
Complexity: moving from qualitative to quantitative
considerations

Textbook chapter 7
Complexity Theory: study of what is computationally feasible (or
tractable) with limited resources:

running time (main focus)

storage space

number of random bits

degree of parallelism

rounds of interaction

others...

more on some of those in complexity (HT)

“polynomial-time reduction” can prove computational hardness
results, analogous to reductions/undecidability
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Worst-case analysis

Always measure resource (e.g. running time) in the following way:

as a function of the input length

value of the function is the maximum quantity of resource
used over all inputs of given length

called “worst-case” analysis

“input length” is the length of input string

Note: the question of how run-time scales with input size, is
unaffected by the speed of your computer
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Time complexity

Given language L recognised by some TM M, we can use number
of steps of M as precise notion of computational runtime.

But this function shouldn’t be studied in too much detail—

We do not care about fine distinctions

e.g. how many additional steps M takes to check that it is at
the left of tape

We care about the behaviour on large inputs

general-purpose algorithm should be “scalable”
overhead for e.g. initialisation shouldn’t matter in big picture
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Time complexity

Measure time complexity using asymptotic notation (“big-oh”
notation)

disregard lower-order terms in running time
disregard coefficient on highest order term

example
f (n) = 6n3 + 2n2 + 100n + 102781

“f(n) is order n3”
write f (n) = O(n3)

E.g. We might consider the class of “Cubic time decision problems” (O(n3))
problems
We will never consider the class of “2n3 + 17 time decision problems”
in practice, usually the constant hidden by big-oh notation isn’t
super-important...

big-oh notation: textbook chapter 7.1
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Asymptotic notation

Definition

given functions f , g : N→ R+, we say f (n) = O(g(n)) if there
exist positive integers c , n0 such that for all n ≥ n0

f (n) ≤ cg(n)

meaning: f (n) is (asymptotically) less than or equal to g(n)

if g always > 0 can assume n0 = 0, by setting

c ′ = max
0≤n≤n0

{c, f (n)/g(n)}
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Time complexity of language 0k1k

On input x :

scan tape left-to-right, reject if 0 to
right of 1

repeat while 0’s, 1’s on tape:

scan, crossing off one 0, one 1

if only 0’s or only 1’s remain, reject; if
neither 0’s not 1’s remain, accept

O(n) steps

≤ n repeats
O(n) steps

O(n) steps

total = O(n) + n.O(n) + O(n) = O(n2)
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Important “Big O” Classes

“logarithmic”: O(log n)

logb(n) = (log2 n)/(log2 b)
so logb(n) = O(log2(n)) for any constant b; therefore suppress
base when we write it

“polynomial”: O(nc) = nO(1)

“exponential”: O(2n
δ
) for δ > 0
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Time complexity classes

Recall:

language is a set of strings

a complexity class is a set of languages

complexity classes we’ve seen:

Regular languages, Context-free languages, Decidable
languages, CE Languages, co-CE languages

Definition

TIME (t(n)) = {L : there exists a TM M that decides L in time
O(t(n))}

A priori, TIME (t(n)) could be a different class for every function t
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Robustness of Complexity

At this point we could begin to draw pictures of the relationship of
time classes (e.g. TIME (n3), TIME (2n),...) to other classes we
know of.

But before we do, ask: how “robust” are these classes?

Do the precise details of the variation of TM we use matter
(e.g. single-tape vs. multi-tape, one head move per transition
vs. several, acceptance by state only vs. ...)?

Could we use C or Java instead of TMs in defining “time
steps”? Does it matter if we use C vs. FORTRAN in this?
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Robust complexity

Complexity of L = {0k1k : k ≥ 0}
On a Turing Machine it is easy to do in TIME O(n2).

Book: it is also in TIME (n log n) by giving a more clever
algorithm

Can prove: O(n log n) time required on a single tape TM.

How about on a multitape TM?
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Robustness of Complexity

2-tape TM M deciding L = {0k1k : k ≥ 0}.

On input x :

scan tape left-to-right, reject if 0 to
right of 1

scan 0’s on tape 1, copying them to
tape 2

scan 1’s on tape 1, crossing off 0’s on
tape 2

if all 0’s crossed off before done with
1’s, reject

if 0’s remain after done with ones,
reject; otherwise accept

O(n)

O(n)

O(n)

total:
3 ∗ O(n) = O(n)
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Multitape TMs

Convenient to “program” multitape TMs rather than single ones

equivalent when talking about decidability

not equivalent when talking about time complexity

The speed-up of using multi-tape machine turns out to be only
quadratic:

Theorem

Let t(n) satisfy t(n) ≥ n. Every multi-tape TM running in time
t(n) has an equivalent single-tape TM running in time O(t(n)2).

