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General information

Paul Goldberg

email: Paul.Goldberg@cs.ox.ac.uk
administrative info, e.g. problem class times, office hours, at:

http://www.cs.ox.ac.uk/people/paul.goldberg/FCS/index.html

notes and slides to appear on my FCS web pages (above)
problem class sign up at
https://www.cs.ox.ac.uk/minerva/student signup.pl
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General information

Text: Introduction to the Theory of Computation 2nd (latest
uk) Edition by Mike Sipser
6 problem sheets
Slides will be available online shortly before lectures
but don’t just read slides instead of lecture...
Some material covered in the exercises!
Read the book (the relevant parts).

Others: Intro to Automata Theory, Languages, and Computation by Hopcroft,
Motwani, and Ullman; Computational Complexity by Papadimitriou; Models of
Computation: Exploring the Power of Computing by Savage; . . .

Ideally you are familiar with:

programming and basic algorithms

asymptotic notation “big-oh”

sets, graphs

proofs, especially induction proofs and proof by contradiction

Chapter 0 of text
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What it’s about

“Problem” — basic notion in CS. A (mathematically
well-defined computational challenge

e.g. travelling salesman problem; search for max element of a
list; primality testing; testing equivalence of boolean circuits

A problem can be expressed as a language recognition
challenge: specify a syntax that represents instances (or
inputs), then want to recognise certain words in that syntax
(and, compute associated outputs). Usually enough to think
in terms of recognising subsets of words.

we look at mechanisms for recognising (formal) languages,
also logic (propositional, first-order), and its expressive power.
Properties of these mechanisms (e.g. Turing machines;
equivalence to generic programming). Classify languages
according to how powerful a mechanism is needed

We obtain (mathematical) positive/negative results (some
language can/cannot be recognised using some mechanism)
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Topics

Part I: Begin with computation models having limited power

Finite Automata and Regular Languages

Pushdown Automata and Context Free Grammars

Where these are usable, problem has very efficient solution; these
models are captured by specialised programming languages

Part II: models of general computing (corresponding to the
question: is this problem solvable by a computer at all)

Part III: modelling efficient computation.

Part IV: we look at formal logic, and apply previous parts to look
at computational problems related to logic.

Provides essential background for other courses, e.g. complexity,
logic automata and games
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Computational problems as language recognition

problem: compute function f : inputs −→ outputs

Simple. Can we make it simpler?

Yes. Decision problems:

f : inputs −→ {accept, reject}

Does this still capture our notion of problem, or is it too
restrictive?

Example: factoring:

given an integer m, find its prime factors

ffactor : {0, 1}∗ −→ {0, 1}∗

Decision version:

given 2 integers m,k , accept iff m has a prime factor p < k

Can certainly use the latter to solve the former.
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Terminological Summary

finite alphabet Σ : a set of symbols

language L ⊆ Σ∗ : subset of strings over Σ

a machine takes an input string and either

accepts, rejects, or
loops forever

a machine recognizes the set of strings that lead to accept

a machine decides a language L if it accepts x ∈ L and
rejects x 6∈ L
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“machine”...?

input
machine−→


• accept
• reject
• loop forever.

We define simple mathematical formalisations of computation

Strategy:

endow box with a feature of computation
try to characterize the languages decided
if we see that box is too weak for real-life tasks, add new
feature to overcome limits
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Finite Automata

simple model of computation

reads input from left to right, one symbol at a time

maintains state: information about what seen so far
(“memory”)

finite automaton has finite number of states: cannot remember
more things for longer inputs

start with deterministic finite automata (DFA)

2 ways to describe: by diagram, or formally

Software

Rogers and Finleys JFlap is software for creating state machines
and seeing their properties. You can get a free copy at
www.jflap.org

If you find any nice-looking interactive web sites, let me know...
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DFA diagrams

1

0

0,1

0,1

i

t

r

3 states, i , r and t. State i is initial or starting state. Alphabet
Σ = {0, 1}. Read input one letter at a time; follow arrows.
Accepting state t denoted by outgoing arrow/double circle. In
general, multiple accept states are allowed.

