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Abstract

We study the fair allocation of a cake, which serves as a metaphor for a divisible resource,
under the requirement that each agent should receive a contiguous piece of the cake. While
it is known that no finite envy-free algorithm exists in this setting, we exhibit efficient
algorithms that produce allocations with low envy among the agents. We then establish
NP-hardness results for various decision problems on the existence of envy-free allocations,
such as when we fix the ordering of the agents or constrain the positions of certain cuts. In
addition, we consider a discretized setting where indivisible items lie on a line and show a
number of hardness results extending and strengthening those from prior work. Finally, we
investigate connections between approximate and exact envy-freeness, as well as between
continuous and discrete cake cutting.

1 Introduction

We consider the classical cake cutting problem, where we wish to divide a cake among a set of
agents with different preferences over different parts of the cake. The cake serves as a metaphor
for any divisible resource such as time or land, and our aim is to perform the division in a fair
manner. This problem has a long and storied history that dates back over 70 years [Brams
and Taylor, 1996; Robertson and Webb, 1998; Procaccia, 2016] and has received considerable
attention in the past decade [Caragiannis et al., 2011; Bei et al., 2012; Aumann et al., 2013;
Balkanski et al., 2014; Brânzei and Miltersen, 2015; Alijani et al., 2017; Menon and Larson, 2017;
Bei et al., 2018; Segal-Halevi, 2018].

In order to reason about fairness, we need to specify when a division is considered to be
fair. One of the most commonly used definitions is envy-freeness, which means that no agent
envies another with respect to the division. In other words, among the pieces in the division,
every agent receives their first choice. An early result by Dubins and Spanier [1961] shows
that an envy-free allocation always exists for arbitrary valuations of the agents. However, as
Stromquist [1980] noted, this result depends on a liberal definition of what constitutes a piece of
cake, and an agent “who hopes only for a modest interval of cake may be presented instead with
a countable union of crumbs.”

In light of this concern, Stromquist [1980] strengthened the result of Dubins and Spanier by
showing that it is possible to guarantee an envy-free allocation in which every agent receives a
contiguous piece of the cake. Stromquist’s result, together with its topological proof, is widely

∗A preliminary version of this paper appeared in Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI 2020).
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regarded as a cornerstone of the cake-cutting literature. Nevertheless, since the result focuses
only on the existence of a contiguous envy-free allocation, it leaves open the question of how to
compute such an allocation. Almost 30 years later, Stromquist himself addressed this question
and showed that under the Robertson-Webb model, where an algorithm is allowed to discover
the agents’ valuations through cut and evaluate queries, no finite algorithm can compute a
contiguous envy-free allocation when there are at least three agents [Stromquist, 2008].1

Although Stromquist’s later result rules out the possibility of computing contiguous envy-free
allocations in general, several important questions still remain. For instance, can we compute a
contiguous allocation with low envy between the agents, and if so, how efficiently? How does
the answer change if we know that the agents’ valuations belong to a restricted class? What
happens if we add extra requirements on the allocation, such as fixing a desired ordering of the
agents or constraining the positions of certain cuts? The goal of this paper is to shed light on
the complexity of contiguous cake cutting by addressing these questions.

1.1 Our Contributions

First, in Section 3 we present two algorithms that compute an allocation with low envy in
polynomial time. As is standard in the cake-cutting literature, we represent the cake by the
interval [0, 1] and normalize the agents’ valuations so that each agent has value 1 for the entire
interval. Our first algorithm works for general valuations under the Robertson-Webb model and
produces a contiguous allocation in which any agent has envy no more than 1/3 towards any
other agent. On the other hand, our second algorithm is specific to valuations where each agent
only desires a single subinterval and has a uniform value over that interval—for such valuations,
the algorithm produces a contiguous allocation with a lower envy of at most 1/4.

Next, in Section 4 we consider variants of the cake-cutting problem where we impose
constraints on the desired allocation. We show that for several natural variants, the decision
problem of whether there exists a contiguous envy-free allocation satisfying the corresponding
constraints is NP-hard. In particular, this holds for the variants where (i) a certain agent must
be allocated the leftmost piece; (ii) the ordering of the agents is fixed; and (iii) one of the
cuts must fall at a given position. Fixing the ordering of the agents is relevant when there is
a temporal ordering in which the agents must be served, e.g., due to notions of seniority or
the ease of switching from one agent to another in the service. Likewise, fixing a cut point is
applicable when we divide a parcel of land and there is a road crossing the parcel, so we cannot
allocate a piece that lies on both sides of the road. Moreover, our construction serves as a general
framework that can be used to obtain hardness results for other related variants.

In Section 5 we investigate a discrete analog of cake cutting, where there are indivisible items
on a line and each agent is to be allocated a contiguous block of items. The discrete setting can
be viewed as a type of restriction for the continuous setting, where cuts must be placed between
discrete items. In addition to envy-freeness, we work with two other well-studied fairness notions:
proportionality and equitability.2 Using a single reduction, we show that deciding whether there
exists a contiguous fair allocation is NP-hard for each of the three fairness notions as well as
any combination of them; our result holds even when all agents have binary valuations3 and
moreover value the same number of items. This significantly strengthens a result of Bouveret et
al. [2017], who established the hardness for proportionality and envy-freeness using additive but
non-binary valuations. Moreover, we show that even if we consider approximate envy-freeness
instead of exact, the decision problem remains NP-hard for binary valuations. We also prove

1For two agents, the well-known cut-and-choose protocol, which lets the first agent cut the cake into two equal
pieces and lets the second agent choose the piece that she prefers, computes a contiguous envy-free allocation.

2See the definitions in Section 5.
3That is, the valuations are additive and each agent values each item either 0 or 1.
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that when the valuations are binary and every agent values a contiguous block of items, deciding
whether a contiguous proportional allocation exists is NP-hard.

Finally, in Section 6 we present a number of connections between approximate and exact
envy-freeness, as well as between the continuous and discrete settings. First, we prove that for
piecewise constant valuations, finding an approximately envy-free allocation is as hard as finding
an exactly envy-free allocation. Then, we reveal some relationships between continuous and
discrete cake cutting—among other things, we show that a special case of the continuous problem
for piecewise constant valuations is computationally equivalent to a discrete cake-cutting problem
where every item is positively valued by at most one agent. This means that any algorithm or
hardness result for one problem will immediately transfer over to the other.

1.2 Further Related Work

Since the seminal work of Stromquist [1980, 2008], a number of researchers have studied cake
cutting in view of the contiguity condition. Su [1999] proved the existence of contiguous envy-free
allocations using Sperner’s lemma arguments. Deng et al. [2012] showed that contiguous envy-free
cake cutting is PPAD-complete; however, the result requires non-standard (e.g., non-additive,
non-monotone) preference functions. Aumann et al. [2013] considered the problem of maximizing
social welfare with contiguous pieces, while Bei et al. [2012] tackled the same problem with the
added requirement of proportionality. Cechlárová and Pillárová [2012] and Cechlárová et al.
[2013] examined the existence and computation of contiguous equitable allocations—among other
things, they showed that such an allocation is guaranteed to exist even if we fix the ordering
of the agents. Aumann and Dombb [2015] analyzed the trade-off between fairness and social
welfare in contiguous cake cutting. Segal-Halevi et al. [2016] circumvented Stromquist [1980]’s
impossibility result by presenting bounded-time contiguous envy-free algorithms that may not
allocate the entire cake but guarantee every agent a certain positive fraction of their value.4

The contiguity requirement has also been considered in the context of indivisible items.
Marenco and Tetzlaff [2014] proved that if the items lie on a line and every item is positively
valued by at most one agent, a contiguous envy-free allocation is guaranteed to exist. When
each item can yield positive value to any number of agents, Barrera et al. [2015], Bilò et al.
[2019], and Suksompong [2019] showed that various relaxations of envy-freeness can be fulfilled.
In addition, contiguity has been studied in the more general model where the items lie on an
arbitrary graph [Bouveret et al., 2017; Igarashi and Peters, 2019; Bei et al., 2019]. Like us,
Igarashi and Peters [2019] also showed hardness results for binary valuations.

Recently, Arunachaleswaran et al. [2019] developed an efficient algorithm that computes a
contiguous cake division with multiplicatively bounded envy—in particular, each agent’s envy
is bounded by a multiplicative factor of 3. We remark that our approximation algorithms are
incomparable to their result. On the one hand, their algorithm may return an allocation wherein
an agent has value 1/4 for her own piece and 3/4 for another agent’s piece—this corresponds to
an additive envy of 1/2. On the other hand, our algorithms may leave some agents empty-handed,
leading to unbounded multiplicative envy. We also note that additive envy is the more commonly
considered form of approximation, both for cake cutting [Deng et al., 2012; Brânzei and Nisan,
2017, 2019] and for indivisible items [Lipton et al., 2004; Caragiannis et al., 2016].

4Without this guarantee, it would be much easier to find a contiguous envy-free allocation—just don’t allocate
any of the cake!
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2 Preliminaries

For any positive integer n, let [n] = {1, 2, . . . , n}. In our cake cutting setting, we consider the
cake as the interval [0, 1]. There are n agents whose preferences over the cake are represented by
valuation functions v1, . . . , vn. Assume that these valuation functions are non-negative density
functions over [0, 1]. We abuse notation and let vi(a, b) = vi([a, b]) =

∫ b
a vi(x)dx for 0 ≤ a ≤ b ≤ 1.

It follows that the valuations are non-negative, additive, and non-atomic (i.e., vi(a, a) = 0). We
assume further that the valuations are normalized so that vi(0, 1) = 1 for every i ∈ [n].

A contiguous allocation of the cake is a partition of [0, 1] into n (possibly empty) intervals,
along with an assignment of each interval to an agent, so that every agent gets exactly one
interval. Note that this means that we cut the cake using n− 1 cuts. Formally, a contiguous
allocation is represented by the cut positions 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ 1 and a permutation
π : [n] → [n] that assigns the intervals to the agents so that agent i receives the interval
[xπ(i)−1, xπ(i)], where we define x0 = 0 and xn = 1 for convenience.

We are interested in finding a contiguous allocation that is envy-free, i.e., no agent thinks
that another agent gets a better interval. Formally, the contiguous allocation (x, π) is envy-free
if for all i, j ∈ [n], we have vi(xπ(i)−1, xπ(i)) ≥ vi(xj−1, xj). In some cases we will be interested in
finding a contiguous allocation that is only approximately envy-free. For ε ∈ [0, 1], the contiguous
allocation (x, π) is ε-envy-free if for all i, j ∈ [n], we have vi(xπ(i)−1, xπ(i)) ≥ vi(xj−1, xj)− ε. In
other words, any agent has envy that is at most a fraction ε of her value for the whole cake.