Textbook, Theorem 7.8
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Multitape TMs

Moral 1: feel free to use k-tape TMs, but be aware of
slowdown in conversion to TM

Moral 2: O(n) is not super-robust. Polynomial time
(TIME (nc) for some c) and exponential time (2n

c
for some c)

are more stable under tweaking machine model. High-level
operations you are used to using can be simulated by TM with
only polynomial slowdown

e.g., copying, moving, incrementing/decrementing, arithmetic
operations +, -, *, /

We will focus on these coarse-but-robust classes.
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A Robust Time Complexity Class

interested in a coarse classification of problems. For this purpose,

treat any polynomial running time as “efficient” or “tractable”

treat any exponential running time as inefficient or
“intractable”

Key definition:
“P” or “polynomial-time” or PTIME

P = ∪k≥1TIME (nk)

“Think of P as standing for Practical” —Tim Gowers
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The complexity class P
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Positive results: Examples of languages in P

Most “school algorithms” are easily seen to be in P.

Standard arithmetic operations (×,+ etc) on (e.g.) binary
numbers.

Searching for an item in a list.

Sorting

Can use “robustness” of P in proving positive results.
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Language Map Revisited

Key definition

“P” or “polynomial-time” or PTIME
P = ∪k≥1TIME (nk)

Definition

“EXP” or “exponential-time” or EXPTIME
EXP = ∪k≥1TIME (2n

k
)

P
EXP

decidable
languages

P ⊆ EXP ⊆ 2EXP ⊆ · · ·
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Diagonalization and separating time complexity classes

(similar to undecidability of HALT:)

TM[i ,j ] = Acts like ith Turing Machine Mi but reject w if no
acceptance after j · |w |j + j steps

Languages accepted by TM[i ,j ]’s are exactly the polynomial
time languages
Diagonal machine DiagP : on input w = aibj run TM[i ,j ] on w
and then do the opposite

How fast is DiagP?

So, artificial language outside P, in EXPTIME

Related:

{〈M, j , k,w〉 : TM[j , k] accepts w}
In the book you can find a similar example:
ACCBounded = {〈M,w , j〉 : M is a TM, j binary representation of
an integer, M accepts w within at most j steps}
i.e. roughly
{〈M ′,w〉 : M ′ is a PTIME machine and M ′ accepts w}
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Time Hierarchy Theorem

Theorem

For every proper complexity function f (n) ≥ n:
TIME (f (n)) ( TIME ((f (2n))3).

Most natural functions (and 2n in particular) are proper complexity
functions. We will ignore this detail in this class. We do not cover
the proof in this course. But understand the conclusions:
TIME (n) ( TIME (n3) and TIME (2(n/6)) ( TIME (2n), etc.

This tells us that P differs from EXP
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Bootstrapping from examples

We have defined the complexity classes P (polynomial time), EXP
(exponential time)

regularCFLs
x

some language

P
EXP

decidable
languages

How do you bootstrap to show something is not in P, not in EXP,
etc.?
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Poly-time reductions

Type of reduction we will use:

“many-one” poly-time reduction (commonly)

“mapping” poly-time reduction (book)

A Bf

f

yes

no

yes

no

reduction from language A to language B
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Poly-time reductions

Definition

A ≤P B (“A reduces to B”) if there is a poly-time computable
function f such that for all w

w ∈ A⇔ f (w) ∈ B

as before, condition equivalent to:
YES maps to YES and NO maps to NO

as before, meaning is:
B is at least as “hard” (or expressive) as A
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Poly-time reductions

Theorem

If A ≤P B and B ∈ P then A ∈ P.

Proof.

A poly-time algorithm for deciding A:

on input w , compute f (w) in poly-time.

run poly-time algorithm to decide if f (w)inB

if it says “yes”, output “yes”

if it says “no”, output “no”

In particular, once you know some concrete language L is not in P
(EXP, etc.), you can use reductions to show that other languages
are not in P.

Paul Goldberg Intro to Foundations of CS; slides 4, 2017-18 23 / 66



In P or not in P?

