Decidable and Semi-decidable

For a language L

- if there is some Turing Machine that accepts every string in L and rejects every string not in L, then L is a **decidable language**

- if there is some Turing machine that accepts every string in L and either rejects or loops on every string not in L, then L is **Semi-decidable** or **computably enumerable (CE)**
CE vs. Decidable Languages

$L =$ all polynomial equations with integer coefficients that have a solution in the integers

This is CE!

if it were decidable, this would mean we had a method of determining whether any equation has a solution or not!

$L =$ all C programs that crash on some input

CE as well!
If it were decidable, life would be sweet...

Accept=$\{\langle M, x \rangle : M \text{ is a Turing Machine that accepts string } x \} $
Why is “Semi-Decidable” called CE?

Definition: an enumerator for a language $L \subseteq \Sigma^*$ is a TM that writes on its output tape

$$\#x_1\#x_2\#x_3\# \ldots$$

and $L = \{x_1, x_2, x_3, \ldots\}$.

The output may be infinite.
Computable Enumerability

Theorem

A language is Semi-decidable/CE iff some enumerator enumerates it.

Proof:

(⇐) Let E be the enumerator for L. We create a semi-decider for L. On input w:

- Simulate E. Compare each string it outputs with w.
- If w matches a string output by E, accept.
Theorem

A language is Semi-decidable/CE iff some enumerator enumerates it.

Proof:
(\Rightarrow) Let M recognise (semi-decide) language $L \subseteq \Sigma^*$. We create an enumerator for L.

- let s_1, s_2, s_3, \ldots be enumeration of Σ^* in lexicographic order.
- for $i = 1, 2, 3, 4, \ldots$
 - simulate M for i steps on $s_1, s_2, s_3, \ldots, s_i$
- if any simulation accepts, print out that s_j
Undecidability

\[\text{decidable} \subset \text{CE} \subset \text{all languages} \]

our goal: prove these containments proper
• the natural numbers $\mathbb{N} = \{1, 2, 3, \ldots \}$ are countable

• Definition: a set S is **countable** if it is finite, or if it is infinite and there is an onto (surjective) function $f : \mathbb{N} \to S$

Equivalently: there is a function from S into \mathbb{N}
Countable and Uncountable Sets

Theorem

The positive rational numbers
\[\mathbb{Q} = \left\{ \frac{m}{n} : m, n \in \mathbb{N} \right\} \text{ are countable.} \]

Proof:

\[
\begin{array}{cccccccc}
1/1 & 1/2 & 1/3 & 1/4 & 1/5 & 1/6 & \ldots \\
2/1 & 2/2 & 2/3 & 2/4 & 2/5 & 2/6 & \ldots \\
3/1 & 3/2 & 3/3 & 3/4 & 3/5 & 3/6 & \ldots \\
4/1 & 4/2 & 4/3 & 4/4 & 4/5 & 4/6 & \ldots \\
5/1 & \ldots \\
\end{array}
\]
Theorem

The real numbers \mathbb{R} are NOT countable (they are “uncountable”).

How do you prove such a statement?

- assume countable (so there exists function f from \mathbb{N} onto \mathbb{R})
- derive contradiction (“construct” an element not mapped to by f)
- technique is called diagonalization (Cantor)
Proof:
- suppose \mathbb{R} is countable
- list \mathbb{R} according to the bijection f:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14159...</td>
</tr>
<tr>
<td>2</td>
<td>5.55555...</td>
</tr>
<tr>
<td>3</td>
<td>0.12345...</td>
</tr>
<tr>
<td>4</td>
<td>0.50000...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Proof:

- Suppose \mathbb{R} is countable
- List \mathbb{R} according to the bijection f:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14159...</td>
</tr>
<tr>
<td>2</td>
<td>5.55555...</td>
</tr>
<tr>
<td>3</td>
<td>0.12345...</td>
</tr>
<tr>
<td>4</td>
<td>0.50000...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Set $x = 0 \cdot a_1a_2a_3a_4 \ldots$

where digit $a_i \neq i$-th digit after decimal point of $f(i)$

e.g. $x = 0.2641 \ldots$

x cannot be in the list!
Theorem

There exist languages that are not Computably Enumerable.

Proof outline:

- the set of all TMs is countable (and hence so is the set of all CE languages)
- the set of all languages is uncountable
- the function $L : \{\text{TMs}\} \rightarrow \{\text{all languages}\}$ cannot be onto
Lemma

The set of all TMs is countable.