A typical way for an algorithm to access the valuation functions is through queries in the
Robertson-Webb model : the algorithm can make evaluate queries—where it specifies x, y and
asks agent i to return the value vi(x, y)—and cut queries—where it specifies x, α and asks
agent i to return the leftmost point y such that vi(x, y) = α (or say that no such y exists).
A more restrictive class of valuations is that of piecewise constant valuations. A piecewise
constant valuation function is defined by a piecewise constant density function on [0, 1], i.e.,
a step function. This class of valuations can be explicitly represented as part of the input. A
subclass of piecewise constant valuations is the class of piecewise uniform valuations, where the
density function of agent i is either some fixed rational constant ci or 0.

3 Approximation Algorithms

In this section, we present two algorithms for approximate envy-free cake cutting. Algorithm 1
works for arbitrary valuations and returns a 1/3-envy-free allocation. On the other hand,
Algorithm 2 can be used for piecewise uniform valuations with a single value-block and outputs
a 1/4-envy-free allocation. Note that such valuations are relevant, for example, when the agents
are dividing machine processing time: each agent has a release date and a deadline for her job,
so she would like to maximize the processing time she obtains after the release date and before
the deadline.

While Algorithm 1 can be implemented for general valuations under the Robertson-Webb
model, it also allows a simple interpretation as a moving-knife algorithm. In this interpretation,
the algorithm works by moving a knife over the cake from left to right. Whenever the current
piece has value 1/3 to at least one remaining agent, the piece is allocated to one such agent. If
the knife reaches the right end of the cake, then the piece is allocated to an arbitrary remaining
agent if there is at least one remaining agent, and to the agent who received the last piece
otherwise.

Theorem 3.1. For n agents with arbitrary valuations, Algorithm 1 returns a contiguous 1/3-
envy-free allocation and runs in time polynomial in n assuming that it makes queries in the
Robertson-Webb model.
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Algorithm 1 1/3-Envy-Free Algorithm for Arbitrary Valuations

1: procedure ApproximateEFArbitrary
2: `← 0, N ← [n]
3: for i ∈ N do
4: Mi ← ∅
5: while some agent in N values [`, 1] at least 1/3 do
6: for i ∈ N do
7: if vi(`, 1) ≥ 1/3 then
8: ri ← leftmost point such that vi(`, ri) = 1/3
9: else

10: ri ← 1

11: j ← arg mini∈N ri, r ← mini∈N ri
12: Mj ← [`, r]
13: `← r, N ← N\{j}
14: if N 6= ∅ then
15: j ← arbitrary agent in N
16: Mj ← [`, 1]
17: else
18: j ← last agent removed from N
19: Mj ←Mj ∪ [`, 1]

20: return (M1, . . . ,Mn)

Proof. Every agent receives a single interval from the algorithm; the only possible exception is
agent j in line 19. However, since j is chosen as the last agent removed from N , the interval Mj

allocated to j earlier is adjacent to [`, 1], meaning that j also receives a single interval. Hence
the allocation is contiguous. Moreover, the algorithm only needs to make queries in lines 5, 7
and 8, and the number of necessary queries is clearly polynomial in n. The remaining steps can
be implemented in polynomial time.

We now prove that the envy of an agent i towards any other agent is at most 1/3. If i is
assigned a piece in the while loop (line 5), i receives value at least 1/3. This means that i’s
value for any other agent’s piece is at most 2/3, so i’s envy is no more than 1/3. Alternatively,
after the while loop, i still has not received a piece, meaning that N 6= ∅ in line 14. By our
allocation procedure in the while loop, i values any piece assigned in the while loop at most 1/3.
Furthermore, when the algorithm enters line 14, i values the interval [`, 1] less than 1/3. Since
[`, 1] is assigned to an agent who did not receive an interval earlier, it follows that i does not
envy any other agent more than 1/3, as claimed.

Note that if we are only interested in having an algorithm that makes a polynomial number of
queries, Brânzei and Nisan [2017] showed that for any ε > 0, a contiguous ε-envy-free allocation
can be found using O(n/ε) queries, which is polynomial in n for constant ε. Their algorithm
works by cutting the cake into pieces of size 1/ε and performing a brute-force search over
the space of all contiguous allocations with respect to these cuts; this algorithm therefore has
exponential computational complexity (even for constant ε). By contrast, in the absence of the
contiguity constraint, Procaccia [2016, p. 323] gave a simple polynomial-time algorithm that
computes an ε-envy-free allocation for any constant ε. His algorithm also starts by cutting the
cake into pieces of size 1/ε and then lets agents choose their favorite pieces in a round-robin
manner; consequently, the resulting allocation can be highly non-contiguous.

While we do not know whether the bound 1/3 in our approximation can be improved under
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Algorithm 2 1/4-Envy-Free Algorithm for Uniform Single-Interval Valuations

. Ri : the single interval valued by agent i

. mid(i) : the midpoint of Ri

. Ai : part of Ri that is unallocated at the start of agent i’s turn

. an interval is restrained if it is adjacent to an interval that has already been allocated
1: procedure ApproximateEFSingleInterval
2: Order the agents 1, . . . , n so that |Ri| ≤ |Rj | for all i < j
3: for i = 1, . . . , n do
4: if there exists a restrained interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I then. Case 1
5: Mi ← I
6: else if there exists an interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I then . Case 2
7: Si ← {j > i | vi(min(mid(i),mid(j)),max(mid(i),mid(j))) ≤ 1/4}
8: k ← minSi
9: Mi ← an interval I ⊆ Ai with vi(I) = 1/4, mid(i) ∈ I and mid(k) ∈ ∂I (i.e., an endpoint

of I)
10: else if there exist ` < i with mid(i) ∈ M` and an interval I ⊆ Ai adjacent to M` with

vi(I) = 1/4 then . Case 3
11: Mi ← I
12: else . Case 4
13: Mi ← a largest restrained interval I ⊆ Ai with vi(I) ≤ 1/4

14: if some two intervals Mq,Mr are adjacent (say, Mq is to the left of Mr) then
15: Extend Mq and all assigned intervals to its left as far as possible to the left.
16: Extend Mr and all assigned intervals to its right as far as possible to the right.
17: else
18: Extend assigned intervals arbitrarily to cover the remaining cake.

19: return (M1, . . . ,Mn)
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the computational efficiency requirement,5 we show next that if the agents have piecewise
uniform valuations and each agent only values a single interval, the envy can be reduced to
1/4. Alijani et al. [2017] showed that if the valuations are as described and moreover the n
valued intervals satisfy an “ordering property”, meaning that no interval is a strict subinterval of
another interval, then a contiguous envy-free allocation can be computed efficiently. Nevertheless,
the ordering property is a very strong assumption, and indeed reducing the envy to 1/4 without
this assumption already requires significant care in assigning the pieces.6

At a high level, Algorithm 2 first orders the agents from shortest to longest desired interval,
breaking ties arbitrarily. For each agent in the ordering, if an interval of value 1/4 containing
the midpoint of her valued interval (perhaps at the edge of the former interval) has not been
taken, the agent takes one such interval. Else, if an interval of value 1/4 is available somewhere,
the agent takes one such interval; here, if there are choices on both sides of the midpoint, the
agent may need to be careful to pick the “correct” one. Otherwise, if no interval of value 1/4 is
available, the agent takes a largest available interval. At the end of this process, part of the cake
may remain unallocated. If some pair of assigned intervals are adjacent, pick one such pair, and
allocate the remaining cake by extending pieces away from the border between this pair. Else,
extend the pieces arbitrarily to cover the remaining cake.

Theorem 3.2. For n agents with piecewise uniform valuations such that each agent only values
a single interval, Algorithm 2 returns a contiguous 1/4-envy-free allocation and runs in time
polynomial in n.

Proof. One can check that Algorithm 2 assigns a single interval to every agent and can be
implemented in polynomial time. It remains to show that the algorithm returns an allocation
such that for any two agents i, j, agent i has envy at most 1/4 towards agent j. For the purpose
of this proof, when we refer to an interval Mi, we mean the interval before it is extended in the
final phase of the algorithm (the extension phase starting at line 14). We denote by M+

i the
corresponding extended interval that is returned by the algorithm. For any agent i and any
interval I, the i-value of I is the value of I for agent i, i.e., vi(I).

When agent i’s turn comes in the for-loop, it falls into exactly one of four possible cases:
Case 1 (line 4), Case 2 (line 6), Case 3 (line 10) or Case 4 (line 12). Depending on which case
applies, Mi is chosen accordingly. We say that the single-direction extension (SDE) property
holds if at least one agent does not fall into Case 2. It is easy to check that if the SDE property
holds, then there are at least two allocated intervals Mq and Mr that are adjacent before the
extension phase begins, and thus every interval Mi will be extended in a single direction.

It is clear that vi(M
+
j ) ≥ vi(Mj) for all i, j. Furthermore, in all four cases it holds that agent

i is allocated an interval of value at most 1/4, i.e., vi(Mi) ≤ 1/4 for all i. Since Mi ⊆ Ri and
because of the way the agents are ordered, it follows that

vi(Mj) ≤ 1/4 for all j ≤ i (1)

We now show that any agent i has envy at most 1/4 at the end of the algorithm. Namely,
we prove that for any agents i, j we have vi(M

+
j ) ≤ vi(M+

i ) + 1/4. We treat the four different
cases that can occur during agent i’s turn.

5For the case n = 3, Deng et al. [2012] gave a fully polynomial-time approximation scheme that computes a
contiguous ε-envy-free allocation for any ε > 0.

6Alijani et al. [2017] also showed that for piecewise uniform valuations where each agent only values a single
interval (without the ordering property assumption), one can efficiently compute an envy-free allocation with
at most 2n− 1 intervals in total. Moreover, they showed that for a constant number of agents with piecewise
constant valuations, a contiguous envy-free allocation can be computed efficiently.
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Cases 1 and 2. In both cases, Mi contains mid(i) and has i-value 1/4. This also holds for
M+
i ⊇Mi. Since the midpoint of Ri is contained in M+

i , any other interval M+
j has i-value at

most 1/2. Thus, agent i has envy at most 1/4.
Case 3. In this case, we again have vi(Mi) = 1/4. However, this time we have mid(i) ∈M`,

which implies that vi(M
+
j ) ≤ 1/2 for all j 6= `. Thus, it remains to show that vi(M

+
` ) ≤ 1/2.