The way you show something
is in P:
Give a PTIME algorithm
Also can do via reductions.

The way you show something is not in P:
Reduce from problem known not to be in P
(e.g. acceptance problems)

Problem: REACH=Given a graph, and two nodes n1 and n2,
decide if there is a path from n1 to n2.

In P Dynamic programming
Problem: HAM=Given a graph G , find out if there is a circuit
that hits every node exactly once.

(stands for Hamiltonian Circuit).
Obvious algorithm shows that is in exponential
time.

Is it in P? Unknown!
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Can we show HAM is not in P?

Don’t know how to. Believed unlikely to be in PTIME. But
probably cannot reduce from a known EXPTIME problem

Why is it difficult to show HAM is not in P? There is an
important positive feature of HAM that makes it “close to
PTIME”

HAM is decidable in polynomial time by a nondeterministic TM
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Nondeterministic TMs

informally, TM with several possible next configurations at
each step

formally, an NTM is a 7-tuple
(Q,Σ, Γ, δ, q0, qaccept , qreject) where: everything is the same as
a TM except the transition function:
δ : Q × Γ→ P(Q × Γ× {L,R})
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Nondeterministic TMs

visualize computation of a NTM M as a tree

Cstart•
• • •

• • •
• • • • •

rej acc
• •
• •

nodes are configurations

leaves are accept/reject
configurations

M accepts if and only if there
exists an accept leaf

We are interested in NTMs
where no paths go on forever:

allows us to define running time
on string w as: length of
longest path (depth of tree)
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The class NP

Recall Definition: TIME (t(n))= {L : there exists a TM M that
decides L in time O(t(n))}

P = ∪k≥1TIME (nk)

New Definition: NTIME (t(n))= {L : there exists a NTM M that
decides L in time O(t(n))}

NP = ∪k≥1NTIME (nk)
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NP Languages

Informally: Languages L where membership can be done through
run making polynomial-sized “guesses”, and then verifying a guess
in polynomial time.

Need to know:

Every run-with-guesses is polynomial sized

If the input is in L, some guess will succeed.

If the input is not in L, no guess will succeed.

Can verify that a guess is correct.

NP: computational challenges where solutions are easy to check,
but may be hard to find
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NP in relation to P and EXP

NP

regularCFLs

P
EXP

decidable
languages

P ⊆ NP (poly-time TM is is poly-time NTM

NP ⊆ EXP
configuration tree of nk -time NTM has ≤ bn

k

nodes, where b
is max number of choices per state

can traverse entire tree in O(bn
k

) time

we do not know if either inclusion is proper
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NP

NTM=TM with several next configurations at each step

formally, an NTM is a 7-tuple
(Q,Σ, Γ, δ, q0, qaccept , qreject) where: everything is the same as a
TM except the transition function:
δ : Q × Γ→ P(Q × Γ× {L,R})

NP Machine – maximum length of runs on w is polynomially
bounded in |w |

NP

regularCFLs

P
EXP

decidable
languages
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NP problems

...include all problems known to be in P, then e.g.

Travelling Salesman Problem

Given an edge weighted graph G – edges have weights (distances)
– and an integer k , does G have a Hamiltonian circuit with sum of
weights below k?

Given a graph G does G have a 3-colouring (labelling of nodes with
3 colours such that no two adjacent nodes have the same colour)?

Given a graph G and a number k (in binary), does G have a clique
of size k?

Are these problems in P?

More general open question (for 40 years): does P = NP?

Clay Institute Prize for solving this: $1 million
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What can we show about NP-problems?

Weaker thing than showing a problem is not in P

Show if problem is in P, then every NP problem is in P

This means: problem is as hard as any NP problem i.e. as hard as
TSP, as hard as ...
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Hardness and completeness

Recall:

a language L is a set of strings

a complexity class C is a set of languages

Definition

a language L is C -hard (under polynomial time reductions) if for
every language A ∈ C , A poly-time reduces to L; i.e., A ≤P L.

meaning: L is at least as “hard” as anything in C

NP-hard – every NP language reduces to it
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Hard Problems, in General

Polynomial-time
reductions

A Bf

f

yes

no

yes

no

Hard problem for class C: language L such that every other
problem in C reduces in polytime to L

E.g. L is EXPTIME-hard: every EXPTIME problem
reduces to L (hence L is not in P, since P6=EXPTIME)
L is NP-hard: every NP problem reduces to L

Complete problem for class C: Language that is in C and is
C-hard

L is NP-complete: L ∈ NP and every NP problem reduces to L
=“Hardest problem in NP”
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P=NP??

