
Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an
integer p (“pumping length”) for which every w ∈ L with |w | ≥p
can be written as

w = xyz

such that

1 for every i ≥ 0, xy iz ∈ L, and

2 |y | > 0, and

3 |xy | ≤p.
Idea: if L has a DFA, then for every large enough word in L, its path in the
state machine goes through a small cycle
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Non-regular languages

Using the Pumping Lemma to prove L is not regular:

assume L is regular

then there exists a pumping length p

select a string w ∈ L of length at least p

argue that for every way of writing w = xyz that satisfies (2)
and (3) of the Lemma, pumping on y yields a string not in L.

contradiction.
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Pumping Lemma examples

Theorem

L = {0n1n : n ≥ 0} is not regular.

proof:

let p be the pumping length for L

choose w = 0p1p

w = 000000000 . . . 0︸ ︷︷ ︸
p

111111111 . . . 1︸ ︷︷ ︸
p

w = xyz , with |y | > 0 and |xy | ≤ p.
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Pumping Lemma examples

3 possibilities for where pumpable block occurs:

w = 00000︸ ︷︷ ︸
x

000︸︷︷︸
y

0 . . . 0111111111 . . . 1︸ ︷︷ ︸
z

w = 000000000 . . . 011︸ ︷︷ ︸
x

11111︸ ︷︷ ︸
y

11 . . . 1︸ ︷︷ ︸
z

w = 0000000︸ ︷︷ ︸
x

00 . . . 011111︸ ︷︷ ︸
y

1111 . . . 1︸ ︷︷ ︸
z

Last two cases are ruled out by fact that pumping lemma
requires |xy | ≤ p

in first case1, pumping on y gives a string not in language L.

1indeed, also in other 2 cases
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Pumping Lemma examples

Theorem

L = {w : w has an equal number of 0s and 1s} is not regular.

Proof:

let p be the pumping length for L

choose w = 0p1p

w = 000000000 . . . 0︸ ︷︷ ︸
p

111111111 . . . 1︸ ︷︷ ︸
p

w = xyz , with |y | > 0 and |xy | ≤ p. Note that y is a
non-empty string of 0’s, so xy2z is not in L.

There are other ways to prove languages are non-regular, which we
will go over in exercises.
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Summary in terms of “Course Program”

Defined a simple programming model: Deterministic Finite
Automata

Positive results about this model:

The languages computed by this model are closed under
union, concatenation, and star.
A more powerful model, NFAs, recognize exactly the same
languages that DFAs do.
A convenient syntax, Regular expressions, describe exactly the
same languages that DFAs (and NFAs) recognize.

Negative results:

Some languages are not regular. This can be proved using the
Pumping Lemma.
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A more powerful machine

limitation of FA related to fact that they can only
“remember” a bounded amount of information

What is the simplest alteration that adds unbounded
“memory” to our machine?

Should be able to recognize, e.g., {0n1n : n ≥ 0}.
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Pushdown Automata

Pushdown automata (PDAs) have the same expressive power as
context-free grammars; the languages they accept are context-free
languages.

A pushdown automaton is like a NFA but with an additional
“memory stack” which can hold sequences of symbols from a
memory alphabet.
Automaton scans an input from left to right - at each step it may
push a symbol onto the stack, or pop the stack. It cannot read
other elements of the stack.
Start with empty stack; accept if at end of string state is in subset
F ⊆ Q of accepting states and stack is empty. (alternative
definition: the stack need not be empty in order to accept.)
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Transitions

notation P = (Q,Σ, Γ, δ, q0,F ) where Γ is stack alphabet and δ is
transition function.
Action taken by machine is allowed to depend on top element of
stack, input letter being read, and state. Action consists of new
state, and possibly push/pop the stack.
Formally:
δ : Q × (Σ ∪ {ε})× (Γ ∪ {ε})→ P(Q × (Γ ∪ {ε}))
i.e. for each combination of state, letter being read, and topmost
stack symbol, we are given a set of allowable new states, and
actions on stack.
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For example:

δ(q, a, m) = {(q2, m2), (q3, m3)}
means that in state q, if you read a with m at top of stack, you
may move to state q2 and replace m with m2. Alternatively you
may move to state q3 and replace m with m3.
δ(q, a, ε) = {(q2, m2)}
means in state q with input a, go to state q2 and push m2 on top
of stack.
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Example: Palindromes