Since ` < i, we have vi(M`) ≤ 1/4. Thus, we need to show that the extension of M` to M+
`

increases the i-value by at most 1/4. Since Mi was chosen to be adjacent to M`, it suffices to
show that there is at most 1/4 i-value available on the other side of M`.

To this end, we prove that at the start of agent i’s turn, M` cannot have at least 1/4 of
i-value available both on the left side and on the right side. Assume on the contrary that this is
the case. Note, in particular, that M` is not restrained. Thus, M` was allocated in agent `’s
turn by Case 2. We also know that i ∈ S`, because mid(i),mid(`) ∈M` and v`(M`) = 1/4. Now
there are two cases:

• If i = minS`, then mid(i) ∈ ∂M`. But in that case, at the start of agent i’s turn, there
exists a restrained interval I ⊆ Ai with vi(I) = 1/4 and mid(i) ∈ I. Thus, agent i would
have been in Case 1 instead of 3.

• If i > k = minS`, then in agent k’s turn, Case 1 will apply. Indeed, mid(k) ∈ ∂M` and
thus there is at least 1/4 of k-value available that contains mid(k) (because there is enough
space for 1/4 of i-value and i > k). But if Case 1 applies, then Mk will be chosen to be
adjacent to M` (since they both contain mid(k)), and M` will not have space available on
both sides when agent i’s turn comes.

Case 4. First, suppose that vi(Mi) < 1/4. This means that Mi was a largest available
interval in Ri. It follows that any agent j > i can obtain an interval of i-value at most vi(Mi),
since it is processed after i. For j < i, since agent i is in Case 4, the SDE property holds. Thus,
Mj can be extended by at most vi(Mi), i.e., vi(M

+
j ) ≤ vi(Mj) + vi(Mi) for all j. With (1) it

follows that the envy is at most 1/4.
Now, consider the case where vi(Mi) = 1/4. Any agent j > i can obtain i-value no more

than 1/2—otherwise, agent i would have fallen in Case 1 or 2. Consider any j < i:

• if mid(i) ∈Mj , then both on the left and right side of Mj the space available has i-value
< 1/4 (otherwise agent i would be in Case 1 or 3). Since the SDE property holds, it follows
that vi(M

+
j ) ≤ vi(Mj) + 1/4 ≤ 1/2 with (1).

• if mid(i) /∈Mj , then vi(M
+
j ) < 1/2. Otherwise, it means that Mj is extended in a single

direction (SDE property) and takes over an interval of i-value at least 1/4 that contains
mid(i). But then, agent i would be in Case 1 or 2.

This completes the proof.

4 Hardness for Cake-Cutting Variants

In this section, we establish hardness results for a number of decision problems on the existence
of contiguous envy-free allocations.

Theorem 4.1. The following decision problems are NP-hard for contiguous cake cutting, even
if we restrict the valuations to be piecewise uniform:

• Does there exist an envy-free allocation in which agent 1 obtains the leftmost piece?

8



C1
i

C2
i

C3
i

Figure 1: Clause-Gadget for clause Ci: the valuations of its three agents inside the gadget. Every
block in this figure has value 0.24.

• Does there exist an envy-free allocation in which the pieces are allocated to the n agents in
the order 1, 2, . . . , n?

• Does there exist an envy-free allocation such that there is a cut at position x, for x given
in the input?

These problems remain NP-hard if we replace envy-freeness by ε-envy-freeness for any
sufficiently small constant ε.

This list is not exhaustive: additional results of the same flavor can be found in the full proof
(Section 4.1).7 The following proof sketch conveys the main ideas behind these results.

Proof Sketch. In order to prove that these decision problems are NP-hard, we reduce from 3-sat.
Namely, given a 3-sat formula, we construct a cake-cutting instance such that the answer to the
decision problem is “Yes” if and only if the 3-sat formula is satisfiable. A bonus of our proof
is that we construct a single cake-cutting instance that works for all of the decision problems
mentioned in the theorem statement and even a few more.

Let us give some insight into how this instance is constructed. Consider a 3-sat formula
C1 ∨ · · · ∨ Cm, where the Ci are clauses containing 3 literals using the variables x1, . . . , xn and
their negations. The cake-cutting instance is constructed by putting together multiple small
cake-cutting instances, so-called gadgets. For every clause Ci we introduce a Clause-Gadget
with its three corresponding agents C1

i , C2
i and C3

i . The intuition here is that C1
i is associated

to the first literal appearing in Ci, C
2
i to the second one, and C3

i to the third one. For any
Clause-Gadget agent A, we let `(A) denote the associated literal. The valuations of these agents
inside the gadget are as shown in Figure 1. We say that the gadget operates correctly if it
contains exactly two cuts and the three resulting pieces go to the three agents C1

i , C2
i and C3

i .
At this point we can already make a first key observation: if the gadget operates correctly, at
least one of the three agents must be sad, i.e., obtain at most one out of its three blocks of value
in this gadget.

For every variable xj we introduce a Variable-Gadget with its two corresponding agents Lj
and Rj . Apart from these two agents, some Clause-Gadget agents will also have a value-block
inside this gadget. In more detail, all the Clause-Gadget agents that correspond to xj or xj will
have a block of value inside the Variable-Gadget for xj . Figure 2 shows how the value-blocks are
arranged inside the gadget. We say that the gadget operates correctly if it contains exactly one
cut and the two resulting pieces go to Lj and Rj . There is a second key observation to be made
here. Assume that all gadgets operate correctly. If some agent Cki with `(Cki ) = xj (or xj) is
sad, then the value-block of Cki in the Variable-Gadget for xj has to contain a cut (otherwise

7However, if we fix all n− 1 cuts, the problem becomes solvable in polynomial time. Indeed, with all the cuts
fixed, the resulting pieces are also all fixed. We can therefore construct a bipartite graph with the agents on one
side and the pieces on the other side, where there is an edge between an agent and a piece exactly when receiving
the piece would make the agent envy-free. The problem of determining whether an envy-free allocation exists
therefore reduces to deciding the existence of a perfect matching, which can be done in polynomial time.
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Lj

all agents A:
`(A) = xj

all agents A:
`(A) = xj

Rj

Figure 2: Variable-Gadget for variable xj : the valuations of its two agents Lj and Rj , as well as
the Clause-Gadget agents that have value in this gadget. The large blocks have value 1 each
and the small blocks have value 0.28 each.

Cki would be envious). Since the Variable-Gadget contains exactly one cut, it is impossible to
have agents A and B with `(A) = xj and `(B) = xj that are both sad.

The instance is constructed by positioning the gadgets one after the other on the cake.
Starting from the left and moving to the right, we first put the Clause-Gadget for C1, then
C2, and so on until Cm, and then the Variable-Gadget for x1, then x2, and so on until xn.
Between adjacent gadgets we introduce a small interval without any value-blocks. We say that
an envy-free allocation is nice if all the gadgets operate correctly.

Let us now see how a nice envy-free allocation yields a satisfying assignment for the 3-sat
formula. For any agent Cki that is sad, we set the corresponding literal `(Cki ) to be true. This
means that if `(Cki ) = xj , then we set xj to be true, and if `(Cki ) = xj , then we set xj to be false.
The first key observation above tells us that every Clause-Gadget has at least one sad agent.
Thus, this assignment of the variables ensures that every clause is satisfied. However, we have to
make sure that this assignment is consistent, i.e., we never set xj to be both true and false. This
consistency is enforced by the Variable-Gadget for xj and the second key observation above.

Conversely, given a satisfying assignment for the 3-sat formula, it is not too hard to construct
a nice envy-free allocation. This proves NP-hardness for the decision problem “Does there exist
a nice envy-free allocation?”. In order to prove the result for the more natural decision problems
stated in Theorem 4.1, the construction has to be extended with some additional work.

4.1 Proof of Theorem 4.1

We provide a full proof of NP-hardness for the following decision problems:

1. Does there exist an envy-free allocation in which agent 1 gets the leftmost piece?

2. Does there exist an envy-free allocation in which agents 1, 2, . . . , k get the k leftmost pieces,
in that order? (for any constant k ≥ 1)

3. Does there exist an envy-free allocation in which all the agents 1, 2, . . . , n are assigned
pieces in that order from left to right?

4. Does there exist an envy-free allocation such that there is a cut at position x? (x given in
the input)

5. Does there exist an envy-free allocation such that the leftmost cut is at position x? (x
given in the input)

6. Does there exist an envy-free allocation such that there are cuts at positions x1, . . . , xk?
(x1, . . . , xk given in the input, k any constant)

The problems remain NP-hard if we replace envy-freeness by ε-envy-freeness for any ε ≤ 0.01.
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Remark. The list of NP-hard problems that we have provided is by no means exhaustive. The
construction we provide below should be viewed as a framework for obtaining these kinds of
results. Indeed, with some simple modifications, one can prove additional results of the same
general flavor. In particular, one can change the constraint to “agent 1 gets the kth piece from
the left (k ≥ 1 constant)” or to “the k leftmost cuts are at positions x1, . . . , xk”.

Let I be an instance of 3-sat with m clauses C1, . . . , Cm, where each clause is made out of
3 literals using the variables x1, . . . , xn and their negations. Note that m is polynomial in n and
thus we can use n as the complexity parameter for the instance. Let ε ≤ 0.01 be arbitrary.

We will construct an instance where the cake is the interval [0, p(n)] (for some polynomial
p), instead of the usual [0, 1]. This is just for convenience as it is easy to obtain a completely
equivalent instance on [0, 1] in polynomial time. Indeed, it suffices to divide the position of every
block by p(n) and multiply its height by p(n). Note that our construction also gives NP-hardness
if the valuations are given in unary representation, since the positions and heights of blocks will
have numerator and denominator bounded by some polynomial (even after we scale down to
[0, 1]). All the valuations we construct will be piecewise uniform, and in fact all blocks of all
agents will have height 1 (before scaling the cake to [0, 1]), but variable length. Furthermore,
value-blocks of different agents will not overlap.

Clause-Gadget. Consider any clause Ci in the instance I. Ci will be represented by a
Clause-Gadget in the cake cutting instance. The Clause-Gadget for Ci requires an interval of
length 9 on the cake, say [ai, ai + 9], where only three specific agents are allowed to have any
value. These agents are denoted by C1

i , C2
i and C3

i . The interpretation is that C1
i corresponds

to the first literal appearing in the clause Ci, C
2
i to the second one, and C3

i to the third one.
The valuation of agent C1

i contains three blocks of value in the interval [ai, ai + 9]: one in each
of the subintervals [ai, ai + 1], [ai + 3, ai + 4] and [ai + 6, ai + 7]. Each of these blocks has value
0.24 (i.e., length 0.24 and height 1). Agents C2

i and C3
i have the same blocks as C1

i , but shifted
by 1 and 2 to the right respectively. The valuations of the three agents inside the Clause-Gadget
are shown in Figure 1.