Are TSP, 3 Coloring, Clique and other NP problems in P?
Open question for 40 years – does P=NP?
We do not know how to show that NP problems are not in P
We do know how to show that problems are NP-hard
If a problem L is shown to be NP-hard, this means:
If we can show L is in P, we will be rich and famous
It will be extremely difficult to find a PTIME algorithm for L

General belief in complexity community: it is extremely unlikely
that there is a PTIME algorithm for L
NP-hard problems often called “presumably intractable”
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An artificial NP-complete problem

recall: “C-complete” means, “in C, and at least as hard as anything in C”

Version of ACCTM with a unary time bound, and NTM instead of

TM:
ANTMU = {〈M, x ,1m〉 : M is a NTM that accepts x

within at most m steps}

Theorem

ANTMU is NP-complete.

Proof:

Part 1. Need to show ANTMU ∈ NP.

simulate NTM M on x for m steps; do what M does

n = length of input 〈M, x , 1m〉 ≥ m

running time is some constant factor of |x |+ (|M|∗m) ≤ n2
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An artificial NP-complete problem

ANTMU = {〈M, x , 1m〉 : M is a NTM that accepts x within at
most m steps}

Proof that ANTMU is NP-hard:

Given NP problem A, must poly-reduce to ANTMU

TM MA for A has time bound t(|w |) = O(|w |k) for some k
Define: f (w) = 〈MA,w , 1

m〉 where m = t(|w |)
is f (w) poly-time computable?

hardcode MA and k ...

YES maps to YES?

w ∈ A⇒ 〈MA,w , 1
m〉 ∈ ANTMU

NO maps to NO?

w 6∈ A⇒ 〈MA,w , 1
m〉 6∈ ANTMU
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An artificial NP-complete problem

Conclude: If you can find a poly-time algorithm for ANTMU then
there is automatically a poly-time algorithm for every problem in
NP (i.e., NP=P).

Want to know if natural problems (e.g. TSP, HAM, etc.) are
NP-hard.

Start with one natural problem, involving propositional logic. From
there go to graph problems.
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Propositional Logic

A propositional variable takes value either TRUE or FALSE.

A propositional formula is built up from propositional variables and
the constants TRUE or FALSE, using operators (or “connectives”)
like AND (∧), OR (∨), NOT (¬), IMPLIES (⇒), etc.
Suppose x1, x2, . . . are propositional variables. Example formula:

(x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x4) ∨ (x1 ⇒ x5)

By the way, technically all boolean operations can be expressed in
terms of NAND, but it’s useful to use at least ∧, ∨, ¬.

Some more jargon: an assignment of truth values to the variables
is sometimes called a “world”; a formula φ that always evaluates
to TRUE (for any world) is a tautology (or valid), if φ is always
FALSE it’s a contradiction.
Usually I don’t say “world”, I say “truth assignment”, or “(non)-satisfying
assignment” (w.r.t. some formula)
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2 problems involving propositional logic

1 Given a formula φ on variables x1, . . . xn, and values for those
variables, derive the value of φ — easy!

2 Search for values for x1, . . . , xn that make φ evaluate to
TRUE — naive algorithm is exponential: 2n vectors of truth
assignments.

Cook’s Theorem (1971):

The second of these, called SAT, is
NP-complete.

Stephen Cook
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The challenge of solving boolean formulae

There’s a HUGE theory literature on the computational challenge
of solving various classes of syntactically restricted classes of
boolean formulae, also circuits.
Likewise much has been written about their relative expressive
power
SAT-solver: software that solves input instances of SAT — OK, so
it’s worst-case exponential, but aim to solve instances that arise in
practice. Need smart algorithms (not truth table!)
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Reducing an NP problem to SAT

Goal: fixing non-deterministic TM M, integer k , given w create in
poly-time a propositional formula CodesAcceptRunM(w) that is
satisfied by assignments that code an nk length accepting run of
M on w (where n = |w |)

The propositional variables “describe” an accepting computation,
e.g. HasSymboli ,j(a) is TRUE if the computation has symbol a on
the j-th tape position at step i .