Proof:

- each TM M can be described by a finite-length string $\langle M \rangle$
- can enumerate these strings, and give the natural bijection with \mathbb{N}
non-CE languages

Lemma

The set of all languages is uncountable.

Proof:
- fix an enumeration of all strings s_1, s_2, s_3, \ldots (for example, lexicographic order)
- a language L is described by an infinite string in \{In, Out\}* whose i-th element is In if s_i is in L and Out if s_i is not in L.
suppose the set of all languages is countable

list membership strings of all languages according to the bijection f:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101010...</td>
</tr>
<tr>
<td>2</td>
<td>1010011...</td>
</tr>
<tr>
<td>3</td>
<td>1110001...</td>
</tr>
<tr>
<td>4</td>
<td>0100011...</td>
</tr>
</tbody>
</table>

0 = Out
1 = In
suppose the set of all CE languages is countable

list characteristic vectors of all languages according to the bijection f:

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
<th>create language L with membership string x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0101010...</td>
<td>where i-th digit of $x \neq i$-th digit of $f(i)$</td>
</tr>
<tr>
<td>2</td>
<td>1010011...</td>
<td>x cannot be in the list!</td>
</tr>
<tr>
<td>3</td>
<td>1110001...</td>
<td>therefore, the language L is not in the list.</td>
</tr>
<tr>
<td>4</td>
<td>0100011...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This language might be an esoteric, artificially constructed one. So who cares?

We will show a natural undecidable L next.
The Halting Problem

Definition of the “Halting Problem”:

\[\text{HALT} = \{ \langle M, x \rangle : \text{TM } M \text{ halts on input } x \} \]

\(\langle M, x \rangle\) denotes coding of machine and input as a string (pick some coding – doesn't matter for this argument)

- HALT is computably enumerable.
 (proof?)
- Is HALT decidable?

HALT is a generic software-testing challenge, so genuinely interesting!
The Halting Problem

Theorem

HALT is not decidable (undecidable).

Proof will involve the following

- Suppose there’s some TM H that decides HALT. Using this we will get a contradiction.
- You’ll need to believe that TMs can simulate other TMs, also can be composed with each other.
Proof

- For simplicity, assume input alphabet is one-letter, so inputs to machines are unary integers.
- Assume that \textsc{Halt} were decidable. We create a new TM \(H' \) that is \textit{different from every other Turing machine} (clearly a contradiction, since \(H' \) would have to be different from itself!)
- Let \(M_1, \ldots, M_n, \ldots \) enumerate all the Turing Machine descriptions. Suppose \(H \) decides \textsc{Halt}.
- Definition of \(H' \):
 - On input \(n \) (i.e. \(1^n \)), \(H' \) runs machine \(H \) on \(\langle M_n, n \rangle \)
 - if \(H \) returns ACCEPT (so \(M_n \) halts on \(n \)), then \(H' \) goes into a loop (alternatively: runs \(M_n \) on \(n \), and then \(H' \) returns ACCEPT iff \(M_n \) rejects \(n \).
 - If \(H \) returns REJECT (so \(M_n \) does not halt on \(n \)), then \(H' \) ACCEPTS.

\(H' \) is a TM, but is different from every TM (since disagrees with \(i \)-th TM in its behaviour on input \(1^i \) \(\rightarrow \) contradiction!)
Q: any interesting language that is not CE?
Theorem

A language L is decidable if and only if L is CE and L is co-CE.

Proof:

(\Rightarrow) we already know decidable implies CE

- if L is decidable, then complement of L is decidable by flipping accept/reject.
- so L is co-CE.
A language \(L \) is decidable if and only if \(L \) is CE and \(L \) is co-CE.

Proof:
\((\Leftarrow)\) we have TM \(M \) that recognises \(L \), and TM \(M' \) recognises complement of \(L \).
- on input \(x \), simulate \(M, M' \) in parallel
- if \(M \) accepts, accept; if \(M' \) accepts, reject.
A concrete language that is not CE

Theorem

A language L is decidable if and only if L is CE and L is co-CE.

Corollary

The complement of HALT is not CE.

Proof:

- we know that HALT is CE but not decidable
- if complement of HALT were CE, then HALT is CE and co-CE hence decidable. Contradiction.

