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Abstract

Various economic interactions can be modeled as two-sided markets. A central so-
lution concept to these markets are stable matchings, introduced by Gale and Shapley.
It is well known that stable matchings can be computed in polynomial time, but many
real-life markets lack a central authority to match agents. In those markets, match-
ings are formed by actions of self-interested agents. Knuth introduced uncoordinated
two-sided markets and showed that the uncoordinated better response dynamics may
cycle. However, Roth and Vande Vate showed that the random better response dy-
namics converges to a stable matching with probability one, but did not address the
question of convergence time.

In this paper, we give an exponential lower bound for the convergence time of the
random better response dynamics in two-sided markets. We also extend the results
for the better response dynamics to the best response dynamics, i.e., we present a
cycle of best responses, and prove that the random best response dynamics converges
to a stable matching with probability one, but its convergence time is exponential.
Additionally, we identify the special class of correlated matroid two-sided markets
with real-life applications for which we prove that the random best response dynamics
converges in expected polynomial time.
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1 Introduction

One main function of many markets is to match agents of different kinds to one another,
for example men and women, students and colleges [7], interns and hospitals [17, 18], and
firms and workers. Gale and Shapley [7] introduced two-sided markets to model these
problems. A two-sided market consists of two disjoint groups of agents. Each agent has
some preferences about the agents on the other side and can be matched to one of them.
A matching is stable if it does not contain a blocking pair, that is, a pair of agents from
different sides who can deviate from this matching and both benefit. Gale and Shapley [7]
showed that stable matchings always exist and can be found in polynomial time. Besides
their theoretical appeal, two-sided matching models have proved useful in the empirical
study of many labor markets such as the National Resident Matching Program (NRMP).
Since the seminal work of Gale and Shapley, there has been a significant amount of work
in studying two-sided markets, especially on extensions to many-to-one matchings and
preference lists with ties [11, 19, 5, 4]. See for example, the book by Knuth [12], the book
by Gusfield and Irving [9], or the book by Roth and Sotomayor [19].

In many real-life markets, there is no central authority to match agents, and agents
are self-interested entities. This motivates the study of uncoordinated two-sided markets,
first proposed by Knuth [12]. Uncoordinated two-sided markets can be modeled as a game
among agents of one side, which we call the active side. The strategy of each active
agent is to choose one agent from the passive side. Stable matchings correspond to Nash
equilibria of the corresponding games. In order to understand the behavior of the agents in
these uncoordinated markets, it is interesting to consider better response dynamics among
agents and to analyze whether uncoordinated agents reach a stable matching and if so how
long it takes. In this regard, Knuth showed that a sequence of better responses of agents
can cycle and posed a question concerning the convergence of this dynamics. Consider the
following random better response dynamics: at each step, pick a blocking pair of agents
uniformly at random and let the agents in this pair match to each other. Roth and
Vande Vate [20] proved that the random better response dynamics converges to a stable
matching with probability one. This is done by showing that given any matching, there is
a polynomial-length sequence that leads from that matching to a stable one. This implies
an exponential-time upper bound on the expected time taken by this dynamics. However,
convergence time was not their main focus. We believe that studying this question is
crucial for understanding the behavior of uncoordinated agents as it corresponds to the
question of how long an uncoordinated market needs to stabilize.

Our first result in this paper is an exponential lower bound for the convergence time
of this better response dynamics in uncoordinated two-sided markets. Both Knuth’s cy-
cle [12], and Roth and Vande Vate’s proof [20] hold only for the better response dynamics,
and not for the best response dynamics. We extend the results in [12, 20] to best responses.
That is, we illustrate a cycle of best responses of agents, and then, using a potential func-
tion argument, we show that starting from any matching, there exists a short sequence
of best responses of agents to a stable matching. As a corollary of the latter result, we
obtain that every sequence of best responses starting with the empty matching reaches
a stable matching after a polynomial number of steps. Hence, when starting with the
empty matching, no central coordination is needed to reach a stable matching quickly if

2



agents play only best responses. In contrast to this, we show an exponential lower bound
for the convergence time of the random best response dynamics when arbitrary starting
configurations are allowed.