Let’s consider what language L is accepted. Note the way DFA provides an
unambiguous description of L.
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Another example DFA

a

a

b b

What language does this DFA recognize?

L = {x : x ∈ {a, b}∗, x has even number of as}

illustrates fundamental feature/limitation of FA:
“tiny” memory
in this example only “remembers” 1 bit of info.

Paul Goldberg Intro to Foundations of CS; slides 1, 2017-18 11 / 55



Another example DFA

a

a

b b

What language does this DFA recognize?

L = {x : x ∈ {a, b}∗, x has even number of as}

illustrates fundamental feature/limitation of FA:
“tiny” memory
in this example only “remembers” 1 bit of info.

Paul Goldberg Intro to Foundations of CS; slides 1, 2017-18 11 / 55



DFA formal definition

A deterministic finite automaton is a 5-tuple

(Q,Σ, δ, q0,F )

Q is a finite set called the states

Σ is a finite set called the alphabet

δ : Q × Σ −→ Q is a function called the transition function

q0 is an element of Q called the start state

F is a subset of Q called the accept states
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DFA formal definition: example

a

a

b b

Specification of this FA in formal terms: Let even and odd denote
the states

Q = {even, odd}
Σ = {a, b}
q0 = even

F = {even}
δ(even, b) = even; δ(even, a) = odd; δ(odd, b) = odd;
δ(odd, a) = even;
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Formal description, continued

Operation

A deterministic finite automaton

M = (Q,Σ, δ,q0,F)

accepts a string
w = w1w2w3 . . .wn ∈ Σ∗

if there is a sequence r0, r1, r2, . . . , rn of states for which

r0 = q0

δ(ri ,wi+1) = ri+1 for i = 0, 1, 2, . . . , n − 1

rn ∈ F
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Characterizing DFA languages

DFAs are a model of computation. Q: what kinds of languages can
DFAs accept?
(formally: characterise the languages they can accept; some
well-defined languages can’t be accepted by DFAs.)

Important main result on DFA languages: DFA languages can
be built up from other DFA languages by combining them via
certain operations: union, concatenation, and closure (star, Kleene
closure). Equivalent to languages described using regular
expressions (details coming up). This is Kleene’s theorem.
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regular expressions building blocks

A regular expression can be a simple finite list of words, or can be
built up from other r.e.’s using:

union “C = (A ∪ B)” or “C = A + B” or “C = A|B”

C = {x : x ∈ A or x ∈ B or both}

concatenation “C = (A ◦ B)”, or just “C=AB”

C = {xy : x ∈ A and y ∈ B}

star (Kleene star, or Kleene closure) “C = A∗” (note: ε
always in A∗)

C = {x1x2x3 . . . xk : k ≥ 0 and each xi ∈ A}
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Combine DFAs to simulate regular expressions

As noted, regular expressions are built up from alphabet letters,
and operations union, concatenation and star.
To show that regular expressions have the same expressive power
as DFAs, we need to be able to simulate the building-blocks of reg.
exps as operations on DFAs.
For example, given 2 DFAs, how do we build a new one that
accepts the concatenation of the languages accepted by the 2
DFAs?
(It would be convenient to allow transitions labelled by empty
string...)
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Example: trying to simulate concatenation

a a a

a b

a

a a a

a a

a b

a

{aa,aaa}

ab(a*)

{aa,aaa}ab(a*)
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Nondeterministic FA (NFA)

We will make life easier by describing an additional feature
(nondeterminism) that helps us to “program” DFAs