Bottom line: For every “strictly semi-decidable language”, its complement cannot be semi-decidable.
Given a new problem NEW, want to determine if it is easy or hard

- right now, easy typically means decidable
- right now, hard typically means undecidable

One option:

- prove from scratch that the problem is easy (decidable), or
- prove from scratch that the problem is hard (undecidable) (e.g. dream up a diag. argument)
A better option:

- to prove **NEW** is decidable, show how to transform it (effectively) into a known decidable problem **OLD** so that solution to **OLD** can be used to solve **NEW**.
- to prove **NEW** is undecidable, show how to transform a known undecidable problem **OLD** into **NEW** so that solution to **NEW** could be used to solve **OLD**.

called a **reduction**. Reduction from problem \(A \) to problem \(B \) shows that “\(A \) is no harder than \(B \)”, and also that “\(B \) is at least as hard as \(A \)”.

- to get a **positive** result on **NEW**, create a reduction from **NEW** to **OLD**, where **OLD** is known to be easy.
- To get a **negative** result on **NEW**, create a reduction from **OLD** to **NEW**, where **OLD** is known to be hard.
Example reduction

- Try to prove undecidable:
 \[ACC_{TM} = \{ \langle M, w \rangle : M \text{ accepts input } w \} \]
- We know this language is undecidable:
 \[HALT = \{ \langle M, w \rangle : M \text{ halts on input } w \} \]
- Idea:
 - suppose \(ACC_{TM} \) is decidable
 - show that we can use \(ACC_{TM} \) to decide \(HALT \) (reduction)
 - conclude \(HALT \) is decidable. Contradiction.
How could we use procedure that decides ACC_{TM} to decide $HALT$?

- given input to $HALT$: $\langle M, w \rangle$

Some things we can do:

- check if $\langle M, w \rangle \in ACC_{TM}$
- construct another TM M' and check if $\langle M', w \rangle \in ACC_{TM}$
Example reduction

Deciding $HALT$ using a procedure that decides ACC_{TM} ("reducing $HALT$ to ACC_{TM}").

- on input $\langle M, w \rangle$
- check if $\langle M, w \rangle \in ACC_{TM}$
 - if yes, then know M halts on w; ACCEPT
 - if no, then M either rejects w or it loops on w
- construct M' by swapping $q_{\text{accept}}/q_{\text{reject}}$ in M
- check if $\langle M', w \rangle \in ACC_{TM}$
 - if yes, then M' accepts w, so M rejects w; ACCEPT
 - if no, then M neither accepts nor rejects w; REJECT
Want to prove language L is undecidable. Let $L_{\text{impossible}}$ be some problem that we already know is undecidable (e.g. Halting).

Proof by contradiction: Assume that there were some TM M_L that decides L. Show that using M_L we could decide $L_{\text{impossible}}$, a contradiction.

How to do this?
Create a Turing Machine N that decides $L_{\text{impossible}}$; N has “subroutines” calling M_L.

Simplest version, “many-one reduction”: N takes an input I to $L_{\text{impossible}}$, and construct a new input I' to test against M_L.
Another example

Try to prove undecidable:

\[\text{NEMP} = \{ \langle M \rangle : L(M) \neq \emptyset \} \]

Reduce from

\[\text{HALT} = \{ \langle M, w \rangle : \text{M halts on input } w \} \]

OK, we want to decide HALT using NEMP

Create a machine N that decides HALT on input \(\langle M, w \rangle \) using “subroutines” for NEMP.

N wants to check if \(\langle M, w \rangle \in \text{HALT} \)

- N constructs another TM \(M' \) and checks if \(\langle M' \rangle \in \text{NEMP} \)
- \(M' \) constructed so that \(\langle M, w \rangle \in \text{HALT} \iff \langle M' \rangle \in \text{NEMP} \)
Reducing HALT to NEMP

idea of N (function it computes):

- Given $\langle M, w \rangle$, construct $\langle M' \rangle$; on any input i, M' runs M on w and accepts i if M halts

construction of M':

1. Use 3 states to delete any input (make tape blank)
2. $|w|$ states print w on input tape
3. Use copies of M's states to simulate M on w
4. ...make sure all states accept.

N constructs M' as above (can be done automatically, i.e. N is doing something computable!)

Extra note: this reduction also proves that the problem of recognising whether a TM accepts an infinite number of distinct inputs, is undecidable.
many-one reductions

Definition: \(A \leq_m B \) (\(A \) many-one reduces to \(B \)) if there is a computable (using a TM) function \(f \) such that for all \(w \)

\[
w \in A \iff f(w) \in B
\]

Book calls it “mapping reduction”.