Input alphabet Σ = {a, b, c}
Use stack alphabet Γ = {a′, b′, c′}

states Q = {f , s} (f is “reading first half”, s is “reading second
half”)
Initial state f .
Accepting states F = {s}
Transitions:
δ(f , a, ε) = {(f , a′), (s, ε), (s, a′)}
δ(f , b, ε) = {(f , b′), (s, ε), (s, b′)}
δ(f , c, ε) = {(f , c′), (s, ε), (s, c′)}
δ(s, a, a′) = {(s, ε)} ; δ(s, b, b′) = {(s, ε)} ; δ(s, c, c′) = {(s, ε)} ;
δ(anything else) = ∅

Paul Goldberg Intro to Foundations of CS; slides 2, 2017-18 11 / 68



An Accepting Computation

aabacabaa

P

aabacabaa

Pa’

aabacabaa

Pa’
b’
a’
a’

aabacabaa

Pa’
state f state f change to

state s
state s
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Example of a deterministic PDA

Consider palindromes over {a, b, c} which contain exactly one c.
Use stack alphabet M = {a′, b′}

states Q = {f , s} (f is “reading first half”, s is “reading second
half”)
Initial state f , accepting states T = {s}
Transitions:
δ(f , a, ε) = (f , a′)
δ(f , b, ε) = (f , b′)
δ(f , c, ε) = (s, ε)
δ(s, a, a′) = (s, ε) ; δ(s, b, b′) = (s, ε) ;
δ(anything else) is undefined (reject input).

So, deterministic PDAs can recognise certain non-regular languages (but can’t
recognise all PDA languages)
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Another deterministic example

PDA to recognise “well-formed” strings of parentheses

A single state s (accepting)

Input alphabet {(, )}
Memory alphabet {x}

δ(s, (, ε) = {(s, x)}
δ(s, ), x) = {(s, ε)}

Comments

The number of x’s on the stack is the number of (’s read so
far minus number of )’s read.

Exercise

Design a NPDA for the language

{aibjck : i , j , k ≥ 0 and i = j or i = k}
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Results for NPDA

Closure properties

Languages are closed under: Union, Concatenation, Kleene Star
But not, e.g. intersection

Alternative language-representation mechanism

Recall Kleene’s Theorem, N/DFA ↔ regular expression...

Similar result for NPDA:

languages recognized by a NPDA are exactly the languages
described by context-free grammars, and they are called the
context-free languages.
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Context-Free Grammars

Alphabet Σ, a finite collection of symbols

Set of variables (also called non-terminals), one of which is
the starting symbol (usually letter S).

set of rules (also called productions): a rule says that some
variable may be replaced2 by some string of letters/variables.

Start with S, apply rules until a string in Σ∗ results...

2wherever it occurs in a string, i.e. regardless of context
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Derivations in CFGs

A simple CFG

Alphabet 0,1,2.
S → 0S1
S → B
B → 2

A derivation

S ⇒ 0S1⇒ 00S11⇒
000S111⇒
000B111⇒ 0002111

Another derivation

S ⇒ B ⇒ 2

set of all strings generated using grammar G is the language
of the grammar L(G ).

called a Context-free Language (CFL)
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Example CFG

programming language syntax often described using CFGs
(Backus-Naur form notation often used), e.g.

〈stmt〉 → 〈if-stmt〉 | 〈while-stmt〉 | 〈begin-stmt〉 | 〈asgn-stmt〉
〈if-stmt〉 → IF 〈bool-expr〉 THEN 〈stmt〉 ELSE 〈stmt〉
〈while-stmt〉 →WHILE 〈bool-expr〉 DO 〈stmt〉
〈begin-stmt〉 → BEGIN 〈stmt-list〉 END
〈stmt-list〉 → 〈stmt〉 | 〈stmt〉 ; 〈stmt-list〉
〈asgn-stmt〉 → 〈var〉 := 〈arith-expr〉
〈bool-expr〉 → 〈arith-expr〉 〈compare-op〉 〈arith-expr〉
〈compare-op〉 → < | > | ≤ | ≥ | =
〈arith-expr〉 → 〈var〉 | 〈const〉 | (〈arith-expr〉 〈arith-op〉 〈arith-expr〉)
〈arith-op〉 → + | − | ∗ | /
〈const〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈var〉 → a | b | c | . . . | x | y | z
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CFG formal definition

A context-free grammar is a 4-tuple

(V ,Σ,R,S)

where

V is a finite set called the non-terminals

Σ is a finite set (disjoint from V ) called the terminals

R is a finite set of productions (or rules) where each
production is a non-terminal and a string of terminals and
non-terminals.