The above lower bounds show that the decentralized game theoretic approach for stable
matchings does not converge in polynomial time. This motivates studying special cases
of two-sided markets for which the convergence time is polynomial. In this regard, we
consider a natural class of correlated two-sided markets, which are inspired from real-life
one-sided market games in which players have preferences about a set of markets, and
the preferences of markets are correlated with the preferences of players. In a correlated
two-sided market, there is a payoff associated with every possible pair of active and passive
agent. Both active and passive agents are interested in maximizing their payoff, that is,
an agent i prefers an agent j to an agent j′ if the payoff associated with pair (i, j) is larger
than the payoff associated with pair (i, j′). Two illustrative examples of these markets
are market sharing games [8], and distributed caching games [6, 15]. These markets have
also been studied for finding stable geometric configurations with applications in VLSI
design [10]. This special class of two-sided markets is shown to be a potential game in [2]
and complexity related questions are studied in [1]. For the stable roommates problem,
Lebedev et al. [13] and Mathieu [14] consider instances with acyclic preference lists. It
turns out that the classes of acyclic and of correlated instances coincide [1]. Lebedev et al.
show that for acyclic instances the best response dynamics cannot cycle, that from every
state there exists a short sequence of best responses leading to a Nash equilibrium, and
that the random best response dynamics converges in expected polynomial time. Mathieu
shows that in the worst case the best response dynamics can take an exponential number
of steps to reach a stable matching. We extend the result that the random best response
dynamics converges quickly to correlated matroid two-sided markets, in which each active
agent can propose and can be matched to several passive agents.

2 Preliminaries and Notations

In this section, we define the problems and notations that are used throughout the paper.
Two-sided Markets. A two-sided market consists of two disjoint groups of agents X
and Y, e.g., women and men. Each agent has a preference list over the agents of the other
side. An agent i ∈ X ∪ Y can be assigned to one agent j in the other side. Then she gets
payoff pi(j). If the preference list of agent i is (a1, a2, . . . , an), we say that agent i has
payoff k ∈ {0, . . . , n− 1} if she is matched to agent an−k. Also, we say that an agent has
payoff −1 if she is unmatched. Given a matching M , we denote the payoff of an agent i
in matching M by pi(M).

Given a matching M , an agent x ∈ X and an agent y ∈ Y form a blocking pair if
{x, y} /∈M and px(y) > px(M) and py(x) > py(M). Given a matching M and a blocking
pair (x, y) in M , we say that a matching M ′ is obtained from M by resolving the blocking
pair (x, y) if the following holds: {x, y} ∈M ′, any partners with whom x and y are matched
in M are unmatched in M ′, and all other edges in M and M ′ coincide. A matching is
stable if it does not contain a blocking pair.
Uncoordinated Two-sided Markets. We model the uncoordinated two-sided market
(X ,Y) as a game G(X ,Y) among agents of the active side X . The strategy of each active
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agent x ∈ X is to choose one agent y from the passive side Y. The goal of each active agent
x ∈ X is to maximize her payoff px(y). Given a strategy vector of active agents, an active
agent x obtains payoff px(y) if she proposes to y, and if she is the winner of y. Agent x is
the winner of y if y ranks x highest among all active agents who currently propose to him.
Additionally, passive agent y obtains py(x) if x is the winner of y. We say that a strategy
vector is a pure Nash equilibrium if none of the active agents can increase their payoff
by unilaterally changing their strategy. Hence, stable matchings in an uncoordinated
two-sided market (X ,Y) correspond to pure Nash equilibria of the corresponding game
G(X ,Y) and vice versa.

Consider two agents x ∈ X and y ∈ Y. If a blocking pair (x, y) is resolved, we
say that x plays a better response. If there does not exist a blocking pair (x, y′) with
px(y′) > px(y), then we say that x plays a best response when the blocking pair (x, y) is
resolved. In the random better response dynamics at each step a blocking pair is chosen
uniformly at random and resolved. In the random best response dynamics at each step an
active agent from X is chosen uniformly at random and allowed to play a best response.
This is equivalent to choosing uniformly at random a blocking pair that constitutes a best
response by an agent from X .

