2P("),

...practically useful?

Arguably yes:

@ the probability that an algorithm with error probability of
2719 has bad luck with the coin tosses is much smaller than
the chance that any algorithm fails due to

e hardware failures,
e random bit mutations in the memory
o ...

Paul Goldberg Randomisation 11/27

Hoeffding's inequality

Consider a (biased) coin that comes up heads with probability p.
So, if we toss it n times, should get p.n heads on average. Letting
random variable H(n) be number of heads seen after n coin tosses,
it turns out that

Pr{H(n) < (p — &)n] < exp(—2¢%n)

and similarly,
Pr[H(n) > (p + £)n] < exp(—2¢2n)

Probability that we're off by a constant factor, is
inverse-exponential in n. Often useful in analysing randomised
algorithms!

Paul Goldberg Randomisation 12 /27

Relationships to other complexity classes

Recall we noted that RPCNP.
(convert a randomised algorithm to a non-deterministic one by
replacing coin flips with non-deterministic guesses.)

Doesn't work for BPP.

We do have BPPC Y5 N M5 (Sipser-Gacs-Lautemann theorem)
Consequently, if P=NP, it would follow that P=BPP since if
P=NP, the polynomial hierarchy collapses to P.

We also know: BPPCP/poly (Adleman’s theorem).
“Any BPP language has polynomial-size circuits.”

Paul Goldberg Randomisation 13 /27

Next: A randomised algorithms for reducing a (satisfiable) SAT
instance to one having a unique solution

Then, a quick look at probabilistically checkable proofs

Paul Goldberg Randomisation 14 /27

Reducing SAT to USAT with the aid of randomness

We give another example of a task where randomisation seems to
be useful.
Also, interesting technique; illustration of probabilistic reasoning.

USAT: given a formula ¢ with at most 1 satisfying assignment,
determine whether it is satisfiable. (U stands for “unique”)

So, USAT is no harder than SAT, and in a sense it's also no easier.

Afterwards: a quick look at interactive proofs, another setting
where randomisation is important

Paul Goldberg Randomisation 15 /27

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“strong exponential time hypothesis” asserts that you need time
proportional to 2.1

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

!(non-strong) ETH: for 3SAT, 2" needed for some k > 0
Paul Goldberg Randomisation 16 /27

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“strong exponential time hypothesis” asserts that you need time

proportional to 2.1

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Challenge: Given ¢, construct ¥ such that ¢) has a unique
satisfying assignment iff ¢ is satisfiable.

!(non-strong) ETH: for 3SAT, 2" needed for some k > 0
Paul Goldberg Randomisation 16 /27

Reducing SAT to USAT with the aid of randomness

We reduce SAT to USAT.

Motivation: known algorithms for SAT take time poly(n)2". The
“strong exponential time hypothesis” asserts that you need time
proportional to 2.1

But: note Grover's algorithm, a quantum algorithm solving USAT
in time poly(n)2"/2. Reducing SAT to USAT means that on a
quantum machine, SAT s also solved in time poly(n)2"/?!

Challenge: Given ¢, construct ¥ such that ¢) has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := v A p, where p is some other formula over the same
variables.

!(non-strong) ETH: for 3SAT, 2" needed for some k > 0
Paul Goldberg Randomisation 16 /27

Reducing SAT to USAT

Challenge: Given ¢, construct 1 such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := ¢ A p, where p is some other formula over the same
variables.

Extension of the idea: ¢1 := p A p1, ... Yk := © A pk; look for
satisfying assignment of any of these...

Problem: Think of ¢ as having been chosen by an opponent.

Given a choice of p1, ..., pk, he can pick a ¢ that fails for your
choice. This is where randomness helps!

Paul Goldberg Randomisation 17 /27

Reducing SAT to USAT

Challenge: Given ¢, construct 1 such that ¢ has a unique
satisfying assignment iff ¢ is satisfiable.

Idea: ¢ := ¢ A p, where p is some other formula over the same
variables.

Extension of the idea: ¢1 := p A p1, ... Yk := © A pk; look for
satisfying assignment of any of these...

Problem: Think of ¢ as having been chosen by an opponent.
Given a choice of p1, ..., pk, he can pick a ¢ that fails for your
choice. This is where randomness helps!