S ∈ V is the start variable (or start non-terminal)
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CFG formal definition

Suppose u, v , w are strings of non-terminals and terminals, and
A→ w is a production.

“uAv yields uwv” notation: uAv ⇒ uwv
also: “yields in 1 step” notation: uAv ⇒1 uwv

in general:
“yields in k steps” notation: u ⇒k v
meaning: there exists strings u1, u2, . . . uk−1 for which
u ⇒ u1 ⇒ u2 ⇒ . . .⇒ uk−1 ⇒ v

notation: u ⇒∗ v
meaning: ∃k ≥ 0 and strings u1, ..., uk−1 for which
u ⇒ u1 ⇒ u2 ⇒ ...⇒ uk−1 ⇒ v

if u = S (the start symbol), the above is a derivation of v

The language of G , denoted L(G ) is:

{w ∈ Σ∗ : S ⇒∗ w}
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One more example

arithmetic expressions using infix operators +, ∗, parentheses and
“atoms” x and y.

A set of arithmetic expressions

start symbol: E (no other variable symbols)
alphabet: +, ∗, (, ), x, y
Rules:
E → E∗E
E → E+E
E → (E )
E → x

E → y

To see that x ∗ (x + y) is in the language, find a derivation.
E ⇒ E∗E ⇒ E∗(E ) ⇒ E∗(E+E )
⇒ x ∗ (E+E ) ⇒ x ∗ (x+E ) ⇒ x ∗ (x + y)

notation: E
∗⇒ x ∗ (x + y)
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NPDA, CFG equivalence

Theorem

a language L is recognized by a NPDA iff L is described by a CFG.

Must prove two directions:
(⇒) L is recognized by a NPDA implies L is described by a CFG.
(⇐) L is described by a CFG implies L is recognized by a NPDA.

To prove this equivalence, it’s useful to define some other
mechanisms that turn out to have equivalent expressive power
(first: “Chomsky normal form” CFGs).
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Chomsky Normal Form

A restricted form of CFG that’s easier to work with:

Definition

In Chomsky normal form every production has form

1 A→ BC

2 S → ε (note S is start symbol)

3 A→ a

where A,B,C are any non-terminals, and a is any terminal.

Theorem

Every CFL is generated by a CFG in Chomsky Normal Form.

Proof: Transform any CFG into equivalent CFG in CNF. 4 steps:

add a new start symbol, which can produce prior start

remove “ε-productions” A→ ε

eliminate “unit productions” A→ B

convert remaining rules into proper form
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conversion to Chomsky Normal Form

(general idea; some detail missing)

add a new start symbol S0: add production S0 → S

remove “ε-productions” A→ ε

for each production with A on RHS, add production with
A’s removed: e.g. for each rule R → uAv , add R → uv

ε rule may filter back to start symbol in doing this.

eliminate “unit productions” A→ B

for each production with B on LHS: B → u, add rule
A→ u (do this for A=Start symbol also)

Note. In removing “ε-productions” A→ ε if we had a production
R → A we create a new production R → ε unless we already had
removed such a production before. Thus the process of removing
these productions terminates!
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conversion to Chomsky Normal Form

convert remaining rules into proper form

replace production of form:
A→ u1U2u3 . . . uk
with:
A→ U1A1 U1 → u1

A1 → U2A2

A2 → U3A3 U3 → u3

...

