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Overview of next 2 lectures

Main complexity classes covered so far:

L ⊆ NL ⊆ P ⊆ NP ⊆

PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆

EXPSPACE = NEXPSPACE ⊆ . . .

Next: space hierarchy theorem, and strict containments it gives us;
Gap theorem

Then: “NP-intermediate” problems:

Ladner’s theorem

search problems where solutions are guaranteed to exist

Paul Goldberg Further topics 2 / 33



recall: Time Hierarchy theorem

proper complexity function f : roughly, an increasing function that can be

computed by a TM in time f (n) + n

For f (n) ≥ n a proper complexity function, we have

TIME(f (n)) is a proper subset of TIME((f (2n + 1))3).

It follows that P is a proper subset of EXP.

Proof used “time-bounded halting language” Hf and a

“diagonalising machine”

Hf := {⟨M,w⟩ : M accepts w after ≤ f (|w |) steps}
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Space Hierarchy Theorem

Space Hierarchy Theorem

Let S , s : N → N be functions such that

1 S is “space constructible”, and

2 S(n) ≥ n,

3 s = o(S).

Then DSPACE(s) ⊊ DSPACE(S).
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Space-constructible functions

Definition.
f : N → N is space constructible if f (n) ≥ log n and f (n) can be
computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in space O(f (n)).

Most standard functions are space-constructible:

All polynomial functions ( e.g. 3n3 − 5n2 + 1)

All exponential functions ( e.g. 2n)

For any space-constructible function f we can build a counter that
goes off after f (n) cells have been used on inputs of length n.

Consequence: As polynomials are space constructible, we can
enforce that in an nk -space bounded NTM M all computations
halt after using O(nk) space.
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slight digression: contrast with time-constructible functions

Definition.
f : N → N is time constructible if f (n) ≥ n log n and f (n) can be
computed from input 1n := 1 . . . 1︸ ︷︷ ︸

n times

in time O(f (n)).

Similar points apply for time constructible functions (as for space
constructible ones, previous slide).
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Proof of Space Hierarchy Theorem — Part I

Construct S-space bounded TM D as follows.

1 On input ⟨M,w⟩, let n = |⟨M,w⟩|.
2 If the input is not of the form ⟨M,w⟩, then reject.

3 Compute S(n) and mark off this much tape. If later stages
ever exceed this allowance, then reject.

4 Simulate M on input ⟨M,w⟩ while counting number of steps
used in simulation; if count ever exceeds 2S(n), then reject.

The simulation introduces only a constant factor c space
overhead.

5 If M accepts, then reject; otherwise accept.

L(D) = {⟨M,w⟩ : D accepts ⟨M,w⟩}.
By construction, L(D) ∈ DSPACE(S)
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Proof of Space Hierarchy Theorem — Part II

Claim. L(D) ̸∈ DSPACE(s)

Towards a contradiction,

let B be a s space bounded TM with L(B) = L(D).

As s = o(S) there is n0 ∈ N such that S(n) ≥ c · s(n) for all
n ≥ n0.

Hence, for almost all inputs ⟨B,w⟩ (length of ⟨B,w⟩ ≥ n0)

D completely simulates the run of B on ⟨B,w⟩

Hence, for almost all w ∈ {0, 1}∗

⟨B,w⟩ ∈ L(D) ⇐⇒ B does not accept ⟨B,w⟩ (Def of D)
⟨B,w⟩ ∈ L(B) ⇐⇒ B accepts ⟨B,w⟩. (Def of “L(B)”)

Paul Goldberg Further topics 8 / 33



A Hierarchy of Complexity Classes

Consequence of hierarchy theorems:

LOGSPACE ⊊ PSPACE ⊊ EXPSPACE

P ⊊ EXP

Relation between complexity classes covered so far:

L ⊆ NL ⊆ P ⊆ NP ⊆
̸= ̸= ̸= ̸=

PSPACE = NPSPACE ⊆ EXP ⊆ NEXP ⊆

̸= ̸=
EXPSPACE = NEXPSPACE ⊆ . . .
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The Gap Theorem

Question. Given more resources, can we always solve more
problems?