We will prove that FAs with this new feature can be
simulated by ordinary DFA

The concept of nondeterminism has a significant role in TCS
and this course.
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NFA diagrams

single start state

transitions may:

have several with a given label out of the same state
be labelled with ε

1 0, 1

0,1 0,1

ε

Paul Goldberg Intro to Foundations of CS; slides 1, 2017-18 20 / 55



NFA operation

Example of NFA operation (alphabet Σ = {0, 1})

1 0, 1

0,1 0,1

ε

input: 0 1 0
not accepted
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NFA operation

Example of NFA operation (alphabet Σ = {0, 1})

1 0, 1

0,1 0,1

ε

input: 1 1 0
accepted
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NFA operation

One way to think of NFA operation:

string x = x1x2x3 . . . xn accepted if and only if

there exists a way of inserting ε’s into x

x1εεx2x3 . . . εxn

so that there exists a path of transitions from the start state
to an accept state
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NFA formal definition

Let P(S) denote the set of all subsets of a set S . A
nondeterministic finite automaton (or NFA) is a quintuple
(Q,Σ, δ, q0,F ) where

1 Q is a finite nonempty set whose members are called states;

2 Σ is a finite nonempty set called the alphabet;

3 δ is a map from Q × (Σ ∪ {ε}) to P(Q) called the transition
function of the automaton;

4 q0 is a member of Q and is called the start state;

5 F is a subset of Q whose members are called accepting
states.

Other equivalent definitions exist; there’s other standard notation...
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NFA formal definition: example

1 0, 1

0,1 0,1

ε
s1 s2 s3 s4

Specification of this DFA in formal terms:

Q = {s1, s2, s3, s4}
Σ = {0, 1}
q0 = s1

F = {s4}
δ(s1, 0) = {s1}; δ(s1, 1) = {s1, s2}; δ(s1, ε) = {};
δ(s2, 0) = {s3}; δ(s2, 1) = {}; δ(s2, ε) = {s3}; δ(s3, 0) = {};
δ(s3, 1) = {s4}; δ(s3, ε) = {}; δ(s4, 0) = {s4};
δ(s4, 1) = {s4}; δ(s4, ε) = {}
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Formal description of NFA operation

NFA M = (Q,Σ, δ,q0,F)
accepts a string w = w1w2w3 . . .wn ∈ Σ∗ if w can be written (by
inserting ε’s) as:

y = y1y2y3 . . . ym ∈ (Σ ∪ {ε})∗

and ∃ sequence r0, r1, . . . , rm of states for which

r0 = q0

ri+1 ∈ δ(ri , yi+1) for i = 0, 1, 2, . . . ,m − 1

rm ∈ F

Paul Goldberg Intro to Foundations of CS; slides 1, 2017-18 26 / 55



Closures

Next we show: the set of languages recognized by NFA is closed
under:

union “C = (A ∪ B)”

concatenation “C = (A ◦ B)”

star “C = A∗”

(this is more easily done for NFAs than for DFAs. We then show
how to convert NFA to equivalent DFA)
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Closure under union

C = (A ∪ B) = {x : x ∈ A or x ∈ B}

¡

¡

A

B C

How would you prove that this works? (exercise)
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Closure under concatenation

C = (A ◦ B) = {xy : x ∈ A and y ∈ B}

ε

ε

A B

C
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Closure under star

C = A∗ = {x1x2x3 . . . xk : k ≥ 0 and each xi ∈ A}

ε ε

ε

A

AC

Note: we added a new initial state. (why?)
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NFA, DFA equivalence

Theorem

a language L is recognized by a DFA if and only if L is recognized
by a NFA.

Must prove two directions:
(⇒) L is recognised by a DFA implies L is recognised by a NFA.
(⇐) L is recognised by a NFA implies L is recognised by a DFA.

(as is often the case, one is easy, the other more difficult)
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NFA, DFA equivalence

(⇒) L is recognised by a DFA implies L is recognised by a NFA.

Proof.

A DFA is a NFA!
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NFA, DFA equivalence

(⇐) L is recognised by a NFA implies L is recognised by a DFA.