Ak−1 → Uk−1Uk Uk → uk

Introduce new
non-terminals
A1 . . .Ak−1 and also
U1,U3 . . .Uk for every
terminal in RHS

for any nonterminal
on the RHS, like U2,
we don’t need a new
rule for it.
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Implementing CFGs with an NPDA

New goal: Take a Chomsky Normal Form CFG, simulate any
leftmost derivation with a NPDA

Example:
CNF CFG
for 0n21n

A→ ZC
Z → 0
C → AD
D → 1
A→ 2

Typical leftmost
derivation (with some
steps skipped)
A⇒∗ 0C ⇒ 0AD ⇒∗
00CD ⇒ 00ADD ⇒
002DD ⇒ 0021D
⇒ 00211

Always a set of terminals
followed by a set of
nonterminals

Think of an NPDA simulating this derivation where the terminals
are the stuff we’ve already read, the nonterminals are the stack
(leftmost NT is the top of stack)
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Target of translation: Variation on NPDAs

Slight variations of NPDAs have the same expressiveness:

allow to do “push-and-swap”, rather than either a push or a
swap

demand acceptance by empty stack + final state

Call this a “Demanding, Energetic NPDA”
DENPDAs can be converted to normal NPDAs:

convert push-and-swap to an ε-move swap followed by a push

get rid of Demanding requirement by: recording the beginning
of the stack by pushing symbol $ on in the beginning, adding
transitions popping $ into a new accepting state

Now: suffices to translate CNF grammar to DENPDA, using idea
on previous slide.
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Implementing CFGs with a (DE)NPDA

1 A→ ZC

2 Z → 0

3 C → AD

4 D → 1

5 A→ 2

Transitions of
corresponding NPDA

1 Read nothing; replace
A (on stack) with C ;
then add Z

2 Read a 0 and pop Z
3 Read nothing; replace

C with D; add A
4 Read a 1 and pop D
5 Pop A and read a 2

Derivation
A ⇒ ZC ⇒ 0C ⇒ 0AD ⇒
0ZCD ⇒ 00CD ⇒
00ADD ⇒ 002DD ⇒ 0021D
⇒ 00211
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Implementing CFGs with DENPDAs: construction

Case 1: There is a rule S → ε

(So, empty string is accepted)
NPDA has two states q0 and q1, with first being start state and
both being accept states.
Have a rule δ(q0, ε, ε)→ (q1, S) that pushes start symbol onto the
stack, reading nothing
For each CFG rule A→ BC add a push-and-swap that reads
nothing
For each CFG rule A→ a add a pop rule that reads an a

Case 2: there is no rule S → ε

NPDA has two states, q0 and q1, q0 is the initial state and q1 is an
accept state
In q0, have rule that pushes start symbol on to the stack and
moves to q1. In q1 have rules as above, remaining in q1.

Paul Goldberg Intro to Foundations of CS; slides 2, 2017-18 29 / 68



Every NPDA can be programmed via a CFG

(The “⇒” part of what we are proving:) L is recognized by a
NPDA implies L is described by a CFG.

Again use alternative form of NPDA

single accept state

demanding (stack must be empty when accepts)

each transition either pushes or pops a symbol, but not both

Easy to convert to this form by adding epsilon transitions, new
accept state.
Now suffices to convert every NPDA of this form to a CFG
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Converting PDA to CFG

main idea: non-terminal Ap,q generates exactly the strings
that take the NPDA from state p (with empty stack) to state
q (with empty stack)

then Astart,accept generates all of the strings in the language
recognized by the NPDA.

Two possibilities to get from state p to q while reading a string w
(starting with empty stack on state p, ending with empty stack in
state q):

stack becomes empty

stack gets loaded with some symbol m which does not get
unloaded until end of w
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NPDA to CFG, case 1

abcabbacacbacbacabacabbabbabaacabbbabab aacaccaccc

input

stack
height

String taking NPDA from p to q

p r q

NPDA (Q,Σ, Γ, δ, i , {t})
CFG G contains

non-terminals V = {Ap,q : p, q ∈ Q}
start variable Ainitial,accept

productions:
for every p, r , q ∈ Q, add the rule Ap,q → Ap,rAr ,q
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NPDA to CFG, case 2

abcabbacacbacbacabacabbabbabaacabbbabab aacaccaccc
m

input

stack
height

on stack

String taking NPDA from p to q

p r s q

NPDA (Q,Σ, Γ, δ, i , {t})
CFG G also contains

productions:
for every p, r , s, q ∈ Q, m ∈ Γ and a, b ∈ (Σ ∪ {ε})
if (r , m) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, m), add the rule
Ap,q → aAr ,sb.
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NPDA to CFG (last slide)

Finally,

for every p ∈ Q, add the rule Ap,p → ε

if (r , ε) ∈ δ(p, a, ε) add Ap,r → a

Proving this translation works (general approach):

show that any word w accepted by the NPDA can be
generated by the CFG, and vice versa.