How much more resources do we need to be able to solve more
problems? (Can we solve strictly more problems in time 22

f (n)
than

in f (n)?)

Theorem. (Gap theorem for time complexity)

For every total computable function g : N → N with g(n) ≥ n
there is a total computable function f : N → N such that

DTIME
(
f (n)

)
= DTIME

(
g(f (n))

)
Analogously for space
complexity.
contrast with Time hierarchy
theorem

For f (n) ≥ n a proper complexity function,
we have TIME(f (n)) is a proper subset of
TIME((f (2n + 1))3).
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The Gap Theorem

Special case (Papadimitriou’s book, theorem 7.3): There is a
recursive function f : N → N such that TIME(f (n))=TIME(2f (n)).
Proof works by constructing f such that no TM, on input of length
n, halts between f (n) and 2f (n) steps.

Corollaries of Gap theorem. There are computable functions f
such that

DTIME(f ) = DTIME(2f )

DTIME(f ) = DTIME(22
f
)

DTIME(f ) = DTIME
(

22
..
2
}
f (n) times

)
However, the functions f are not time (space) constructible.
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NP-Intermediate Problems

Question.

Can we classify any problem in NP as polynomial or
NP-complete?

Which of the following diagrams corresponds to a true picture
of NP?

P=NP

NP-complete

P

NPC

?

P
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Ladner’s theorem

background

Cook/Levin (1971): SAT is NP-complete
Karp (1972): many other diverse NP problems of interest also
NP-complete

Ladner’s Theorem (1975)
If P ̸= NP then there is a language in NP that is neither in P not
NP-complete.

Proof. padding, diagonalisation; sketch on next slide...
(details in Papadimitriou Chapter 14; Arora/Barak Ch.3).
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Proof idea

Diagonalisation; let Mi be i-th Turing machine...

For f : N −→ N let SATf = {φ1nf (n) : φ ∈ SAT and n = |φ|}
Q: How hard is SATf for f constant? f (n) = n?

Let f (n) be smallest i < log log n such that for every bit-string x
with |x | < log n, Mi on input x outputs SATf (x) within i |x |i steps;
if no such i , set f (n) = log log n.

f (n) can be computed from n in O(n3) time

Claim. SATf ∈ P iff f = O(1).

Then if SATf ∈ P, solved by some TM Mi — for n > 22
i
, f (n) ≤ i

— f never gets larger than a constant.

If SATf is NP-complete, consider reduction from SAT to SATf .
Reduction must map instances of SAT to instances of SATf only
polynomially larger...
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NP-Intermediate Problems

Ladner’s theorem gives an artificial problem between P and NP.
Other candidates exist, however. Keep in mind, unconditional
NP-intermediateness is too much to hope for...
We can base this property on stronger assumptions than P ̸=NP.

Garey and Johnson 1979.

In their text book they highlight three problems whose complexity
was undecided:

Linear Programming

Primes/Composite

Graph Isomorphism

The first 2 of these now known to belong to P.
Total search problems (Factoring, Nash equilibrium
computation, and others) are NP-intermediate assuming they’re
not in P, and NP̸=co-NP.
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Overview

We noted that NP problems have “search” counterparts that are of
equal difficulty.

(recall Fsat: find a satisfying assigment)

For search problems having guaranteed solutions, we’ll see that a
novel classification is needed...
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Search versus decision

For NP-complete problems, e.g. Sat, suppose we want to
compute a satisfying assignment, not just test for satisfiability.
This is at least as challenging as Sat...

If we had a Sat-oracle, proceed as follows.
For φ over variables x1, . . . , xn, check if φ is satisfiable, if so, try φ
with x1 7→ 0 alternatively x1 7→ 1, then proceed to x2 etc.

Conclude that in a sense, computing a s.a. is no harder than Sat.

Complexity class FNP: functions checkable in poly-time.