We’ll assume M has “stay put” transitions for which it can change
tape contents; R and L moves don’t change tape. Assume also
that to accept, M goes to LHS of tape and prints special symbol.
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Reducing an NP problem to SAT

Goal: fixing non-deterministic TM M, integer k , given w create in
poly-time a propositional formula CodesAcceptRunM(w) that is
satisfied by assignments that code an nk length accepting run of
M on w (where n = |w |)

Time i

Tape space j

1 2 · · · nk

1 (q0,w1) w2 · · ·
2 w ′

1 (q1,w2)
...
...

nk

This corresponds to a
run where
HasSymbol1,1(w1)
HasHead1,1(q0)
HasSymbol1,2(w2)
HasSymbol2,1(w ′

1)
HasSymbol2,2(w2)
HasHead2,2(q1)
...are true
(Others, e.g.
HasHead1,2(q0) are
false)

Idea: the search for “correct” non-determinstic choices for M shall

correspond to search for satisfying assignment for

CodesAcceptRunM(w).

CodesAcceptRunM(w) shall be a conjunction of clauses.
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Moving head clauses: leftward-moving State

Leftward moving state. If M has transition rule
(q, a)→ {(q1, a, L), (q2, a, L)} then we write:

HasHeadi ,j(q)⇒ [HasHeadi+1,j−1(q1) ∨ HasHeadi+1,j−1(q2)]

Write the above for all i , j ∈ {1, 2, 3, . . . , nk}.

Time

Tape space

1 · · · j − 1 j · · · nk

1

i w2 (q, a)
i + 1 (q1,w2) a

...
nk

Paul Goldberg Intro to Foundations of CS; slides 4, 2017-18 45 / 66



Moving head clauses: Rightward-moving State or
Leftward-moving State

For every rightward or leftward state q, for every a we add the
clause:

HasSymboli ,j(a) ∧ HasHeadi ,j(q)⇒ HasSymboli+1,j(a)

Meaning: if the head is at place j at step i and we are in a
rightward- or leftward moving state, symbol in place j at step i + 1
is the same.

Tape space

1 · · · j · · · nk

1

Time i (q, a) w2 · · ·
i + 1 a (q1,w2) · · ·

...
nk
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Moving head clauses: stay-same state

For every stay-and-write state q, if we have transition
(q,w0)→ {(q1,w1, Stay), (q2,w1, Stay)} then we add:

HasSymboli ,j(w0) ∧ HasHeadi ,j(q)⇒ HasSymboli+1,j(w1)

(new symbol is written – use “stay determinism” assumption of
MA here!) And also:

HasHeadi ,j(q)⇒ [HasHeadi+1,j(q1) ∨ HasHeadi+1,j(q2)]

(head does not move, although state may change)
1 · · · j · · · nk

1

i (q,w0) · · ·
i + 1 (q1,w1) · · ·

...
nk
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TM head “sanity clauses”

Include the following:

HasHeadi ,j(q)⇒ ¬HasHeadi ,j ′(q′)

...for all states q, q′, for all i , j , j ′ with j 6= j ′.
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More sub-formulae for Transitions: away from head clauses

Clauses stating that if the head is not close to place j at time i ,
then symbol in place j is unchanged in the next time.
For any state q and symbol w3, any i ≤ nk and number h in a
certain range we have

HasHeadi ,j(q) ∧ HasSymboli ,j+h(w3)⇒ HasSymboli+1,j+h(w3)

If q is a rightward-moving state, do this for nk − j ≥ h ≥ 2 and
−(j − 1) ≤ h < 0
If q is a leftward-moving state do this for nk − j ≥ h ≥ 1 and
−(j − 1) ≤ h < −1

If q is a stay put state, do this for h 6= 0

1 · · · j · · · nk

1

i (q,w0) · · · w3

i + 1 (q1,w1) · · · w3
...
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Reducing an NP problem to SAT (conclusion)

Final configuration clause: let’s assume that whenever M accepts,
it accepts at LHS of tape and prints special symbol � there

HasSymbolnk ,1(�) ∧ HasHeadnk ,1(qaccept)

At time nk , head is at the beginning and state is accepting with
special termination symbol

1 · · · · · · nk

1 q0 w1 w2 · · ·

...

nk (qaccept ,�)
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Proof of the construction (that it’s a poly-time reduction)

Recall: we had an arbitrary NTM M and running time bound.
Need to show L(M) ≤P SAT , via f :words→formulae
Let FormM(w) be result of f evaluated on w .