Note that each of the three agents has value 0.72 inside the Clause-Gadget. The remaining
0.28 value will be situated in a different gadget that we introduce next.

Variable-Gadget. For every variable xj we introduce a Variable-Gadget in the cake cutting
instance. The Variable-Gadget for xj requires an interval of length 4, say [bj , bj + 4], and
introduces two new agents Lj and Rj . Lj has a block of value 1 in the subinterval [bj , bj +1], and
Rj has a block of value 1 in the subinterval [bj + 3, bj + 4]. For every clause Ci that contains xj
(respectively xj) in the `th position (` ∈ {1, 2, 3}), the agent C`i has a block of value 0.28 lying
at the center of the subinterval [bj + 1, bj + 2] (respectively [bj + 2, bj + 3]). See the illustration
in Figure 2.

Instance. Now consider the cake-cutting instance constructed as follows: starting from the
left, position all the Clause-Gadgets one after the other, leaving an interval of length 3 after
every gadget. Then, position all the Variable-Gadgets one after the other, again leaving an
interval of length 3 after every gadget. Thus, the cake is the interval [0, 12m+7n], where the first
Clause-Gadget occupies the interval [0, 9], and the first Variable-Gadget occupies the interval
[12m, 12m + 4]. There are 3m + 2n agents so far. Note that adjacent gadgets are separated
by intervals of length 3 that we call Isolating Intervals. There are exactly m+ n− 1 Isolating
Intervals.

The kth Isolating Interval from the left is denoted Ik. The Isolating Interval Ik = [a, a+ 3] is
divided into three subintervals: Ik[1] = [a, a+ 1], Ik[2] = [a+ 1, a+ 2] and Ik[3] = [a+ 2, a+ 3].
Furthermore, we also add an interval of length 3 on the left end of the cake: the Initiation
Interval. We denote it by I0 and it is similarly subdivided into I0[1], I0[2] and I0[3]. The cake is
now represented by the interval [0, 12m+ 7n+ 3].
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S0

S′
0

S1

S2

I0 I1 I2

Figure 3: The Initiation Interval I0 and the Isolating Intervals I1 and I2, along with the valuations
of all agents who have positive value in any of these three intervals. The vertical dotted lines
indicate the position of the cuts in the envy-free allocation that we construct from a satisfying
assignment.

We add two new agents S0 and S′0. Agent S0 has a block of value 1/7 in I0[1], a block of value
2/7 in each of I0[3], I1[1] and I1[3]. Agent S′0 has a block of value 1 in I0[2]. For k ∈ [m+ n− 2]
we define an agent Sk that has a block of value 0.2 in Ik[2] and a block of value 0.4 in each of
Ik+1[1] and Ik+1[3]. We also define an agent Sm+n−1 that has a block of value 1 in Im+n−1[2].
Figure 3 shows the valuations of the agents in I0, I1 and I2. The total number of agents is
(3m+ 2n) + (m+ n+ 1) = 4m+ 3n+ 1, so there are 4m+ 3n cuts in any solution.

Let ε = 0.01. Since an envy-free allocation always exists, the cake-cutting instance we have
constructed admits an envy-free allocation (in particular also ε-envy-free). In order to ensure
that a solution only exists if the 3-sat formula is satisfiable, we have to add an additional
constraint. An ε-envy-free allocation is said to satisfy the Isolation property if together all the
Clause- and Variable-Gadgets contain at most 2m+ n cuts strictly within them.

Lemma 4.2. Any ε-envy-free allocation that satisfies the Isolation property yields a satisfying
assignment for the 3-sat formula.

Proof. Consider any ε-envy-free allocation. If there is at most one cut strictly inside the Clause-
Gadget of Ci, then there is an agent Cki (k ∈ {1, 2, 3}) who does not obtain any of its value
from this Clause-Gadget. Thus, agent Cki gets value at most 0.28 (from its corresponding
Variable-Gadget). However, since the Clause-Gadget of Ci is divided into at most two parts,
some agent gets at least 0.72/2 = 0.36 according to agent Cki ’s valuation, which contradicts
ε-envy-freeness. Thus, every Clause-Gadget contains at least two cuts strictly within them.

If the Variable-Gadget for xj does not strictly contain any cut, then all of it is allocated to a
single agent. Necessarily, agent Lj or Rj would have envy 1 > ε. Thus, every Variable-Gadget
strictly contains at least one cut.

Now consider an ε-envy-free allocation that also satisfies the Isolation property. Since the
property permits at most 2m+ n cuts strictly inside gadgets, we get that these lower bounds on
the number of cuts inside gadgets are actually tight. Thus, there are exactly two cuts strictly
inside every Clause-Gadget and exactly one cut strictly inside every Variable-Gadget.

Since there is exactly one cut strictly inside the Variable-Gadget of xj , the two resulting
parts must go to agents Lj and Rj . Indeed, if one of these two agents does not get one of the
two parts, then the agent would have envy at least 1/2 > ε. Similarly, since there are exactly
two cuts strictly inside the Clause-Gadget of Ci, the three resulting parts must go to agents C1

i ,
C2
i and C3

i . Indeed, if one of these three agents does not get one of the three parts, the agent
would have value 0 (as she cannot get any value from the corresponding variable gadget) and
therefore have envy at least 0.24 > ε.

We now show how such a solution yields a satisfying assignment to the 3-sat instance.
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Consider the Clause-Gadget of Ci. As we showed above, there are exactly two cuts strictly inside
the gadget and the three resulting parts go to the agents C1

i , C2
i and C3

i . Any of these three
agents who obtains at most 0.24 of its own value is called sad. By inspection of the construction
of the Clause-Gadget it follows that at least one of the three agents must be sad. Indeed, it is
easy to check that if C1

i is not sad, then at least one of the other two must be. The fact that any
Clause-Gadget must have at least one sad agent will be used to encode the fact that any clause
of the 3-sat instance must have at least one literal set to 1. Thus, if Cki is sad, this means that
we set the literal corresponding to Cki to have the value 1.

It remains to check that this is consistent, i.e., that we never set the two literals xj and xj to
both be 1. In other words, we have to check that if some agent Cki corresponding to the literal
` ∈ {xj , xj} is sad, then all agents corresponding to ` are not sad. If agent Cki is sad, then it
gets value at most 0.24. Agent Cki has a block of value 0.28 in the Variable-Gadget of xj . This
block must contain a cut, otherwise Cki would have envy at least 0.04 > ε. But since there is a
single cut inside the Variable-Gadget, the blocks of all agents corresponding to ` are not cut. As
a result, these agents cannot be sad.

Claim 1. In any ε-envy-free allocation for this instance, every agent obtains a nonzero value.

Proof. Assume on the contrary that some agent X0 obtains value 0. Note that X0 (like all
agents) has a block of value at least 0.2 somewhere on the cake such that no other agent has any
value there. Since the allocation is ε-envy-free, it follows that this block must be cut into slices
of value at most ε. Let X1 be an agent that is assigned one of the slices strictly contained in
this block. Agent X1 also obtains value 0, and it must also have a block of value at least 0.2
somewhere on the cake such that no other agent has any value there. This block must also be
cut in slices of value at most ε, and since there are at least two slices that lie strictly inside the
block, there exists such a slice that is not assigned to agent X0, but rather to some agent X2.
We continue this procedure, always ensuring that we pick some agent that is not X0 (which is
always possible). Since the number of agents is finite, there exist i < j such that Xi = Xj . If
i > 0, then one can check that we necessarily have Xi−1 = Xj−1. Thus, there exists ` > 0 such
that X0 = X`. However, this is impossible due to our choice of X`, a contradiction.

Fixing the ordering of agents.

Claim. If there exists an ε-envy-free allocation in which agent S0 gets the leftmost piece, then
the 3-sat formula is satisfiable.

Proof. In any ε-envy-free allocation in which agent S0 gets the leftmost piece, the piece allocated
to S0 will be a strict prefix of I0[1] ∪ I0[2] = [0, 2]. Indeed, if S0 were allocated all of [0, 2], then
agent S′0 would have envy 1. It follows that agent S0 will obtain value at most 1/7. As a result,
the three blocks of value 2/7 of S0 must each contain at least one cut. Also, note that the
Initiation Interval I0 contains at least two cuts.

We now know that the two blocks of value of S0 in I1[1] and I1[3] must each contain a
cut. We show that agent S1 must be allocated some interval in I1. Suppose for the sake of
contradiction that this is not the case. Then, some agent X0 must be allocated an interval in I1,
since there are at least two cuts inside I1. But this agent cannot be S0 or S1, so it will obtain
value 0. However, by Claim 1, this is impossible.

Thus, S1 must be allocated some interval in I1. It follows that S1 obtains value at most 0.2.
This, in turn, implies that the two blocks of value 0.4 of S1 in I2 must each contain a cut. This
means that we can repeat the argument above to show that S2 must be allocated an interval
in I2. By induction it follows that every Isolating Interval contains at least 2 cuts. Thus, we
have shown that at least 2 + 2(m + n − 1) = 2m + 2n cuts do not lie inside any Clause- or
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Variable-Gadget. This means that at most (4m+ 3n)− (2m+ 2n) = 2m+ n cuts lie strictly
inside a Clause- or Variable-Gadget, and so the Isolation property holds. By Lemma 4.2, any
ε-envy-free allocation in which S0 gets the leftmost piece will yield a satisfying assignment to
the 3-sat instance.

We define the standard ordering of allocation as follows. Starting from the left, the first
piece goes to agent S0 and the second piece to S′0. The rest of the agents are ordered according
to the order of appearance of their gadget in the instance. For this purpose, we treat every
Isolating interval Ik as a gadget with corresponding agent Sk. Within the Clause-Gadget for Ci,
the corresponding agents appear in the order C1

i , C2
i , C3

i . Within the Variable-Gadget for xj ,
the corresponding agents appear in the order Lj , Rj . This yields a unique full ordering of all
the agents in the instance.

Claim. If the 3-sat formula is satisfiable, then there exists an envy-free allocation in which the
pieces are allocated to the agents according to the standard ordering.