FSAT is FNP-complete (via Cook-Levin)

So are function versions of other NP-complete problems
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Some apparently-hard “total” search problems in FNP

“total” — compute a total function, not a partial function

Pigeonhole Circuit:
Input: a boolean circuit with n input gates and n output gates
Output: either input vector x mapping to 0 or vectors x , x ′

mapping to the same output

many problems of local optimisation, e.g. Local-max-cut
of a weighted graph (next slide).

Factoring

Nash: the problem of computing a Nash equilibrium of a
game (comes in many versions depending on the structure of
the game)

many other problems associated with “non-constructive”
existence results
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LOCAL MAX-CUT example

LOCAL MAX-CUT on a
weighted graph:

is indeed a total search
problem

local (unlike global) optima
are easy to check

It “seems” hard! (though
easy for unweighted graph)

TFNP-hard? ...
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Search problems as poly-time checkable relations

NP search problem is modelled as a relation R(·, ·) where
R(x , y) is checkable in time polynomial in |x |, |y |
input x , find y with R(x , y) (y as certificate)

total search problem: ∀x∃y (|y | = poly(|x |),R(x , y))
SAT: x is boolean formula, y is satisfying bit vector.
Decision version of SAT is polynomial-time equivalent to search for y .

Factoring: input (the “x” in R(x , y)) is number N, output (the
“y”) is prime factorisation of N. No decision problem!

contrast with “promise problems”
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Reducibility among search problems

FP, FNP: search (or, function computation) problems where
output of function is computable (resp., checkable) in poly time.

Any NP problem has FNP version “find a certificate”.

Definition

Let R and S be search problems in FNP. We say that R
(many-one) reduces to S , if there exist polynomial-time
computable functions f , g such that

(f (x), y) ∈ S =⇒ (x , g(x , y)) ∈ R.

Key point: If S is polynomial-time solvable, then so is R. We say
that two problems R and S are (polynomial-time) equivalent, if R
reduces to S and S reduces to R.

Theorem: FSAT, the problem of finding a s.a. of a boolean
formula, is FNP-complete.
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Example

(To help motivate/understand that definition of reducibility)

Consider 2 versions of Factoring: one using base-10 numbers,
and the other version using base-2 numbers. Intuitively, these two
problems have the same difficulty: there is a fast algorithm to
factor in base 2, if and only if there is a fast algorithm to factor in
base 10.

In trying to make that intuition mathematically precise, we get the
definition of the previous slide.
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TFNP

TFNP: “Total” function computation problems in NP

As we shall see, it looks like we really do need to introduce a new
complexity class, in fact a collection of complexity classes...

Contrast with “promise problems”, e.g. Promise SAT:
SAT-instances where you’ve been promised there is a satisfying
assignment. But such a promise isn’t directly checkable.
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Some total search problems seem hard. (F)NP-hard?

Theorem

There is an FNP-complete problem in TFNP if and only if
NP=co-NP.

Proof: “if”: if NP=co-NP, then any FNP-complete problem is in
TFNP (which is F(NP∩co-NP)).
“only if”: Suppose X∈TFNP is FNP-complete, and R is the binary
relation for X.
Consider problem FSAT (given formula φ, find a satisfying
assignment.) We have FSAT≤pX.
Any unsatisfiable φ would get a certificate of unsatisfiability,
namely the string y with (f (φ), y) ∈ R and g(y) =“no” (or
generally, anything other than a satisfying assignment).

N. Megiddo and C.H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2)
pp. 317–324 (1991).
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So what can we say about the hardness of Factoring,
and others?

Factoring (for example) cannot be NP-hard unless NP = co-NP.
Unlikely! So Factoring is in strong sense “NP-intermediate”.