Throughout the paper, we use women or players as active agents, and men or resources
as passive agents in the corresponding market game. Notice that the random better
response dynamics treats men and women symmetrically, so that in this context there is
in fact no distinction between the two sides. On the other hand, the asymmetry affects the
random best response dynamics, and the lower bound on its convergence time (Theorem 6)
does not apply to a dynamics where members of either side get chosen at random to make
best responses.
Correlated Two-sided Markets. In general, there are no dependencies between the
preference lists of agents. Correlated two-sided markets are examples in which the prefer-
ence lists are correlated. Assume that there is a payoff px,y ∈ N associated with every pair
(x, y) of agents x ∈ X and y ∈ Y such that px(y) = py(x) = px,y. The preference lists of
both active and passive agents are then defined according to these payoffs, e.g., a passive
agent y prefers an active agent x to an active agent x′ if px,y > px′,y. We assume that for
every agent i, the payoffs associated to all pairs including agent i are pairwise distinct.
Then the preference lists are uniquely determined by the ordering of the payoffs.
Many-to-One Two-Sided Markets. In a many-to-one two-sided market, the strategy
space Fx ⊆ 2Y of every player x ∈ X is a collection of subsets of resources, that is, every
player x ∈ X can propose to a subset Sx ∈ Fx of resources. Each resource y ∈ Y has a strict
preference list over the set of players in X . Given a vector of strategies S = (S1, . . . , Sn)
for the players from X = {1, . . . , n}, a resource y is matched to the winner x of y, that is,
the most preferred player who proposes to y. The goal of each player x ∈ X is to maximize
the total payoff of the resources that she wins. More formally, given a strategy vector S,
let Tx(S) ⊆ Sx be the set of resources that agent x wins. The goal of each player x is to
maximize

∑
y∈Tx(S) px(y).

Matroid Two-Sided Markets. A matroid two-sided market is a many-to-one two-sided
market in which for each player x, the family Fx of subsets of resources corresponds to the
independent sets of a matroid. In other words, in a matroid two-sided market for every
player x ∈ X , the set system (Y,Fx) is a matroid. This means, that for every player
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m1 m2 m3 . . . mn−2 mn−1 mn

w1 1 2 3 . . . n− 2 n− 1 n
w2 n 1 2 . . . n− 3 n− 2 n− 1
w3 n− 1 n 1 . . . n− 4 n− 3 n− 2
...

...
...

...
...

...
...

...
wn−1 3 4 5 . . . n 1 2
wn 2 3 4 . . . n− 1 n 1

Figure 1: The weights of the edges in our construction.

x ∈ X it holds that: ∅ ∈ Fx; if A ∈ Fx and B ⊆ A, then also B ∈ Fx; and if A,B ∈ Fx
with |A| < |B|, then there must be a b ∈ B such that A ∪ {b} ∈ Fx. Such matroid two-
sided markets arise naturally if, for example, every employer is interested in hiring a fixed
number of workers or if the workers can be partitioned into different classes and a certain
number of workers from each class is to be hired. We define correlated matroid two-sided
markets analogously to the singleton case, that is, there is a payoff px,y ∈ N associated
with every pair (x, y) ∈ X × Y such that px(y) = py(x) = px,y.

3 Better Response Dynamics

In this section, we consider the random better response dynamics and present instances
for which it takes with high probability an exponential number of steps to reach a stable
matching. This contrasts with the result due to Roth and Vande Vate [20] that from
every matching there exists a polynomial sequence of better responses leading to a stable
matching. In the following, we assume that X = {w1, . . . , wn} and Y = {m1, . . . ,mn}
for some n ∈ N. We present our instances using an edge-weighted bipartite graph with
an edge for each pair of woman and man. A woman w prefers a man m to a man m′ if
the weight of the edge {w,m} is smaller than the weight of {w,m′}. On the other hand,
a man m prefers a woman w to a woman w′ if the weight of the edge {m,w} is larger
than the weight of the edge {m,w′}. The weights of the edges in the bipartite graph are
depicted in Figure 1. Before we analyze the number of better responses needed to reach a
stable matching, we prove a structural property of the instances we construct.

Lemma 1. For the family of two-sided markets that is depicted in Figure 1, a matching
M is stable if and only if it is perfect and every woman has the same payoff in M .

Proof. First we show that every perfect matching M in which every woman has the same
payoff is stable. One crucial property of our construction is that whenever a woman w
and a man m are matched to each other, the sum pw(m) + pm(w) of their payoffs is n− 1.
In order to see this, assume that the edge between w and m has weight l + 1. Then
there are l men whom woman w prefers to m, i.e., pw(m) = n − 1 − l. Furthermore,
there are n − 1 − l women whom man m prefers to w, i.e., pm(w) = l. This implies
pw(m) + pm(w) = n − 1, regardless of l. We consider the case that every woman has
payoff k and hence every man has a payoff of n − 1 − k in M . Assume that there exists
a blocking pair (w,m). Currently w has payoff k, m has payoff n − 1 − k, and w and

5



m are not matched to each other. Since (w,m) is a blocking pair, pw(m) > k and hence
pm(w) = n− 1− pw(m) < n− 1− k = pm(M), contradicting the assumption that (w,m)
is a blocking pair. This implies that every state in which all women have the same payoff
is stable.