1. Show: FormM(w) is computable from w in PTIME

2. Show: If w is accepted by M, then FormM(w) is satisfiable

Take a run r witnessing acceptance of w , and let Code(r) be the
corresponding assignment. Verify that Code(r) satisfies
FormM(w): for each subformula in the conjunction, show that it
follows from the properties of an accepting run.

3. Show: if FormM(w) is satisfiable, then w is accepted by M

Tougher direction – Take a satisfying assignment A of FormM(w).
First show some sanity properties of A which indicate that it
corresponds to a run.
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Proof of the construction

Proving: If FormM(w) is satisfiable, then w is accepted by M

Take a satisfying assignment A of FormM(w). Want to show that
there is an accepting run of M on w . First show some sanity
properties of A which indicate that it corresponds to a run:

(a) For every i < nk , there is some j < nk and q such
that HasHeadi ,j(q) is true.
Prove by induction on i : for i = 1, follows from the
initial state clause; induction step follows from the
transition formulae.

(b) For each i < nk , can’t be 2 different j < nk and q
with HasHeadi ,j(q) is true.
Follows from the “sanity clause”.
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Proof of the construction

Proving: If FormM(w) is satisfiable, then w is accepted by M

Take a satisfying assignment A of FormM(w). First show some
sanity properties of A which indicate that it corresponds to a run:
(c) For every i < nk , j < nk there must be some a such that
HasSymboli ,j(a) holds
Prove the statement “for all j ...” by induction on i .
i = 1 follows from the initial state clause; induction step follows
from the head-moving clauses + “stay the same” clauses
Each of these formulae are of the form:

if (guards) then (Some Proposition holds at place i+1,j)

Argue, using induction, that one of the guard conditions has to
hold at every j
(d) For every i < nk , and j < nk can’t be two different a such that
HasSymboli ,j(a) holds
Follows from Row Sanity Clauses
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Proof of the construction

Proving: If FormM(w) is satisfiable, then w is accepted by M

Take a satisfying assignment A of FormM(w). We have shown sanity properties
of A which indicate that it corresponds to a run.
Now can define a sequence of configurations of M from A: config i has:

tape value at place j of config i is the unique symbol a such that
HasSymboli,j(a) holds

control state is the unique q such that HasHeadi,j(q) holds for some j

head is at the unique j such that HasHeadi,j(q) for some q

Well-defined by (a)–(d). Show that this is an accepting run for w .

Verify each property of an accepting run.
Initial state ok?
→ follows from initial state clause

Transition function respected?
→ follows from head-moving clauses (for cells close to the head) and

away-from-head clauses (for other cells)
Acceptance state reached at the end?
→ follows from acceptance clause

Paul Goldberg Intro to Foundations of CS; slides 4, 2017-18 54 / 66



returning to Cook’s Theorem

A propositional formula is in Conjunctive Normal Form (CNF) if
it is of the form

C1 ∧ C2 ∧ . . . ∧ Cn

where each Ci is of the form (R1 ∨ . . . ∨ Rm) each Ri is either a
proposition or its negation.
k-CNF means CNF where each Ci has ≤ k propositions.
3CNF example: (p1 ∨ p2) ∧ (¬p2 ∨ p3) ∧ (p3 ∨ p4 ∨ ¬p5)
Conjunction of Disjunctions Each of the Ci is called a clause
Checking whether a CNF is a validity is easy.
Checking whether a CNF is satisfiable is not so easy
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returning to Cook’s Theorem

Theorem

Checking whether a 3CNF propositional formula is satisfiable is
NP-complete (3-SAT is NP-complete)

Proof:
Previous argument produces a long conjunction of things of form:
A⇒ B; can be rewritten ¬A ∨ B
A ∧ B ⇒ C can be rewritten ¬(A ∧ B) ∨ C = ¬A ∨ ¬B ∨ C
A⇒ (B ∨ C ); can be rewritten ¬A ∨ B ∨ C
Powerful tool for negative results: prove that a problem L is
NP-complete by reducing 3SAT to L

3-SAT ≤P L⇒L is NP-hard

Show how this is done for a graph problem next
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INDEPENDENT SET

Definition: given a graph G = (V ,E ), an independent set in G is
a subset V ′ ⊆ V such that for all u,w ∈ V ′, (u,w) 6∈ E .
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INDEPENDENT SET is NP-complete

Theorem

the following language is NP-complete:

IS = {(G , k) : G has an independent set of size ≥ k}.

