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Exercise class 2 (non-regular languages; CFGs)

1. Consider the following two variants of DFAs

• A “reverse DFA” (RDFA), which is given exactly as a DFA, but executes starting at the
end of a string.

• A “backwards-and-forwards DFA” (BAFDA), which is like a DFA but simultaneously
reads from the beginning of the string and the end of a string.

A BAFDA is of the form (Q,Σ, δ, (qr, ql), F ), where

– Q is a finite set of states

– Σ is the input alphabet

– qr ∈ Q is the initial state of the rightward-moving head and ql ∈ Q is the initial
state of the leftward-moving head

– δ is a transition function that takes a pair of states from Q and a pair of letters in
Σ and returns a new pair of states from Q.

– A set of accepting pairs of states F = (f1, g1), . . . (fn, gn)

A BAFDA computes on string ω using two heads L (which moves to the left) and R
(which will move to the right); during computation, both of these heads are on an
element of the string and each of them have their own control state. Initially head R
begins on the first (i.e. leftmost) element of ω in state qr, while L begins on the last
element of ω in state ql; at any point the machine simultaneously moves head R one
space to the right and head L one space to the left according to the transition function
δ. That is, if at some point head R is sitting on an element of the input with symbol a
in state q, and head L is sitting on an input element with symbol b in state q′, then we
find (r, r′) such that δ((q, q′), (a, b)) = (r, r′) and move R to the right and into state r,
while moving L to the left and into state r′.

The computation terminates when R is on the beginning of the string and L is on the
end of the string, and it accepts if the state for R paired with the state for L is in F .

Is every language accepted by a reverse DFA regular? Prove or disprove your answer.

Is every language accepted by a BAFDA regular? Prove or disprove your answer.

2. This is Sipser problem 1.49b (page 90).

Let C = {1ky|y ∈ {0, 1}∗ and y contains at most k occurrences of 1 for k ≥ 1}. Show that C
is not recognizable by a DFA.

Hint: try using the pumping lemma.

3. (A hopefully straightforward exercise on CFGs construction:)

(a) Write down a CFG that defines the set of all words over the alphabet {a, b} where the
number of a’s is equal to the number of b’s. Explain how your grammar achieves this.
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(b) Write down a Chomsky normal form CFG that defines palindromes over the alphabet
{a, b, c}.

4. This problem concerns another way to prove that a language is not regular.

Let L be a language, and consider the following relation ≡L on strings:

s1 ≡L s2 if and only if for every string w, s1w is in L iff s2w is in L.

It is easy to show that this is an equivalence relation. Informally, two strings are equivalent
if they have the same “impact” on membership in the language L. Let I(L) be the number
of equivalence classes of ≡L – i.e. the maximal number of inequivalent elements.

• Suppose L is recognized by a DFA A, and suppose that two strings w1 and w2 reach the
same state when used as input to A (this state need not be an accepting state).

– Prove that w1 ≡L w2.

– Explain why this shows that if L is a language with I(L) infinite, L cannot be
regular.

• Suppose L is a language and I(L) is finite. Construct a DFA recognizing L that has
exactly I(L) states (hint: make each equivalence class into a state).

• Consider the language L = {www : w ∈ {a, b}∗}. Show that L is not regular by giving
infinitely many pairwise inequivalent elements.
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