Now we have to show that a state M in which not every woman has the same payoff
cannot be a stable matching. We can assume that M is a perfect matching as otherwise it
obviously cannot be stable. Let M be a perfect matching and define l(M) to be the lowest
payoff that one of the women receives, i.e., l(M) = min{pw(M) | w ∈ X}. Furthermore, by
L(M) we denote the set of women receiving payoff l(M), i.e., L(M) = {w ∈ X | pw(M) =
l(M)}. We claim that there exists at least one woman in L(M) who forms a blocking pair
with one of the men.

First we consider the case that the lowest payoff is unique, i.e., L(M) = {w}. Let m be
the man with pw(m) = l(M) + 1. We claim that (w,m) is a blocking pair. To see this, let
M ′ denote the matching obtained from M by resolving (w,m). We have to show that the
payoff pm(M) of man m in matching M is smaller than his payoff pm(M ′) in M ′. Due to
our construction pm(M ′) = n−1−pw(m) and pm(M) = n−1−pw′(m), where w′ denotes
m’s partner in M . Due to our assumption, w is the unique woman with the lowest payoff
in M . Hence, pw′(m) = pw′(M) > pw(M) = pw(m) − 1. This implies pm(M ′) ≥ pm(M),
which in turn implies pm(M ′) > pm(M) since w 6= w′, and hence, (w,m) is a blocking
pair.

It remains to consider the case that the woman with the lowest payoff is not unique.
We claim that also in this case we can identify one woman in L(M) who forms a blocking
pair. Let w(1) ∈ L(M) be chosen arbitrarily and let m(1) denote her partner in M . Let
m(2) denote the man with pw(1)(m(2)) = pw(1)(m(1)) + 1 and let w(2) denote the woman
matched to m(2) in M . If the payoff of w(2) in M is larger than the payoff of w(1) in M , then
by the same arguments as for the case |L(M)| = 1 it follows that (w(1),m(2)) is a blocking
pair. Otherwise, if pw(1)(M) = pw(2)(M), we continue our construction with w(2). To be
more precise, we choose the man m(3) with pw(2)(m(3)) = pw(2)(m(2)) + 1 and denote by
w(3) his partner in M . Again either w(3) ∈ L(M) or (w(2),m(3)) is a blocking pair. In the
former case, we continue the process analogously, yielding a sequence m(1),m(2),m(3), . . .
of men. If the sequence is finite, a blocking pair exists. Now we consider the case that
the sequence is not finite. Let j ∈ {1, . . . , n} be chosen such that m(1) = mj . Due to
the weights shown in Figure 1, it holds m(i) = m(j−i mod n)+1 for i ∈ N. Hence, in this
case, every man appears in the sequence, and hence, every woman has the same payoff
l(M).

Let us quote a couple of Chernoff bounds from [16] that we will use in the proofs
below. Theorem 4.1 of [16] states that for independent Poisson trials X1, . . . , Xn, with
Pr [Xi = 1] = pi for i ∈ {1, . . . , n} and 0 < pi < 1, and for X =

∑
iXi, µ = E [X] =

∑
i pi,

and any δ > 0, we have

Pr [X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ
. (1)

Theorem 4.2 of [16] states that for 0 < δ ≤ 1,

Pr [X < (1− δ)µ] < exp(−µδ2/2). (2)
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Now we can prove that with high probability the number of better responses needed to
reach a stable matching is exponential.

Theorem 2. There exists a family of two-sided markets I1, I2, I3, . . . with corresponding
matchings M1,M2,M3, . . . such that, for n ∈ N, In consists of n women and n men and a
sequence of random better responses starting in Mn with probability 1− 2−Ω(n) needs 2Ω(n)

steps to reach a stable matching.

Proof. We consider the instances shown in Figure 1. In Lemma 1, we have shown that in
any stable matching all women have the same payoff. For a given matching M , we are
interested in the most common payoff among the women and denote by χ(M) the number
of women receiving this payoff, i.e.,

χ(M) = max
i∈{0,...,n−1}

|{w ∈ X | pw(M) = i}| .

In the following, we show that whenever χ(M) is at least 15n/16, then χ(M) is more
likely to decrease than to increase. This yields a biased random walk that takes with high
probability exponentially many steps to reach χ(M) = n. If the most common payoff is
unique, which is always the case if χ(M) > n/2, then we denote by X ′(M) the set of
women receiving this payoff and by Y ′(M) the set of men matched to women from X ′(M).