An accepting computation of the NPDA corresponds with a
derivation of the same word using the CFG.
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Negative results for CFLs

CFL Pumping Lemma

Given a CFL, any sufficiently long string in that CFL has two
substrings (at least one of which is non-empty) such that if both of
these substrings are “pumped” you generate further words in that
CFL.

More formally...

Given a CFL L, there exists a number p such that any string
α ∈ L with |α| ≥ p can be written as

α = sxtyu

such that
sx2ty2u, sx3ty3u, sx4ty4u, . . .

are all members of L, |xty | ≤ p and |xy | > 0 (which we need for all
strings in this collection to be distinct).
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How do we find suitable substrings x and y?

Consider the following (Chomsky normal form) grammar

S −→ XY
U −→ a

V −→ ZX | a | b
X −→ VW | a
Y −→ b | c
Z −→ a | c
W −→ UZ | b

The string cabaab belongs to the language. Also it contains
“suitable substrings” x and y which we can find by looking at a
derivation tree of cabaab.

Paul Goldberg Intro to Foundations of CS; slides 2, 2017-18 36 / 68



S

Y

b

c

Z

X

W

U Z

a

V

X

V W

a b

a

We find two X ’s on the same path. We can say:

X =⇒∗ cXaa

(via the sequence X ⇒ VW ⇒ ZXW
⇒ cXW ⇒ cXUZ ⇒ cXaZ ⇒ cXaa)
Generally: X =⇒∗ ccXaaaa =⇒∗ cccXaaaaaa . . .
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The substrings c and aa can be pumped, because a derivation of
cabaab can go as follows:

S =⇒∗ Xb

=⇒∗ cXaab

=⇒∗ cabaab

but the underlined X could have been used to generate extra c’s
and aa’s on each side of it.
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Given a grammar, it’s not hard to see that any sufficiently long
string will have a derivation tree in which a path down to a leaf
must contain a repeated variable.
If the grammar is in Chomsky normal form and has v variables, any
string of length > 2v+1 will necessarily have such a derivation tree.
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Examples

The language {1n : n is a square number} is not a CFL.

Prove the following is not a CFL:
{ 1, 101, 101001, 1010010001, 101001000100001, . . .}
Proof by contradiction: suppose string s (in above set) has
substrings x and y that can be pumped.
x and y must contain at least one 1, or else all new strings
generated by repeating x and y would have same number of 1’s, a
contradiction.
But if x contains a 1, then any string that contains x3 as a
substring must have 2 pairs of 1’s with the same number of 0’s
between them, also a contradiction.
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Another example

Prove the following language is not a CFL: Let L be words of the
form ww (where w is any word over {a, b, c})
(e.g. aa, abcabc, baaabaaa, . . .)
Let p be “sufficiently large” word length promised by pumping
lemma.
Choose w = ap+1bp+1ap+1bp+1, so w ∈ L
We can argue that there is no subword of w of length p which
contains any pair of subwords which, if repeated once, give another
member of L.
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Problems associated with analysis of CFLs

Ideally, we’d have efficient algorithms to decide properties of
CFL or PDA

basic question: decide whether string w is in given CFL L

e.g.programming language often described by CFG. Determine
if string is valid program. This is called a membership test
(related to parsing)

Another question: emptiness test – is the language given by
a PDA/CFG empty?
Equivalence: do 2 given CFGs define the same language?

If CFL recognized by deterministic PDA, just simulate the
PDA to check membership → linear time algorithm

but not all CFLs are

For NFA, how difficult is it to do a membership test?

For NPDA or CFG, not clear how to do it at all (for an
NPDA, infinitely many runs on a single input).

We consider this in the exercises.
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Summary

Nondeterministic Pushdown Automata (NPDA)

Positive:
closure under regular operations
Context-Free Grammars (CFGs) describe Context-Free
Languages (CFLs)
efficient membership test

Negative:
Pumping Lemma can be used to show languages are not
recognized by NPDA
Can be used to show lack of closure under intersection,
complement
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A more powerful machine

limitation of NPDA related to fact that their memory is
stack-based (last in, first out)

What is the simplest alteration that adds general-purpose
“memory” to our machine?