⇝ task of classifying “hard” NP total search problems.
Factoring and Pigeonhole Circuit are important in
cryptography; other important problems include local optimisation

OK can we have, say, Factoring is TFNP-complete?
Good question! TFNP-completeness is as much as we can hope
for, hardness-wise

TFNP doesn’t (seem to) have complete problems (which needs
syntactic description of “fully general” TFNP problem). (Similarly,
RP, BPP, NP∩co-NP don’t have complete problems)
Try to describe “generic” problem/language X in NP∩co-NP as pair of NTMs

that accept X and X : what goes wrong?
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Factoring, Nash, and the others, as “NP-intermediate”

Advantage of (problems arising in) Ladner’s theorem: you just have
to believe P̸=NP, to have NP-intermediate. For us, we have to
believe that Factoring (say) is not in FP, also that NP ̸=co-NP.

Disadvantage of Ladner’s theorem: the NP-intermediate problems
are unnatural (did not arise independently of Ladner’s thm;
problem definitions involve TMs/circuits)

Next: subclasses of TFNP that have complete problems

General idea: define classes in terms of “non-constructive”
existence principles
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Some syntactic classes

FP

PLS

PPAD

PPP

PPA

TFNP

FNP

Johnson, Papadimitriou, and Yannakakis. How easy is local search? JCSS, 1988.
C.H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. JCSS, 1994.
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PPAD

PPAD “given a source in a digraph having in/outdegree at most
1, there’s another degree-1 vertex”

The End-of-Line problem

given Boolean circuits S ,P with n input bits and n output bits and
such that P(0) = 0 ̸= S(0), find x such that P(S(x)) ̸= x or
S(P(x)) ̸= x ̸= 0.
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PPAD

A problem X belongs to PPAD if X ≤P End-of-Line.

X is PPAD-complete if in addition, End-of-Line≤P X

Work by myself and others: Nash equilibrium computation is
PPAD-complete

...which is taken to indicate it’s a hard problem! Let’s see why we
believe “PPAD is hard”
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PPA, PPP

PPA: Like PPAD, but the “implicit” graph is undirected.

The Leaf problem

given boolean circuit C with n inputs, 2n outputs. regard input as
one of 2n vertices, output as 2 neighbouring vertices.
If 0 has degree 1, find some other degree-1 vertex.

PPP (“polynomial pigeonhole principle”): defined in terms of:

The Pigeonhole circuit problem

given boolean circuit C with n inputs, n outputs.
Find either a bit-string that is mapped to 0, or two bitstrings that
are mapped to the same bit-string

We have

End-of-line ≤p Leaf (hence PPAD⊆PPA)

End-of-line ≤p Pigeonhole Circuit
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PPAD is a subset of PPP

End-of-line reduces to Pigeonhole circuit:

Given S ,P, circuits representing an End of line instance, build a
circuit CPPP that does the following:

CPPP uses S ,P to identify any neighbours of a vertex v in the
End-of-line graph, then

If v has no outgoing edge in the End-of-line graph, CPPP

maps v to itself.
(so all isolated vertices are mapped to themselves)

Otherwise, let (v ,w) be a directed edge in the End-of-line
graph.
CPPP maps v to w
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Evidence of hardness

• Failure to find poly-time algorithms for most of these problems,
indeed even sub-exponential algorithms.
• cryptographic hardness

• Separation oracles
Circuits viewed as proxies for unrestricted boolean functions: the
search problems stay total even if the circuits in the defs are
allowed to be any functions (not necessarily having small circuits)

Warm-up: in the context of End of line/PPAD, if the circuits S
and P were replaced with unrestricted boolean functions allowing
“black-box access”, the problem becomes impossible.
Call this “oracle PPAD”

Now define a “PPAD machine” to be a notional machine that,
given black-box access to S and P, identifies a solution...
Such a machine can’t used to solve oracle PPA!
Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, Toniann
Pitassi: The Relative Complexity of NP Search Problems. JCSS (1998)

Paul Goldberg Further topics 32 / 33



Conclusion

This is ongoing work! The hardness of some of these complexity
classes has been derived from various cryptographic assumptions
(that are stronger than P ̸=NP).

Further question include: do we “need” any other as-yet undefined
classes of TFNP problems?
Can we base the hardness of (say) PPAD on weaker assumptions,
ideally P ̸=NP?

Thanks!
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