Proof. Given a satisfying assignment, we show how to construct an envy-free allocation such
that the pieces are allocated to the agents according to the standard ordering. Place a cut at
position 1 and through the middle of every block of S0 of value 2/7. Also place a cut through
the middle of every block of value 0.4 of Sk, 1 ≤ k ≤ m+ n− 2. Allocate the leftmost piece to
S0 and the next piece to S′0. Allocate the piece between the two cuts in the Isolating interval Ik
to agent Sk. Note that no matter how we allocate the remaining parts of the cake, the agents
S′0, S0, S1, . . . , Sm+n−1 will definitely be envy-free. S′0 and Sm+n−1 have obtained all of their
value. S0 has obtained value 1/7, but its three blocks of value 2/7 have all been cut in half.
Finally, for 1 ≤ k ≤ m+ n− 2, Sk has obtained value 0.2, but its two blocks of value 0.4 have
also been cut in half. Figure 3 shows the positions of the cuts in I0, I1 and I2.

Depending on whether xj = 1 or xj = 1 place a cut in the middle of the region corresponding
to xj or xj respectively inside the Variable-Gadget of xj . Allocate the left piece to Lj and the
right piece to Rj . Note that Lj and Rj obtain all of their value.

Finally, for every clause Ci pick one of its literals that is 1 and let Cki be the associated agent.
We position two cuts inside the gadget such that Cki gets one block of its own value, and the
other two Clause-Gadget agents each get two blocks of their own value. While doing so, we also
ensure that these other two agents each get one of the two remaining blocks of Cki inside the
gadget. Note that this is always possible and in fact we can also ensure that the three pieces are
allocated to the agents C1

i , C
2
i , C

3
i in that order from left to right. Cki has thus obtained value

0.24 and its two other 0.24-blocks have been allocated to two distinct agents. The last remaining
block, which has value 0.28 and lies in the corresponding Variable-Gadget, has been cut in half
according to the procedure above describing how to place the cut in a Variable-Gadget. Thus,
Cki is envy-free. Now consider any of the two other agents of this Clause-Gadget. Such an
agent has obtained 0.48 of its value. 0.24 of its value has been allocated to other agents in this
Clause-Gadget, and 0.28 of its value has been allocated to Variable-Gadget agents. Thus, this
agent is also envy-free.

Using these two claims we immediately obtain that the decision problems 1, 2, and 3 are
NP-hard (with envy-freeness or ε-envy-freeness).

Fixing cuts.

Claim. In any ε-envy-free allocation in which there is a cut at position 1, the leftmost piece
must be assigned to agent S0.

14



Proof. Since there is a cut at position 1, the leftmost piece can only contain value for agent S0.
Thus, by Claim 1 it cannot be allocated to any other agent.

On the other hand, given a satisfying assignment for the 3-sat formula, we can always ensure
that the corresponding envy-free allocation that we construct has a cut at position 1. In fact,
there are many more cuts that are fixed (and do not depend on what the satisfying assignment
is), namely, the two cuts in each Isolating interval.

Using this observation along with the claim above, we get that the decision problems 4, 5,
and 6 are NP-hard (with envy-freeness or ε-envy-freeness).

5 Hardness for Indivisible Items

We now turn to a discrete analog of cake cutting, where we wish to allocate a set of indivisible
items that lie on a line subject to the requirement that each agent must receive a contiguous
block. As in cake cutting, we assume that the valuations of the agents over the items are additive,
and that all items must be allocated. Besides envy-freeness, we consider the classical fairness
notions of proportionality and equitability. An allocation is proportional if every agent receives
value at least 1/n times her value for the whole set of items, and equitable if all agents receive
the same value.

Unlike in cake cutting, for indivisible items there may be no allocation satisfying any of the
three fairness properties, e.g., when two agents try to divide a single item. Bouveret et al. [2017]
showed that deciding whether an envy-free allocation exists is NP-hard for additive valuations,
and the same is true for proportionality; they did not consider equitability. In this section, we
extend and strengthen their results in several ways. We consider binary valuations, which are
additive valuations such that the value of each agent for each item is either 0 or 1. In other
words, an agent either “wants” an item or not. Even though binary valuations are much more
restricted than additive valuations, as we will see, several problems still remain hard even for
this smaller class.

First, we show that deciding whether a fair allocation exists is NP-hard for each of the three
fairness notions mentioned. This hardness result holds for any non-empty combination of the
three notions and even if all agents want the same number of items. Moreover, we present a
reduction that establishes the hardness for all combinations in one fell swoop. We remark that
the techniques of Bouveret et al. [2017] do not extend to the binary domain because each agent
can have different values for different items in their construction. One may try to fix this by
breaking items into smaller items to obtain a binary valuation, but each agent will require a
different way of breaking items, and moreover there will be allocations in the new instance that
cannot be mapped back to those in the original instance.
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Figure 4: Variable-Gadget for variable xj . Every item is represented by a rectangle containing
the agent(s) who value it.

Theorem 5.1. Let

F = {envy-freeness, proportionality, equitability},
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and let ∅ 6= X ⊆ F . Deciding whether an instance with indivisible items on a line admits a
contiguous allocation satisfying all properties in X is NP-hard, even if all agents have binary
valuations and value the same number of items.

Proof. We prove this result with a single reduction. Let I be an instance of 3-SAT with m
clauses C1, . . . Cm using the variables x1, . . . , xn and their negations. We create the following
gadgets.

• Clause-Gadget: For every clause Ci we introduce three agents: C1
i , C

2
i , C

3
i . Each of

these agents is associated with one of the three literals that appear in the clause Ci.
We denote by `(Cki ) the literal associated with Cki . For every clause Ci we construct a
Clause-Gadget. The gadget consists of four contiguous items that are all valued by all
three agents C1

i , C
2
i , C

3
i , and by no one else.

• Variable-Gadget: For every variable xj we introduce two agents, Xj and Xj , and construct
a Variable-Gadget as follows (Figure 4). Starting from the left, create two items that are
valued by both Xj and Xj (and no one else). Then, create one item that is valued only
by Xj . Then, for every Cki such that `(Cki ) = xj , create two items that are valued only
by Cki . Then, create an item that is valued by both Xj and Xj . Then, for every Cki such
that `(Cki ) = xj , create two items that are valued only by Cki . Finally, create an item that
is valued only by Xj .

We combine these gadgets to create the instance R as follows. Starting from the left, construct
the Clause-Gadget for each clause Ci. Then, construct the Variable-Gadget for each variable xj .
Thus, we obtain an instance with 3m+ 2n agents and 4m+ (5n+ 6m) = 5n+ 10m items.

Claim. The following statements hold:

• Any contiguous allocation in R where every agent gets at least two items they value yields
a satisfying assignment for I. This holds even if the allocation is partial, i.e., some items
are not allocated.

• Any satisfying assignment for I yields a contiguous envy-free allocation in R where every
agent gets exactly two items they value.

Proof of Claim. Consider any (possibly partial) contiguous allocation in R where every agents
gets at least two valued items. All of the items valued by Xj or Xj lie in the Variable-Gadget
for xj . Let T denote the second item in this gadget. Note that this item must necessarily be
allocated to Xj or Xj (and it cannot remain unallocated, even in a partial allocation). If Xj

obtains T , then we set aj = 1. If Xj obtains T , we set aj = 0. We now claim that a is a
satisfying assignment for I. Consider any clause Ci and the three associated agents C1

i , C
2
i , C

3
i .

At most two of those agents can obtain their two items from the Clause-Gadget for Ci. Thus,
there exists k ∈ [3] such that Cki is allocated a valued item outside the Clause-Gadget. But the
only other place where Cki values items is inside the Variable-Gadget for the variable of `(Cki )
(the literal in clause Ci corresponding to agent Cki ). Since Cki obtains an item in this gadget,
one can check that the agent corresponding to the literal `(Cki ) must obtain the second item in
the gadget. It follows that the literal `(Cki ) has value 1 in the assignment a, and thus the clause
Ci is satisfied by a.

Conversely, let a be any satisfying assignment for I. For every clause Ci, there exists an
agent Cki such that the literal `(Cki ) is true in a. Allocate the four items in the Clause-Gadget for
Ci to the other two clause agents (two contiguous items for each). Then, Cki has only two valued
items remaining, namely the ones in the Variable-Gadget corresponding to `(Cki ). Allocate them
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to Cki . Once this is done for all clauses, we move on to the Variable-Gadget agents. Assume
that aj = 1; the case where aj = 0 can be treated analogously. Then, the first two items of the
Variable-Gadget for xj are allocated to Xj , while Xj obtains the only two remaining items that
it values (which are not adjacent). However, no clause agent Cki has been allocated any item
in this interval, because items there are only valued by Cki with `(Cki ) = xj and those agents
have been allocated items within their respective Clause-Gadget (because aj = 1); therefore we
may allocate all items in this interval to Xj . At this point, some items in the Variable-Gadget
might still be unallocated, namely items that lie in the interval starting from the third item up
to the last item not allocated to Xj . If all of these items are unallocated, then allocate them
all to Xj . Note that the items allocated to Xj are indeed contiguous. If some of these items
are already allocated, then they are allocated to clause agents. Simply extend the intervals
allocated to these clause agents until they form a partition of this region. This construction
ensures that every agent A obtains exactly two items they value. Moreover, for every other
agent B, A obtains at most two items valued by B.

The final step of the proof is to introduce one last gadget. The Special-Gadget creates
3m+ 2n+ 7 new agents. We denote the set of these new agents by N . The gadget consists of
2(3m+ 2n) + 14 = 6m+ 4n+ 14 new items. These items are valued by all agents in N . For
every i ∈ [m] and k ∈ [3], Cki values all new items except the rightmost six. For every j ∈ [n],
Xj and Xj value all new items except the rightmost four.

The Special-Gadget is added to the right end of R and yields the final instance R′. Note
that in R′ there are 6m+ 4n+ 7 agents and every agent values exactly 6m+ 4n+ 14 items. Now
consider any contiguous allocation for R′.

• If the allocation is proportional, then every agent gets at least d(6m+ 4n+ 14)/(6m+ 4n+
7)e = 2 items they value. It follows that the agents in N get all the new items, because
2|N | = 2(3m+ 2n+ 7) = 6m+ 4n+ 14. This means that the other agents get at least two
items they value in R. By the claim above, we obtain a satisfying assignment.