Proof.

we will build a DFA that simulates the NFA (and thus recognizes
the same language).

alphabet will be the same

what are the states of the DFA? continued...
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NFA, DFA equivalence

Let M = (Q,Σ, δ, q0,F ) be a NFA. We define a DFA M ′ as follows.

M ′ = (Q ′,Σ, δ′, q′0,F
′)

note that M ′ has the same alphabet as M.
The set of states of M ′ is P(Q) (the power set of Q; so a state of
M ′ is a set of states of M).

Definition

Eps(S) denotes the set q ∈ Q : q is reachable from subset S
by travelling along 0 or more ε-transitions

The transition function of M ′ is the map δ′ : P(Q)× Σ→ P(Q)
defined by

δ′(P, a) =
⋃
q∈P

Eps(δ(q, a)).

For the initial state of M ′ we take q′0 = Eps({q0}) ∈ P(Q).
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NFA, DFA equivalence

Extending transition function δ to apply to words, not just letters:

w ∈ L(M)⇐⇒ δ(q0,w) ∩ F 6= ∅ ⇐⇒ δ′({q0},w) ∩ F 6= ∅.

Hence defining F ′ by

F ′ = {P ∈ P(Q) : P ∩ F 6= ∅}

we have now specified a deterministic automaton
M ′ = (P(Q),Σ, δ′, {q0},F ′) and

w ∈ L(M ′)⇐⇒ δ′({q0},w) ∈ F ′

⇐⇒ δ′({q0},w) ∩ F 6= ∅ ⇐⇒ w ∈ L(M).

We conclude L(M) = L(M ′).
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So far...

Theorem

the set of languages recognized by NFA is closed under union,
concatenation, and star.

Theorem

a language L is recognized by a DFA if and only if L is recognized
by a NFA.

Corollary

the set of languages recognized by DFA is closed under
union, concatenation, and star.
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More Closure Properties

DFA languages are also closed under complement and intersection
(see exercises)
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Regular expressions

R is a regular expression if R is

a, for some a ∈ Σ

ε, the empty string

∅, the empty set

(R1 ∪ R2), where R1 and R2 are reg. exprs.

(R1 ◦ R2), where R1 and R2 are reg. exprs.

(R1)∗, where R1 is a regular expression

Examples:

(ab)∗ef ((ab)∗e ∪ c)∗
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Proving Kleene’s Theorem

Theorem

a language L is recognized by a DFA if and only if L is described
by a regular expression.

Must prove two directions:

(⇒) L is recognized by a DFA implies L is described by a
regular expression

(⇐) L is described by a regular expression implies L is
recognized by a DFA.

We will do ⇐ first, by converting regexps to NFA (and then
applying previous result)

Paul Goldberg Intro to Foundations of CS; slides 1, 2017-18 39 / 55



Regular expressions to DFA: induction on expression
structure

First show there’s an NFA for the basic regular expressions:

a, for any a ∈ Σ

ε, the empty string

∅, the empty set

a
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Regular expressions and DFA: Inductive step

Apply the closure properties:

(R1 ∪ R2), where R1 and
R2 are reg. exprs.

¡

¡

A

B C

(R1 ◦ R2), where R1 and
R2 are reg. exprs.

ε

ε

A B

C

(R1)∗, where R1 is a reg. expression

ε ε

ε

A

AC

This is an inductive construction on the size of R (and the proof
that it works would be by induction)
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Other direction: DFA to regexp (via an example)

Convert this DFA M to equivalent r.e.