Proof:

Part 1: IS ∈ NP. (Proof: exercise)

Part 2: IS is NP-hard.

reduce from 3-SAT
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INDEPENDENT SET is NP-complete

We are reducing from the language:

3-SAT = {φ : φ is 3-CNF formula with a satisfying assignment}

to the language:

IS = {(G , k) : G has an IS of size ≥ k}.

Given φ we must produce a G , k such that φ is satisfiable iff G has
an IS of size ≥ k .
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INDEPENDENT SET is NP-complete

The reduction f: given

φ = (x ∨ y ∨ ¬z) ∧ (¬x ∨ w ∨ z) ∧ . . . ∧ (. . .)

we produce graph Gφ:

one triangle for each of m clauses — duplicate a literal1

if it appears in multiple clauses

additional edge between every pair of contradictory
literals

choose k = m = number of clauses
1A literal is a propositional variable or its negation
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INDEPENDENT SET is NP-complete

φ = (x ∨ y ∨ ¬z) ∧ (¬x ∨ w ∨ z) ∧ . . . ∧ (. . .)

f (φ) =
(Gφ, no. of clauses)

Is f poly-time computable?

YES maps to YES?

Choose 1 true literal per clause in satisfying assignment
choose corresponding vertices (1 per triangle)
IS, since no contradictory literals in assignment

Paul Goldberg Intro to Foundations of CS; slides 4, 2017-18 61 / 66



INDEPENDENT SET is NP-complete

φ = (x ∨ y ∨ ¬z) ∧ (¬x ∨ w ∨ z) ∧ . . . ∧ (. . .)

f (φ) =
(G , no. of clauses)

NO maps to NO? Show if a 3-CNF maps to YES, then
satisfiable:

IS can have at most 1 vertex per triangle
IS of size ≥ no of clauses must have exactly 1 per triangle
since IS, no contradictory vertices
can produce satisfying assignment by setting these
literals to true
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NP-completeness of CLIQUE

Recall that (G , k) is an instance of CLIQUE if G is a graph having
k vertices that are all connected to each other. Easy to check that
CLIQUE is in NP.

NP-hard: Reduce from INDEPENDENT SET
Given G = (V ,E ) and number k (for which, we ask whether
(G , k) is an instance of INDEPENDENT SET), construct
G ′ = (V ′,E ′) and number k ′ such that (G , k) has an independent
set if and only if (G ′, k ′) has a clique of size k ′.

Switch edges and non-edges — a size-k independent set becomes
a size-k clique. (So, let k ′ = k.) A size-k set that is not
independent fails to become a size-k clique!
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Another reduction: 3-SAT ≤P READ-5-TIMES 3-SAT

Definition

READ-5-TIMES 3-SAT consists of 3-CNF formulae where any
propositional variable can appear at most 5 times.

Suppose that variable x appears r times in φ.
Replace the i-th occurrence with xi (1 ≤ i ≤ r) and add new
clauses:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ . . .

(xr−1 ∨ ¬xr ) ∧ (¬xr−1 ∨ xr )∧

The new clauses require x1, . . . , xr to have the same truth value, in
any satisfying assignment. It is not hard to check that the new
formula can be constructed in polynomial time.
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Another reduction: LATIN SQUARE COMPLETION ≤P

SUDOKU

An instance of SUDOKU is a n × n grid of n × n sub-grids, some
entries containing numbers in the range 1, . . . , n2; it is a
YES-instance if it has a solution (i.e., you can fill in all entries so
that all numbers in a subgrid are distinct, and all numbers in a row
or column are distinct.

An instance of LATIN SQUARE COMPLETION is a n × n grid,
some entries with numbers in range 1, . . . , n; it’s a YES-instance if
it can be filled with numbers in the range 1, . . . , n such that all
numbers in any row, and all numbers in any column are distinct.

http://www.dcs.warwick.ac.uk/∼czumaj/cs301/PGoldberg/sudoku.html

It’s easy to prove SUDOKU NP-complete... if you happen to know

already that LATIN SQUARE COMPLETION is NP-complete!
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Complexity Summary

We do not if P 6= NP, or NP 6= EXP
We do know know how to prove lots of interesting problems are
NP-hard “presumably intractable”.
In the exercises, do more examples.
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