• If the allocation is equitable, then all agents get exactly s items they value, for some s ≥ 0.
The Special-Gadget contains an item (in fact, many) that is valued by all agents. Since
this item will be allocated to someone, s = 0 is not possible. Also s ≥ 3 is not possible,
because the 3m+ 2n+ 7 agents in N all like the exact same 2(3m+ 2n+ 7) items. Now,
since all 6m+ 4n+ 7 agents value the first (6m+ 4n+ 14)− 6 = 6m+ 4n+ 8 items in the
Special-Gadget, at least one of them will be allocated to two of those (by the pigeonhole
principle). It follows that s = 1 is also impossible. Thus, only s = 2 remains, and we again
obtain a satisfying assignment by the claim.

Since envy-freeness implies proportionality, it follows that any X-allocation for R′ yields a
satisfying assignment for the 3-SAT instance I, for any non-empty X ⊆ {envy-free, proportional,
equitable}. On the other hand, any satisfying assignment for the 3-SAT instance yields an
envy-free and equitable allocation for R′, by assigning two contiguous Special-Gadget items to
each agent in N and then using the claim.

In the construction used for our proof of Theorem 5.1, each agent values at most four
contiguous block of items. In light of this result, one may naturally wonder whether the hardness
continues to hold if, for example, every agent values a single block of items. We show that this
is the case for proportionality, provided that we drop the requirement that all agents value the
same number of items. Note that if each agent values a contiguous block of items and all agents
value the same number of items, deciding whether a proportional allocation exists can in fact
be done in polynomial time. Indeed, we can view the problem as a scheduling problem on a
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single machine, with each agent having a task to be completed by a machine. For a given task,
its release time is where the corresponding agent’s valued block starts, its deadline is where
the block ends, and its length is the number of items that we need to give the agent in order
to satisfy proportionality. When all tasks have the same length, which is true in our setting,
polynomial-time algorithms have been proposed by Simons [1978] and Garey et al. [1981].

Theorem 5.2. Deciding whether an instance with indivisible items on a line admits a contiguous
proportional allocation is NP-hard, even if the valuations are binary and every agent values a
contiguous block of items.

Proof. We reduce from the 3-partition problem. An instance of the 3-partition problem
consists of 3n positive integers x1, . . . , x3n with sum nB, and the goal is to partition them into n
sets of size three each so that the three numbers in each set sum to B. The problem is NP-hard,
and remains so when B/4 < xi < B/2 for all i [Garey and Johnson, 1979].

Given an instance of 3-partition, we create an instance of our problem as follows. There
are m := n(B + 1) + 4nk2 items on the line, where k = 4B. Each item belongs to one of the
three types: special, normal, and dummy. From left to right, the last 4nk2 items are dummy
items. The remaining n(B + 1) items are partitioned into n blocks of size B + 1—the leftmost
item of each block is a special item (so n special items in total), and the remaining B items of
the block are normal items (so nB normal items in total). There are n′ := 4n(k + 1) agents: n
special, 3n normal, and 4nk dummy. Each of the n special agents values a distinct special item
and nothing else. Each dummy agent values all dummy items and nothing else. For 1 ≤ i ≤ 3n,
the ith normal agent values the leftmost n′xi items. Note that this is well-defined because
n′xi < 2n(k + 1)B < 4nkB = nk2 < m. Moreover, n′xi > n(k + 1)B > 2nB > n(B + 1), so
each normal agent values all normal items (along with other items).

First, suppose that there is a valid solution to the 3-partition instance. We construct a
proportional allocation. Give each special agent her valued item, and each dummy agent k
consecutive dummy items. For each part {xa1 , xa2 , xa3} in the solution to the 3-partition
instance, we pick a block of B normal items and give xai consecutive items to the aith normal
agent. One can check that the resulting allocation is proportional; in particular, each dummy

agent needs at least
⌈
4nk2

n′

⌉
=
⌈

4nk2

4n(k+1)

⌉
= k valued items, and that is exactly what they get.

Conversely, suppose that our construction admits a proportional allocation. In this allocation,
each special agent must get her valued item and, as above, each dummy agent needs at least
k valued items. Since there are 4nk dummy agents and they value the same 4nk2 items, each
dummy agent must receive exactly k valued items. This leaves only the nB normal items to be
allocated to the 3n normal agents. Normal agent i needs to get at least xi items, so given that∑3n

i=1 xi = nB, all normal items must be allocated to the normal agents, and normal agent i
must receive exactly xi items. Finally, since B/4 < xi < B/2 for all i, each block of B normal
items is allocated to exactly three agents. Hence the allocation yields a valid solution to the
3-partition instance, as desired.

Next, we show that under the same conditions as Theorem 5.2, deciding whether there exists
a proportional and equitable allocation, or an equitable allocation that gives the agents positive
value, are both computationally hard. Since agents do not all value the same number of items
(unlike in Theorem 5.1), we normalize the valuations so that if agent i values xi items, she has
value 1/xi of each of them (so her total value is 1).

Theorem 5.3. Deciding whether an instance with indivisible items on a line admits

• a contiguous allocation that is both proportional and equitable;
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• a contiguous equitable allocation in which the agents receive positive value

are both NP-hard, even if the valuations are binary and every agent values a contiguous block of
items.

Proof. The reduction is similar to the one in Theorem 5.2. We again reduce from 3-partition,
but this time we also assume that xi > n for all i. Note that we can ensure that this is the case
by multiplying all xi and B by n.

Let K = nB. The main building block of this reduction is a K-block : K consecutive items
with K agents who only value these K items. The instance is constructed as follows. Starting
from the left end of the line, there are B consecutive K-blocks. Note that each K-block has
its own K agents. We call this the “left region” of the instance. The “right region” of the
instance consists of n blocks of K +B items each. The leftmost K items of such a block form a
K-block, and there are B items to the right of that K-block. Finally, we introduce new agents
a1, . . . , a3n. For each i ∈ [3n], agent ai values the Kxi rightmost items on the line. Note that
this is well-defined, since there are BK + n(K +B) ≥ BK ≥ Kxi items overall. Furthermore,
agent ai values all items in the right region, because Kxi ≥ n(K + B) (since K = nB and
xi > n). Note that every agent values a contiguous block of items.

Now consider any equitable allocation in which the agents receive positive value. Every agent
must get at least one item that they value. Consider any K-block. Since its K agents only value
these K items, it follows that they each obtain exactly one. Thus, they each get value exactly
1/K, and all other agents in the instance must also get value exactly 1/K. This means that
agent ai must obtain exactly xi of its valued items. Since B/4 < xi < B/2 for all i, each block of
B items in the right region are allocated to exactly three agents ai. Hence, we obtain a solution
to the 3-partition instance. Note that a proportional and equitable allocation yields positive
value to the agents, so it also gives rise to a solution to the 3-partition instance.

Conversely, given a solution to the 3-partition instance, one can construct an equitable
allocation in which the agents receive positive value by following the previous paragraph. Note
that this allocation is also proportional, since each agent receives value 1/K and there are more
than K agents. This completes the proof.

Finally, we consider approximate envy-freeness for the discrete setting as well. We show
that for a sufficiently small constant ε, deciding whether there exists an ε-envy-free allocation is
NP-hard; this holds even if we restrict the valuation functions as in Theorem 5.1.

Theorem 5.4. For any ε < 1/13, deciding whether a contiguous ε-envy-free allocation exists is
NP-hard, even if all agents have binary valuations and value the same number of items.

Proof. Consider an instance of 3-SAT with m clauses C1, . . . , Cm using the variables x1, . . . , xn
and their negations. We will make use of the following gadgets:

• Clause-Gadget: For every clause Ci we introduce three agents C1
i , C

2
i , C

3
i . Each of these

agents is associated with one of the three literals appearing in clause Ci, and we denote by
`(Cki ) the literal associated to Cki . For every clause Ci we construct a Clause-Gadget as
follows. Starting from the left, the first three items are valued by C1

i (and no one else), the
next three items are valued by C2

i , and the next three by C3
i . We repeat this three times.

Thus, the Clause-Gadget for Ci consists of 27 items and every agent Cki values exactly 9
of these items.

• Variable-Gadget: For every variable xj we introduce two agents Lj and Rj and construct
the Variable-Gadget for xj as follows. Starting from the left, the first 13 items are valued
by Lj . The next 4 items are valued by every agent Cki such that `(Cki ) = xj (i.e., every
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agent corresponding to the literal xj). The next 4 items after that are valued by every
agent Cki such that `(Cki ) = xj . Finally, the next 13 items are valued by Rj .

• Isolation-Gadget: An Isolation-Gadget consists of 13 items and 5 agents. The 5 agents
value each of the 13 items and no other items in the instance.

The instance is then constructed as follows. Starting from the left, we construct the Clause-
Gadget for C1, then for C2, and so on up to Cm. Then, we construct the Variable-Gadget
for x1, for x2, and so on up to xn. Finally, we introduce an Isolation-Gadget between any
two adjacent gadgets. Thus, there are m + n − 1 Isolation-Gadgets, and the instance has
3m+ 2n+ 5(m+ n− 1) = 8m+ 7n− 5 agents.

Note that in this construction every agent values exactly 13 items. Since all of the valuations
are binary, this means that for the normalized valuations, any ε-envy-free allocation with
ε < 1/13 must actually be (exactly) envy-free.

Consider any contiguous envy-free allocation for this instance. The Variable-Gadget for xj
must contain at least one cut strictly inside it—otherwise, Lj or Rj would not be envy-free.
Furthermore, the Clause-Gadget for Ci must strictly contain at least two cuts. If it contained
at most one cut, then at least one of the agents Cki would not obtain any item in this gadget.
Thus, Cki would be able to obtain at most 4 valued items (from the Variable-Gadget for the
variable of `(Cki )). However, since the Clause-Gadget for Ci has been divided into at most two
pieces and Cki values 9 items in this gadget, one of those pieces contains at least 5 items valued
by Cki . Thus, Cki would envy the agent receiving that piece.

Finally, any Isolation-Gadget must strictly contain at least 6 cuts. It is easy to see that it
must contain at least 4 cuts, so that each of the 5 agents that values all of the 13 items can
obtain something. However, 4 cuts are not enough, because the 5 resulting pieces cannot contain
exactly the same number of items and thus one of the 5 agents would not be envy-free. It turns
out that 5 cuts are also not enough. Indeed, in that case there are 6 pieces and 5 of those must
be given to the 5 agents of the gadget. However, it is impossible to divide 13 items into 6 pieces
in such a way that 5 of the pieces contain the same number of items and the 6th piece contains
at most that many items.