Language: even number of a’s or an odd number of b’s.

a

a

a

a

b b b b

M:
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L(M) = L(M1) ∪ L(M2) ∪ L(M3)

a

a

a

a

b b b b

a

a

a

a

b b b b

a

a

a

a

b b b b

M1 M2

M3
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L(M2) = L(M1)∗L(M4)

a

a

a

b b b

M4:
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L(M4) = aL(M5) ∪ bL(M6)

a

a

b b

a

a

b b

M5

M6
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L(M1) = L(M7)∗

a

a

a

a

b

b

b b

M7:
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L(M7) = aL(M8) ∪ bL(M9)

a

a

a

b
b b

a

b
a

a

b b

M8

M9
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Algorithm: convert FA to regexp

Given a DFA M = (Q,Σ, δ, i ,F ).

Construct a regular expression for L(M)

Recursive: express solution in terms of solutions to simpler
instances of this problem.

Base case: M has no labelled transitions to an accepting state.
If i ∈ F then L(M) = {ε}
Else L(M) = ∅
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The algorithm (continued)

Recursive case: there’s a transition to accepting state
If F = {q1, . . . , qk} where k > 1
Then L(M) = ∪kj=1L(Mj)

where Mj = (Q,Σ, δ, i , {qj})

Evaluations of regular expressions for L(Mj) are done recursively.
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The algorithm (continued)

Else /* one accepting state */
Let F = {t} (i.e. M = (Q,Σ, δ, i , {t}))
If t = i
Then L(M) = L(M ′)∗

where M ′ = (Q ∪ {t ′},Σ, δ′, i , {t ′})
and δ′(q, a) = t ′ whenever δ(q, a) = i

otherwise δ′(q, a) = δ(q, a).

Regular expression for L(M ′) is found recursively.
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The algorithm (continued)

Else /* F = {t}, t 6= i */
If M has labelled transitions to i
Then L(M) = L(M ′)∗L(M ′′)

where M ′ = (Q,Σ, δ, i , {i}),
M ′′ is like M but without the labelled transitions to i

Else /* no labelled transitions to i */
L(M) = ∪a∈ΣaL(Ma)
where Ma is like M but without transition
from i labelled by a (don’t include Ma

if no such transition is in M)
Initial state of Ma is δ(i , a).

Regular expressions for L(M ′), L(M ′′), L(Ma) etc are found
recursively.
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Justifying the DFA to r.e. algorithm

The algorithm expresses the language accepted by a given DFA M
in terms of languages accepted by other DFAs - recursive
Want to verify that:

1 L(M) is the same as the language accepted by the
combinations of DFAs constructed in the recursive calls

2 The algorithm terminates.

Regarding (1): We saw that in all the cases that arose the
languages are the same
Regarding (2): Define “simpler” such that the algorithm
decomposes a task into “simpler” tasks, until we reach base case
(the “simplest” tasks where it’s obvious what to do)
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Regular expressions and DFA

Theorem: (Kleene’s theorem) a language L is recognized by a
DFA iff L is described by a regular expr.

Languages recognized by a DFA are called regular languages.

Rephrasing what we know so far:

regular languages closed under 3 operations
NFA recognize exactly the regular languages
regular expressions describe exactly the regular languages
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Limits on the power of FA

Not all well-defined languages are accepted by DFAs (e.g., bit
strings containing as many 1’s as 0’s; or syntactically-valid
arithmetic expressions)

To convince yourself, need to “prove a negative”... how to
proceed?

Intuition:

FA can only remember finite amount of information. They
cannot count

languages that “entail counting” should be non-regular...

Intuition not enough:
{w : w has an equal number of “01” and “10” substrings}

= 0Σ∗0 ∪ 1Σ∗1
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Non-regular languages

A tool to establish non-regularity:

Pumping Lemma: Let L be a regular language. There exists an
integer p (“pumping length”) for which every w ∈ L with |w | ≥ p
can be written as w = xyz such that

1 for every i ≥ 0, xy iz ∈ L, and

2 |y | > 0, and

3 |xy | ≤ p.

Proof idea: if L has a DFA, then for every large enough word w in
L, its path in the state machine goes through a small cycle. Copies
of that cycle may be added to the accepting path (corresponds to
inserting a sub-word in w). Details in textbook.
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