Should be able to recognize, e.g., {anbncn : n ≥ 0}
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Turing machines

TM

010011101bbbbbbbbbb

INPUT

in initial state i

New capabilities:

infinite tape

can read OR write to tape

read/write head can move left
and right

(so input is not nec. “consumed”
when read)
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Turing Machine

Informal description:

input written on left-most squares of tape

rest of squares are blank

at each point, take a step determined by

current symbol being read
current state of finite control

a step consists of

writing new symbol
moving read/write head left or right
changing state

Paul Goldberg Intro to Foundations of CS; slides 2, 2017-18 46 / 68



TM formal definition

A TM is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where:

Q is a finite set called the states

Σ is a finite set called the input alphabet

Γ is a finite set called the tape alphabet

δ : Q × Γ→ Q × Γ× {L,R} is a function called the
transition function

q0 is an element of Q called the start state

qaccept , qreject are the accept and reject states

Examples on web page; many variants of definition exist
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TM configurations

At every step in a computation, a TM is in a configuration
determined by:

the contents of the tape
the state
the location of the read/write head

next step completely determined by current configuration

shorthand: string u; q; v with u,v ∈ Γ∗, q ∈ Q meaning:

tape contents: uv followed by blanks
in state q
head on first symbol of v
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Formal definition of TM execution

configuration C1 yields configuration C2 if TM can legally move
from C1 to C2 in 1 step

notation: C1 ⇒ C2

also: “yields in 1 step” notation: C1 ⇒1 C2

“yields in k steps” notation: C1 ⇒k C2

if there exists configurations D1,D2, . . . ,Dk−1 for which
C1 ⇒ D1 ⇒ D2 ⇒ . . .⇒ Dk−1 ⇒ C2

also: “yields in some number of steps” (C1 ⇒∗ C2)
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Formal definition of TM execution

notation

u,v ∈ Γ∗; a,b,c ∈ Γ;
qi ,qj ∈ Q

(examples may be more
helpful to get the idea...)

Formal definition of “yields”:

ua; qi ; bv ⇒ u; qj ; acv

if δ(qi , b) = (qj , c, L) (overwrite b with c and move left)

ua; qi ; bv ⇒ uac ; qj ; v

if δ(qi , b) = (qj , c,R) (overwrite b with c , move right)

two special cases:
left end: qi ; bv ⇒ qj ; cv if δ(qi , b) = (qj , c , L) (move Left
stays put)
“right end” ua; qi – replace with ua; qi ; b (since this is what it
“really is”) and handle right moves as above
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TM acceptance

Computation ends when some combination of symbol and state is
reached for which no transition is defined, or if TM runs off the
LHS of tape.
TM is deemed to have accepted if the state it’s in is one of the
accepting states.

So, now I’ve switched definition to one that allows more than one
accepting state...
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Deciding and Recognising

L(M) is set of strings accepted TM M, the language that M
recognises.

If M rejects every string x 6∈ L then M decides L.

Note that FAs, PDAs always accept/reject any string, not so
TMs!

It’s easy to see that TMs can simulate FAs; in fact they can
also simulate PDAs

A language recognised by a TM is said to be semi-decidable
or recursively enumerable. A language decided by some TM
is said to be decidable or recursive.
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Chomsky hierarchy
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Recursively enumerable
languages

Context-sensitive
languages

Context-free languages

Regular languages
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Chomsky hierarchy + more detail

ex
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easy to
 p

ro
cess

Recursively enumerable
languages

Context-sensitive
languages

Context-free languages

Regular languages

Regular

Context-free

Decidable

Rec. enum.

Formal languages

Det. context-free

Context-sensitive

FA

DPDA

PDA

halting TM

TM
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Deciding and Recognizing

input
machine−→


• accept
• reject
• loop forever.

TM M:

L(M) = set of accepted strings, is the language M recognizes.
if M rejects every x 6∈ L(M) it decides L
set of languages recognised by some TM is called
semi-decidable or computably enumerable (CE) or recursively
enumerable (RE).
set of languages decided by some TM is called
Turing-decidable or decidable or computable or recursive.