Since the instance has 8m+ 7n− 5 agents, there are 8m+ 7n− 6 cuts. With the arguments
above we have accounted for exactly 2m+ n+ 6(m+ n− 1) = 8m+ 7n− 6 cuts. It follows that
every Clause-Gadget strictly contains exactly 2 cuts and every Variable-Gadget strictly contains
exactly 1 cut. Thus, similarly to the divisible case, we have ensured that a certain Isolation
property holds. The proof that this allocation yields a satisfying assignment for the 3-SAT
instance is analogous to the divisible case (Lemma 4.2).

Conversely, given a satisfying assignment of the 3-SAT instance, it is not hard to construct
an envy-free contiguous allocation for the instance. In fact, the only difference from the divisible
case is with respect to the Isolation-Gadgets. Here, the 6 cuts inside every Isolation-Gadget are
placed as follows: place a cut after the first item, then a cut every two items, and give the 5
central pieces of size 2 to the 5 agents of the gadget.

6 Connections Between Various Cake-Cutting Problems

In this section, we uncover several new connections between different cake-cutting settings. In
particular, in Section 6.1 we show that for piecewise constant valuations, finding an approximate
envy-free allocation is as hard as finding an exact one. Then, in Section 6.2 we exhibit connections
between a number of continuous and discrete cake-cutting problems.
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6.1 Approximate and Exact Envy-Freeness

We begin by proving the following result, which relates approximate and exact envy-freeness for
a restricted yet quite expressive class of valuations.

Theorem 6.1. For piecewise constant valuations, computing a contiguous envy-free allocation
reduces to computing a contiguous ε-envy-free allocation for a sufficiently small ε (which may
depend on the number of agents and the valuations).

In particular, this means that for such valuations there always exists a contiguous envy-free
allocation in which all cut points are rational.8 Theorem 6.1 is implied by the following result:

Lemma 6.2. Let v1, . . . , vn be (explicit, normalized) piecewise constant valuations, and M ≥ 3
and k be positive integers such that

• for all i ∈ [n], all of the numbers in the explicit description of vi (i.e., the step heights and
step change positions) have numerator and denominator at most M ;

• for all i ∈ [n], vi has at most k value-blocks.

Then from any M−20kn-envy-free solution, we can efficiently obtain an envy-free solution.

Proof. We apply the technique that was used by Etessami and Yannakakis [2010] to show that
finding an exact fixed point of a LinearFIXP circuit reduces to finding a (sufficiently good)
approximate fixed point.

Let (x̂, π) be a contiguous ε-envy-free allocation, where 0 ≤ x̂1 ≤ · · · ≤ x̂n−1 ≤ 1. Without
loss of generality assume that π(i) = i for all i (by reordering the agents). For i ∈ [n] and
j ∈ [n−1], let `ij be the position of the closest step change in vi on the left of x̂j . Similarly, define

rij to be the closest step change position on the right. (If x̂j lies on a step change position of vi,

then we set `ij = rij = x̂j .) Finally, set `j = maxi `
i
j and rj = mini r

i
j . Note that all valuation

densities are constant on the interval [`j , rj ]. Thus, the corresponding cumulative valuation
functions are linear. For i ∈ [n] and j ∈ [n− 1], let hij denote the (constant) value of the density

function of vi in [`j , rj ] (if `j = rj then hij can be defined as any arbitrary value).
We solve the following linear program (LP) with variables x1, . . . , xn−1, z:

min z
`j ≤ xj ≤ rj ∀j ∈ [n− 1]
xj ≤ xj+1 ∀j ∈ [n− 2][

hij(xj − `j)− hij−1(xj−1 − `j−1) + vi(`j−1, `j)
]

−
[
hii(xi − `i)− hii−1(xi−1 − `i−1) + vi(`i−1, `i)

]
≤ z ∀i, j ∈ [n]

where we define x0 = `0 = 0 and xn = `n = 1 for ease of exposition. Note that the left-hand side
of the last line is equal to vi(xj−1, xj) − vi(xi−1, xi), i.e., the envy of agent i towards agent j.
Thus, minimizing z corresponds to minimizing the maximum envy experienced by any agent.
The LP does the following: it allows any cut in (x̂, π) to move slightly to the left or the right, as
long as it does not fall into a different step (in any of the valuations) and as long as the relative
order of the cuts does not change. Furthermore, the order of assignment of the intervals to the
agents (i.e., π) does not change.

Clearly, (x̂, ε) is a feasible solution of the LP. For now assume that we know that the LP
has an optimal (rational) solution (x∗, z∗) such that all denominators are bounded by some

8This is not the case for more general valuations [Stromquist, 2008].
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positive integer d (that only depends on M , k and n). Then, if we pick ε < 1/d, it will follow
that z∗ < 1/d, which implies that z∗ = 0 (z∗ ≥ 0 is implicitly forced by the constraints). Thus,
solving the LP will give us a contiguous envy-free allocation.

It remains to find a bound d such that the LP is guaranteed to have an optimal solution
with all denominators bounded by d. The LP must have a solution (x∗, z∗) that is a vertex
of the feasible polytope—the polytope defined by the constraints. Note that for (x∗, z∗), at
least n constraints must be tight, i.e., satisfied with equality. Furthermore, (x∗, z∗) must be the
unique point that satisfies all these tight constraints with equality (otherwise, it would not be a
vertex of the feasible polytope). Thus, by picking a linearly independent subset of these tight
constraints, we get that y = (x∗, z∗) is the unique solution of a linear system Ay = b with n
variables and n equations.

In order to investigate the denominator size of solutions of Ay = b, we first turn it into an
equivalent linear system A′y = b′ where A′ and b′ are integral. Specifically, we will multiply
the mth line of the linear system by some value Cm so that all of the coefficients become
integers. Inspection of the LP reveals that any line m contains at most 6 non-zero entries,
i.e., at most 6 entries out of am,1, . . . , am,n, bm are not zero. Furthermore, at most 5 of them
are non-integral, because the coefficient of z is integral. Out of these, at most one (namely
bm) can have a denominator that is larger than M . This corresponds to the case where
bm = −hij`j + hij−1`j−1 + hii`i − hii−1`i−1 + vi(`j−1, `j)− vi(`i−1, `i).

The first 4 terms in the expression of bm have denominator at most M2 (since they are
of the form p1 · p2, where p1, p2 have denominator at most M). The term vi(`j−1, `j) can be
computed by summing up the values of the blocks between `j−1 and `j with respect to vi. The
value of each block has denominator at most M3 (since it is of the form (p1 − p2) · p3, where
p1, p2, p3 have denominator at most M). Since there are at most k blocks in vi, the denominator
of vi(`j−1, `j) is at most M3k. The same also holds for vi(`i−1, `i). Thus, the denominator of bm
is at most M6k+8.

It follows that there exists some integer Cm ≤M4 ·M6k+8 = M6k+12 such that multiplying
the mth line of the linear system by Cm makes the coefficients integral. Doing this for every line
yields an equivalent linear system A′y = b′ that is integral. Notice that A′ has at most 5 non-zero
entries per line and each of these values is bounded (in absolute value) by M6k+13. Cramer’s rule

tells us that z∗ = det(C)
det(A′) , where C is the matrix A′ with the last column replaced by b′. Since

det(C) is an integer, it suffices to bound | det(A′)| in order to bound the denominator of z∗.
Using Hadamard’s inequality, we get that | det(A′)| ≤

∏n
m=1 ‖A′m‖2, where A′m is the mth

line (i.e., row) of A′. It follows that ‖A′m‖2 ≤
√

5M6k+13 ≤ M6k+14 (since M ≥ 3). Thus, we
get that z∗ has denominator at most d := M (6k+14)n ≤M20kn.

Remark. The same proof also yields the following result: If for all i ∈ [n], all numbers in the
description of vi have denominator exactly M , then from any M−4n-envy-free solution, we can
efficiently obtain an envy-free solution. Indeed, in this case bm has denominator M2, so we get
Cm = M2 and ‖A′m‖2 ≤M4 for every m.

6.2 Continuous and Discrete Cake Cutting

We now establish the computational equivalence between some continuous and discrete cake-
cutting problems. Let us start by defining the computational problems that we will consider.

Definition 6.3. The problem unary-ε-EF-Cake-Cutting is defined as: given ε > 0 (in unary)
and (explicit, normalized) piecewise constant valuations v1, . . . , vn on [0, 1], find a contiguous
ε-envy-free allocation (x, π).
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This corresponds to the standard contiguous ε-envy-free cake-cutting problem with piecewise
constant valuations, except that ε is provided in unary representation. This means that ε can
no longer have exponential precision with respect to the size of the input. We also define a
(seemingly) more restricted version of this problem.

Definition 6.4. The problem simple-ε-EF-Cake-Cutting is defined exactly as unary-ε-EF-
Cake-Cutting, except that we are also given some positive integer M (in unary) and for all
i ∈ [n] we have that the piecewise constant valuation vi satisfies:

• all heights of value-blocks of vi are integral;

• the height of vi can only change at points of the form k/M where k ∈ [M ].

Next, we consider discrete cake cutting. While an envy-free allocation is not guaranteed to
exist in this setting (cf. Section 5), such an allocation always exists for some restricted classes of
valuations. We say that indivisible item valuations v1, . . . , vn are disjoint if every item is valued
by at most one agent. Marenco and Tetzlaff [2014] proved that if the valuations are disjoint,
then an envy-free allocation necessarily exists. We define a computational search problem based
on this existence theorem, where we restrict ourselves to the binary valuation case. Note that
binary valuations correspond to piecewise uniform valuations once normalized (i.e., if an item is
valued by an agent, then it is valued the same as any other item valued by that agent).

Definition 6.5. The problem Disjoint-Discrete-EF-Cake-Cutting is defined as: given
disjoint binary valuations v1, . . . , vn on a discrete cake, find a contiguous envy-free allocation.

Perhaps surprisingly, it turns out that all of these problems are computationally equivalent.
Thus, any algorithm or hardness result for one of them would immediately extend to all of them.

Theorem 6.6. The following problems are polynomial time equivalent:

(1) unary-ε-EF-Cake-Cutting

(2) simple-ε-EF-Cake-Cutting

(3) Disjoint-Discrete-EF-Cake-Cutting

(4) Disjoint-Discrete-EF-Cake-Cutting, where all agents value the same number of
items.

The rest of this section is devoted to proving this theorem. The reductions (2) → (1) and
(4) → (3) are trivial, because we are reducing from a special case of a problem to a more
general case. Thus, in order to establish the theorem, it remains to show that (1) reduces to (4)
(Proposition 6.7), and that (3) reduces to (2) (Proposition 6.8).

Proposition 6.7. unary-ε-EF-Cake-Cutting reduces to Disjoint-Discrete-EF-Cake-
Cutting where all agents value the same number of items.