(random) parity functions: let x1, ..., x, be the variables of .
Let 7 := @xer(x) ® b where each x; is added to R with prob. 2,
and b is chosen to be TRUE/FALSE with equal probability %

Think of R as standing for “relevant attributes”

Paul Goldberg Randomisation 17 /27

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
7, the expected number of satisfying assighments of ¢ A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets
eliminated with probability .

Paul Goldberg Randomisation 18 /27

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
m, the expected number of satisfying assignments of o A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets

eliminated with probability .

Corollary: letting py := 71 A ... A 7, for independently
randomly-chosen 7;, the expected number of satisfying
assignments to o A py is |S|/2.

Paul Goldberg Randomisation 18 /27

Reducing SAT to USAT

Q: Why are random parity functions great?
A: Consider ¢ with set S of satisfying assignments. For random p.f.
m, the expected number of satisfying assignments of o A 7 is %\5\

To see this, note that any satisfying assignment of ¢ gets
eliminated with probability .

Corollary: letting py := 71 A ... A 7, for independently
randomly-chosen 7;, the expected number of satisfying
assignments to o A py is |S|/2.

This suggests the following approach:
@ Generate pj as above, foreach k=1,2,... ., n+ 1.
@ Search for a satisfying assignment to ¢ A p.

Need to argue that for k ~ log, |S|, we have reasonable chance of
producing a formula with a unique s.a.

Paul Goldberg Randomisation 18 /27

Pairwise independence of random p.f's:

Given x # x’ € S, and a random parity function 7, we have:

Pr[x satisfies 7] = 3 Pr[x’ satisfies 7] = 3

In addition:
Pr[x satisfies 7|x’ satisfies] = 3

Proof:

For any x, m(x) = v.x (or, =v.x) where v is characteristic vector
of relevant attributes R of 7.

(v.x denotes sum (XOR) of entries of x where corresponding entry
of vis 1)

Let i be a bit position where x/ =1 and x; = 0. i gets added to R
with probability % so value of m(x’) gets flipped with probability %

similarly for conjunctions of random parity functions

Paul Goldberg Randomisation 19 /27

Reducing SAT to USAT

For some k, we have 2k72 < |§| < 2k—1,

Lemma: Pr[there is unique x € S satisfying ¢ A px] > %
(probability is w.r.t. random choice of p).

Proof: Let p =27% be the probability that x € S satisfies pj

Let N be the random variable consisting of the number of s.a’s of © A pk
EIN =|Slp €133

)

Pr[N > 1] > ZPr[x E o] — Z Prix = px A X' |= pi] = ISlp — <|2|>p2
x€S x<x'€S

By pairwise independence and union bound, we have Pr[N > 2] < (I3!)p?. So

Pr[N = 1] = Pr[N > 1] — Pr[N > 2] > |S|p — 2<| |>p > |S|p— |SPp %

(where the last inequality uses ; < |S|p < 3.)

Paul Goldberg Randomisation 20/27

Interactive proofs

@ an important application of randomisation in context of
computational complexity

NP problems as “one-round interrogation”:

skeptic: show me a solution
prover: (solution)

skeptic can easily check prover's solution.
prover is “all-powerful”.

A problem X is in NP if there's a poly-time TM (the skeptic), and
a function (the prover) that can convince the skeptic...

Can an extension of above protocol “capture” other complexity
classes?

Paul Goldberg Randomisation 21 /27

Interactive proofs

@ General idea: multi-round interaction
c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there's a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

e for problem-instance Z of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let's limit
messages to polynomial length.

@ P and V's messages may depend on previous interaction

@ V ends up accepting iff Z is a yes-instance...

Paul Goldberg Randomisation 22/27

Interactive proofs

@ General idea: multi-round interaction
c.f. mathematician with new theorem, tries to convince
colleagues...

Idea for definition: A problem belongs to IP if there's a
communication protocol with a function P (the prover) and a
poly-time computable function V (the verifier) such that:

e for problem-instance Z of size n, allow poly(n) rounds of
interaction (sequence of questions/challenges). Let's limit
messages to polynomial length.

@ P and V's messages may depend on previous interaction

@ V ends up accepting iff Z is a yes-instance...

But: consider deterministic verifier. Prover can supply all answers
“upfront”: no need to interact.