Example: to show NEMP undecidable, constructed computable \(f \) so that \(\langle M, w \rangle \in \text{HALT} \iff f(\langle M, w \rangle) \in \text{NEMP} \)

In this notation: \(\text{HALT} \leq_m \text{NEMP} \)
many-one reductions

Definition: $A \leq_m B$ (A many-one reduces to B) if there is a computable function f such that for all w

$$w \in A \iff f(w) \in B$$

Theorem

If $A \leq_m B$ and B is decidable then A is decidable.

Proof:
- decider for A: on input w compute $f(w)$, run decider for B, do whatever it does.
Using many-one reductions

Theorem

If $A \leq_m B$ and B is CE, then A is CE.

Proof:

- TM for recognizing A: on input w compute $f(w)$, run TM that recognises B, do whatever it does.

Main use: given language NEW, prove it is not CE by showing OLD \leq_m NEW, where OLD known to be not CE.
Applying Reductions to Get Negative Results on Decidability

Theorem

The language

\[\text{REGULAR} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \} \]

is undecidable.

Proof:

- reduce from \(\text{ACC}_{TM} \) (i.e. show \(\text{ACC}_{TM} \leq_m \text{REGULAR} \))
- i.e. want
 \(M \) accepts \(w \) \iff \(f(\langle M, w \rangle) \) is code of regular language
- what should \(f(\langle M, w \rangle) \) produce?
Proof:

- \(f(\langle M, w \rangle) = \langle M' \rangle \) described below

\(M' \) takes input \(x \):
- if \(x \) has form \(0^n1^n \), accept
- else simulate \(M \) on \(w \) and accept \(x \) if \(M \) accepts

\[M' = \{0^n1^n\} \text{ if } w \not\in L(M) \]
\[= \Sigma^* \text{ if } w \in L(M) \]

What would a formal proof of this look like?

- is \(f \) computable?
- YES maps to YES?
 \(\langle M, w \rangle \in ACC_{TM} \Rightarrow f(M, w) \in REGULAR \)
- NO maps to NO?
 \(\langle M, w \rangle \not\in ACC_{TM} \Rightarrow f(M, w) \not\in REGULAR \)

General idea: write pseudo-code that takes description of \(M \) as input and produces description of \(M' \).

Argue that this pseudo-code could be implemented as a Turing machine with output tape.
The boundary between decidability and undecidability is often quite delicate

- seemingly related problems
- one decidable
- other undecidable

We will cover most examples in the problem sheet

Problem: Given a context free grammar G, is the language it generates empty?
Decidable: i.e. language $\{\langle G \rangle : L(G) \text{ empty}\}$ is a decidable language.
See problem sheets.
The boundary between decidability and undecidability is often quite delicate

- seemingly related problems
- one decidable
- other undecidable

We will cover most examples in the problem sheet.

Problem: Given a context free grammar G, is the language it generates empty? Decidable: i.e. language $\{\langle G \rangle : L(G) \text{ empty} \}$ is a decidable language.

See problem sheets.

Problem: Given a context free grammar G, does it generate every string? Undecidable: i.e. language $\{\langle G \rangle : L(G) = \Sigma^* \}$ is an undecidable language.

In next problem set.
Problem: Given a NPDA, is the language it accepts empty?

- Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove decidability
Problem: Given a NPDA, is the language it accepts empty?
 - Decidable. Convert to CFG and use previous result.

Note: reduction to a known decidable problem is device to prove decidability

Problem: Given a two-stack NPDA, is the language it accepts empty?
Undecidability can find its way into problems that are not “obviously” about TMs/computation in general. E.g. some puzzle-like problems; PCP is as follows:

$$PCP = \{ \langle (x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k) \rangle : x_i, y_i \in \Sigma^* \}$$

and there exists $$(a_1, a_2, \ldots, a_n)$$

for which \(x_{a_1} x_{a_2} \ldots x_{a_n} = y_{a_1} y_{a_2} \ldots y_{a_n}\)
PCP example

Input:

- aab
- cd
- c

Solution:

- aab
- cd
- c

- a
- baab
- cdc

Paul Goldberg
Intro to Foundations of CS; slides 3, 2017-18
Idea is a many-one reduction from ACC to PCP: given a TM M and input w, we have an effective procedure that creates a set of tiles $T = f(M, w)$ such that:

M accepts $w \iff$ there is some way of producing a tiling with T.

(I won’t cover it in lectures.)