Proof. We follow the same idea that was used by Filos-Ratsikas and Goldberg [2018] to show that
ε-Consensus-Halving reduces to Necklace-Splitting when ε is given in unary representation
(i.e., it is inversely polynomial).

Let m denote the maximum number of value-blocks in the piecewise constant valuation of
any agent 1 ≤ i ≤ n. Since the piecewise constant valuations are provided explicitly in the input,
it follows that m is bounded by the size of the input. Let δ ≤ ε/(m + 2) be such that 1/δ is
integral.
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For each agent i and each value-block of vi we do the following. Let [a, b] denote the
subinterval covered by the block and let h be its height. We divide the block into sub-blocks of
value δ each, starting from the left. Namely, the first sub-block covers [a, a+ δ/h], the second
sub-block covers [a + δ/h, a + 2δ/h], and so on. If (b − a)h/δ is not an integer, then the last
sub-block will be incomplete and we will ignore it. Thus, we have obtained b(b−a)h/δc complete
sub-blocks. For each such sub-block, we compute its midpoint and place an item valued by agent
i at that position in [0, 1].

After we have done this for every block of every agent, we perform some post-processing.
Note that all agents might not value the same number of items. Indeed, since incomplete
sub-blocks are dropped, an agent might value less than 1/δ items. However, since every agent
has at most m blocks of value, she can have at most m incomplete sub-blocks. Thus, every
agent values at least 1/δ −m items. Now, for any agent that values strictly more than 1/δ −m
items, we remove items from the instance until she values exactly 1/δ −m items. The items
to be removed are picked arbitrarily—since every item is valued by exactly one agent, this is
straightforward to do. After this is done, every agent values exactly 1/δ−m items. In particular,
exactly mδ of every agent’s original value is unaccounted for by the discretized instance.

From here we obtain an instance of Disjoint-Discrete-EF-Cake-Cutting by simply
arranging the items in the order in which they appear in the interval [0, 1]. Note that it is possible
that items have the exact same position in [0, 1]—in that case, we resolve the tie arbitrarily.
Every item is valued 1/(1/δ −m) by exactly one agent, and 0 by all other agents.

Consider any solution of this Disjoint-Discrete-EF-Cake-Cutting instance. This
allocation of the items gives rise to an allocation of the cake: for every cut in the discretized
version, we place the corresponding cut in the continuous version between the positions of
the items on either side of the cut (e.g., halfway between the positions of the two items). In
particular, if the two items share the same position in [0, 1], then the cut is placed at that same
position.

We now argue that the resulting allocation is an ε-approximate solution to the unary-ε-EF-
Cake-Cutting instance. Let vij denote the i-value (i.e., the value for agent i) of the interval
assigned to agent j. Let Vij denote the value for agent i of the items assigned to agent j in the
discretized instance, but where we let every item have value δ (instead of 1/(1/δ −m)). Then,
we have Vii ≥ Vij for all i, j. Consider the interval assigned to agent i and compare it to the
items assigned to agent i. It is possible that even though an item was assigned to agent i, the
cut in the continuous instance cuts through the corresponding sub-block of value δ. However,
in that case agent i gets at least δ/2 from that sub-block, i.e., she lost at most δ/2. Since this
can happen at both extremities of the interval assigned to agent i, we get vii ≥ Vii − δ. Now
consider the i-value of the interval assigned to agent j. The same idea as above about the
extremities of the interval means that the continuous allocation might increase the i-value by δ
with respect to the discrete allocation. Furthermore, there is also mδ of agent i’s available value
that is unaccounted for in the discrete allocation. In the worst case, all of it lies in the interval
allocated to agent j. Thus, we obtain vij ≤ Vij + δ +mδ. Putting everything together, we then
get vii ≥ vij − (m+ 2)δ ≥ vij − ε.

Proposition 6.8. Disjoint-Discrete-EF-Cake-Cutting reduces to simple-ε-EF-Cake-
Cutting.

Proof. Consider an instance of Disjoint-Discrete-EF-Cake-Cutting with m items and
n agents with disjoint binary valuations v1, . . . , vn. For i ∈ [n], let mi denote the number of
items that agent i values. Note that the valuations are provided explicitly in the input, so n,
m, and the mi’s are bounded by the size of the input. We start by providing a reduction to
unary-ε-EF-Cake-Cutting.
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We construct a continuous cake-cutting instance as follows. Divide the continuous cake [0, 1]
into m regions of size 1/m, i.e., Ij = [(j − 1)/m, j/m] for j ∈ [m]. If item j ∈ [m] is valued
by agent i, then put a block of length 1/m and height m/mi in interval Ij of the valuation wi.
This yields piecewise constant valuations w1, . . . , wn on [0, 1] that are normalized. Finally, set
ε := mini 1/(nmi). Note that ε can be efficiently represented in unary.

Let (x, π) be a contiguous ε-envy-free allocation for this continuous cake-cutting instance.
For i ∈ [n], let Ai denote the interval allocated to agent i. We now provide a rounding
procedure to turn this ε-envy-free allocation into an envy-free allocation where all cuts lie
on points of the form j/m with j ∈ [m]. It is easy to see that this yields a solution to the
Disjoint-Discrete-EF-Cake-Cutting instance.

Consider any “bad cut”, i.e., a cut that lies strictly within an interval Ij = [(j − 1)/m, j/m].
If item j is not valued by any agent, then we can move this cut to either side without changing
the value of any agent for any of the allocated intervals. Otherwise, item j is valued by exactly
one agent i; in that case we say that this cut is an i-cut. If the interval Ai allocated to agent i
has an i-cut on the left or right endpoint, then we can immediately round it in favour of agent i,
i.e., making Ai larger. Indeed, this does not decrease wi(Ai), does not increase wi(A`), and does
not change w`(Ak) for any k, ` ∈ [n] with ` 6= i. Thus, we still have an ε-envy-free allocation
and wi(Ai) is of the form ti/mi where ti ∈ [mi] (and will no longer change).

If we had an envy-free allocation, then the rest of the rounding would be straightforward:
simply round every remaining bad cut to the right (or alternatively round every bad cut to the
nearest ·/m value). With this rounding, agent i would have envy strictly less than 1/mi, and
thus envy 0. However, we only have an ε-envy-free allocation, so we need to do come up with a
more involved rounding scheme. We now show how to round all i-cuts; the same procedure can
be applied for every i ∈ [n].

An i-chain is a set of consecutive cuts that are all i-cuts, and such that it has maximal
length (i.e., the first cut to the left and right is not an i-cut). Every i-chain can be handled
separately as follows. Consider an i-chain consisting of k consecutive i-cuts. Let A`1 , . . . , A`k+1

be the allocated intervals delimited by those cuts, from left to right. Note that `1, . . . , `k+1 6= i.
We start with the leftmost i-cut: the one lying between A`1 and A`2 . Suppose that it lies

strictly within the interval [(j − 1)/m, j/m]. There are two possible rounding positions for this
cut: to the left or to the right. If we round to the left then wi(A`1) = t/mi for some t, while if
we round to the right we get wi(A`1) = (t + 1)/mi. If (t + 1)/mi ≤ ti/mi = wi(Ai), then we
round to the right. On the other hand, if (t+ 1)/mi > ti/mi, then t = ti (because ε < 1/mi) and
A`1 was taking at most ε value from the block at [(j − 1)/m, j/m] (since wi(A`1) ≤ ti/mi + ε
before moving the cut). This means that by rounding to the left, we have added at most ε value
to wi(A`2). Thus, we now have wi(A`2) ≤ ti/mi + 2ε.

We now proceed to round the second cut of the i-chain. Again, if we round to the left
then wi(A`2) = t/mi for some t, and if we round to the right wi(A`2) = (t + 1)/mi. If
(t+ 1)/mi ≤ ti/mi, then we round to the right. On the other hand, if (t+ 1)/mi > ti/mi, then
t = ti (because 2ε < 1/mi) and A`2 was taking at most 2ε value from the block that is cut by
the i-cut. Thus, rounding to the left ensures that wi(A`2) = ti/mi and wi(A`3) ≤ ti/mi + 3ε.
We keep repeating this until the rightmost i-cut of the i-chain has been rounded. At the end, we
get that wi(A`k+1

) ≤ ti/mi + (k + 1)ε. However, we have (k + 1)ε < 1/mi since k + 1 ≤ n− 1
(Ai cannot be one of the intervals). After we perform this procedure for all i-chains, agent i will
not envy any other agent.

We have shown a reduction to unary-ε-EF-Cake-Cutting. In order to obtain a reduction
to simple-ε-EF-Cake-Cutting, we combine this reduction with Proposition 6.7. Indeed, this
yields a reduction from Disjoint-Discrete-EF-Cake-Cutting to Disjoint-Discrete-EF-
Cake-Cutting where all agents value the same number of items. This means that we now have
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mi = mj for all i, j ∈ [n]. By adding additional items that are not valued by anyone, we can also
ensure that the number of items m is a multiple of mi. Applying the same reduction described
in the first part of this proof to this instance yields an instance of simple-ε-EF-Cake-Cutting
with M = m.

7 Conclusion

In this paper, we study the classical cake cutting problem with the contiguity constraint and
establish several hardness results and approximation algorithms for this setting. It is worth
noting that while our 1/3-envy-free algorithm (Algorithm 1) is simple, lowering the envy to
1/4 for the restricted class of uniform single-interval valuations (Algorithm 2) already requires
significantly more work. Pushing the approximation factor down further even for this class or the
class of piecewise uniform valuations while maintaining computational efficiency is therefore a
challenging direction. Of course, it is possible that there are hardness results for sufficiently small
constants—this is not implied by the work of Deng et al. [2012], as their PPAD-completeness
result relies on more complex preference functions.

On the hardness front, we provide constructions that serve as frameworks for deriving
NP-hardness results for both cake cutting and indivisible items. Nevertheless, our frameworks
do not cover questions related to the utilities of the agents, for instance whether there exists a
contiguous envy-free allocation of the cake in which the first agent receives at least a certain level
of utility. Extending or modifying our constructions to deal with such questions is an intriguing
direction for future research.

Finally, while we have established a number of connections between continuous and discrete
cake-cutting in this paper, much still remains to be explored. For example, Suksompong [2019]
showed in the discrete setting that if the valuations are binary, then an “envy-free up to one
item” allocation is guaranteed to exist. Similarly, for additive (and even monotonic) valuations,
Bilò et al. [2019] proved the existence of an allocation that is envy-free up to two items. It would
be interesting to see how these problems can be related to the continuous setting.
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