Paul Goldberg Randomisation 22/27

The Complexity Class IP

Definition. A decision problem L belongs to the complexity class IP
if there is

@ a communication protocol C and

@ a randomised polynomial-time bounded algorithm V' (the
verifier)

with the property that
@ there is a function P (the prover) such that if w € £

Pr[P persuades V to accept w] >

Wl N

@ for all “prover” functions P’, if w & L

Pr[P’ persuades V to accept w] < 3
L belongs to IP[k] if at most kK communication rounds are
necessary.

Paul Goldberg Randomisation 23/27

Graph-Non-Isomorphism in IP

Recall. An isomorphism between two graphs H and G is a function
f:V(H) — V(G) such that
© f is a bijection between V(H) and V(G) and
@ forall u,ve V(H): {u,v}e€EH) <<
{f(v),f(u)} € E(G).

Graph isomorphism has no known poly-time algorithm

Graph isomorphism is easily seen to be in NP but unlikely to be
NP-complete, has subexponential algorithm

It's also known that if Gl is NP-complete, then yP = ﬂg, thus PH
collapses

Paul Goldberg Randomisation 24 /27

Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)
Input. Graphs G; and G,.
Communication.

© V randomly chooses i € {1,2}, randomly permutes vertices of
G; to obtain new graph H isomorphic to G;.

@ Vsends Hto P

© P identifies the graph G; to which H is isomorphic, and sends
J back.

Q@ V accepts if i = .

Repeat (in parallel or sequentially) until V “reasonably convinced”.

Paul Goldberg Randomisation 25 /27

Graph-Non-Isomorphism in IP

(c.f. coke vs pepsi taste test)
Input. Graphs G; and G,.
Communication.

© V randomly chooses i € {1,2}, randomly permutes vertices of
G; to obtain new graph H isomorphic to G;.

@ Vsends Hto P

© P identifies the graph G; to which H is isomorphic, and sends
J back.

Q@ V accepts if i = .
Repeat (in parallel or sequentially) until V “reasonably convinced”.

Theorem. |P = PSPACE

(See Sipser, Theorem 10.29)
Arora/Barak: IP=PSPACE (Chapter 8.3)

Paul Goldberg Randomisation 25 /27

Zero-Knowledge Proofs

Applications.

© Secure authentication. convince someone you know some
password etc without revealing it
@ Auctions.
e Several companies place bids for items/frequencies/mining
rights ...
e They place their bids simultaneously.

e After the bidding process, each company wants to be
convinced that the winner really bid more than itself.

e The winner doesn't want to reveal their bid.

Next: graph isomorphism. Standard IP has prover reveal the
isomorphism: let's disallow that!

Paul Goldberg Randomisation 26 /27

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs Gy, G
Prover’s secret: An isomorphism m between Gi, G

Prover wants to prove to Verifier that G; = G without revealing 7.

Paul Goldberg Randomisation 27 /27

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs Gy, G
Prover’s secret: An isomorphism m between Gi, G
Prover wants to prove to Verifier that G; = G without revealing 7.

Communication protocol.
@ P randomly selects i € {1,2} and computes a random
permutation of |V/(G;)| generating a graph H = G;
@ P sends H to V and keeps the isomorphism f : H =2 G;.
@ V randomly selects j € {1,2} and sends j back to P.

@ P computes an isomorphism 7; (either f or 7 o f) between G;
and H, and sends it to V.

@ V accepts if H = 7j(Gj)

Paul Goldberg Randomisation 27 /27

A Zero-Knowledge Proof for Graph Isomorphism

Given: Two graphs Gy, G
Prover’s secret: An isomorphism m between Gi, G
Prover wants to prove to Verifier that G; = G without revealing 7.

Communication protocol.
@ P randomly selects i € {1,2} and computes a random
permutation of |V/(G;)| generating a graph H = G;
@ P sends H to V and keeps the isomorphism f : H =2 G;.
@ V randomly selects j € {1,2} and sends j back to P.

@ P computes an isomorphism 7; (either f or 7 o f) between G;
and H, and sends it to V.

@ V accepts if H = 7j(Gj)

e If G; = G, then P can always convince V.

@ Otherwise, P fails with probability % which again can be
amplified.

@ The computation can be done efficiently.

Paul Goldberg Randomisation 27 /27