Sometimes use Computable more generally for functions computed by Turing
Machines (definition is pretty obvious). Decidable is just for decision
problems/languages.
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Coming up next:

Convince ourselves that TMs really can carry out “generic
computation”. (“Church-Turing thesis”)

Then: decidable versus undecidable languages. Limitations on
what program analysis can achieve (important!)

start with a mention (next slide) that TMs can indeed
recognise CFLs

(later: computational complexity, logic)
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Membership test for CFLs

An algorithm: IsGenerated(x,A)

if |x | = 1, then return YES if A→ x is a production,
else return NO

for all n − 1 ways of splitting x = yz
for all ≤ m productions of the form A→ BC

if IsGenerated(y ,B) and IsGenerated(z ,C ),
return YES

return NO

Can implement this with a TM! (assuming that TMs can indeed
simulate any well-defined algorithm...)
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Positive Results

Lots of variations of TMs turn out to define the same set of
languages. This is how we convince ourselves of Church-Turing
thesis!

Some trivial ones: can change the policy on moving left, can allow
moves that write multiple symbols (analogy with variation of PDA
def.).

Next: a more interesting variant: multi-tape TM
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Multitape TMs

A useful variant: k-tape TM
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Multitape TMs

Informal description of k-tape TM:

input written on left-most squares of tape 1
(other tapes are “work tapes”)

rest of squares are blank on all tapes

at each point, take a step determined by

current k symbols being read on k tapes
current state of finite control

a step consists of

writing k new symbols on k tapes
moving each of k read/write heads left or right
changing state
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Multitape TM formal definition

A Multi-Tape TM is a 7-tuple
(Q,Σ, Γ, δ, q0, qaccept , qreject) where:

everything is the same as a TM except the transition function:

δ : Q × Γk → Q × Γk × {L,R}k

δ(qi , a1, a2, . . . , ak) = (qj , b1, b2, . . . , bk , L,R, . . . , L) =
“in state qi reading a1a2 . . . ak on k tapes, move to state qj , write
b1b2, . . . , bk on k tapes, move L, R on k tapes as specified.”
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Multitape TMs

Theorem

every k-tape TM has an equivalent single-tape TM.

Proof:

Idea: simulate k-tape TM on a 1-tape TM.
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Multitape TMs

simulation of k-tape TM M by single-tape TM M ′:

Single move to M simulated by many moves of M ′.
After each “macro move” (sequence in M ′ mimicking one move of M), head
returning to the beginning.
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Multitape TMs

In control state of M ′, can store state of M, and
also which part of M ′ tape we are looking at.

Macro step:
scan tape, as you pass each virtual head,
remember the symbol on each using the
control state
make changes to reflect each head move of M

simulating is easy, except when a head of M
moves into blank space — need to shift
everything to make room. But can do this by
remembering the previous symbol in M ′’s
control state.
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Programming TMs: basic operations

Convince yourself that the following types of operations are easy to
implement as part of TM “program”

(but perhaps tedious to write out)

copying

moving

incrementing/decrementing

arithmetic operations +,−,∗,/

Paul Goldberg Intro to Foundations of CS; slides 2, 2017-18 65 / 68



Encodings

the input to a TM is always a string in Σ∗

often we want to interpret the input as representing another
object

examples:

tuple of strings (x , y , z)
0/1 matrix
graph in adjacency-list format
Context-free Grammar

Using these encodings, you can show that various “algorithms” that we
talked about before (Membership for CFL, emptiness of FA, equivalence
of FA) can be performed by a TM on the encodings (I use 〈O〉 for string
coding object O), and hence the encoded problems are all decidable.
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Church-Turing Thesis

many other models of computation

multitape TM,
others don’t resemble TM at all (e.g. Random Access
Machines)
common features

unrestricted access to unlimited memory
finite amount of work in a single step

every single one can be simulated by a TM

many are equivalent to a TM

problems that can be solved by computer does not depend on
details of the model!
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Church-Turing Thesis

the belief that TMs formalise our intuitive notion of an algorithm
is:

The Church-Turing Thesis
everything we can compute on a physical
computer can be computed on a Turing
machine.

Note: this is a belief, not a theorem.

Restricting to languages/decision problems, this says: if L is a language where
membership can be determined by a computer, then L is decidable
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