Let δ = 15/16 and assume that χ(M) ≥ δn. First, we consider the case that the
current matching M is not perfect, i.e., there exists at least one unmatched woman w
and at least one unmatched man m. We call a blocking pair good if for the matching M ′

obtained from resolving it, χ(M ′) ≤ χ(M) − 1. On the other hand, we call a blocking
pair bad if χ(M ′) = χ(M) + 1 or if M ′ is a perfect matching. Let us count the number
of good and of bad blocking pairs. Let k denote the most common payoff. Both the
unmatched woman w and the unmatched man m form a blocking pair with each person
who prefers her/him to his/her current partner. Since the current payoff of the women in
X ′(M) is k, at most k of these women do not improve their payoff by being matched to
the unmatched man m. Analogously, since the payoff of the men in Y ′(M) is n − 1 − k,
at most n − 1 − k of these men do not improve their payoff by being matched to the
unmatched woman w. This implies that the number of good blocking pairs is at least1

max{δn − k, δn − n + 1 + k} ≥ (δ − 1/2)n. On the other hand, there can be at most
(1− δ)n+ 1 bad blocking pairs. This follows easily because only women from X \ X ′(M)
can form bad blocking pairs and each of these women forms at most one bad blocking pair
as there is only one man who is at position n−k in her preference list. Furthermore, there
exists at most one blocking pair that makes the matching perfect.

The aforementioned arguments show that for a matching M with χ(M) ≥ δn and
sufficiently large n, the ratio of good blocking pairs to bad blocking pairs is bounded from
below by

(δ − 1/2)n

(1− δ)n+ 1
≥ 7

2
.

1Let us remark that it is also correct to use the sum of δn−k and δn−n+1+k instead of the maximum
as a lower bound for the number of good blocking pairs. This leads to slightly different constants in the
following arguments but does not make any qualitative difference.
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Figure 2: Transition probabilities of the random walk.

This implies that the conditional probability of choosing a good blocking pair under the
condition that either a good or a bad blocking pair is chosen is bounded from below by
7/9.

If a good blocking pair is chosen, χ decreases by at least 1 and the matching obtained
is again not perfect (otherwise the blocking pair would be bad by definition). If a bad
blocking pair is chosen, χ increases by 1 or the matching obtained is perfect. In any
other case, χ remains unchanged. If the matching obtained is perfect, after the next
step again a matching M ′′ is obtained that is not perfect. For this matching M ′′, we
have χ(M ′′) ≤ χ(M) + 2. Since we are interested in proving a lower bound, we can
pessimistically assume that the current matching is not perfect and that whenever a bad
blocking pair is chosen, χ increases by 2. Hence, we can obtain a lower bound on the
number of better responses needed to reach a stable state, i.e., a state M with χ(M) = n,
by considering a random walk on the set {dδne, dδne + 1, . . . , n} that starts at dδne,
terminates when it reaches n, and has the transition probabilities shown in Figure 2.
(Note that if χ ever drops below dδne we wait for it to return to that value, and re-start
the random walk.)

This is a biased random walk. If we start with an arbitrary matching M satisfying
χ(M) ≤ δn, then, with probability 1− 2−Ω(n), it takes 2Ω(n) steps to reach state n. To see
this, let us consider an even simpler random walkW on the set {0, 1, 2, . . .}: if the particle
is at 0, it deterministically moves to 2; at any other position i > 0, it moves to i− 1 with
probability 7/9 and to i + 2 with probability 2/9. If the particle starts at 0, the time it
takes to reach n− dδne for the first time is a lower bound on the time it takes to reach a
stable matching in the instance we constructed.

For i ∈ N, let t(i) denote the position of the particle in the random walk W after i
steps. For i, j ∈ N and j < i, let Fi,j denote the event that

t(i) ≥ n− dδne and t(j) = 0 and ∀k ∈ {j + 1, . . . , i− 1} : t(k) > 0 .

If the particle is at position n−dδne after i steps, then for one j ∈ {0, . . . , i−(n−dδne)/2},
the event Fi,j must occur. Let Ri,j denote the number of times the particle increases its
position by 2 during the steps j + 1, . . . , i, and let Li,j denote the number of times the
particle decreases its position by 1. Then the event Fi,j can only occur if 2Ri,j − Li,j ≥
n− dδne. As Li,j = i− j −Ri,j , this is equivalent to 3Ri,j ≥ n− dδne+ i− j, which can
only occur if Ri,j ≥ (i − j)/3 = 3E [Ri,j ] /2. As Fi,j can only occur if i − j = Ω(n), it
follows by a direct application of (1) that Pr [Fi,j ] ≤ 2−cn, for some constant c.

Now we can upper-bound the probability that the particle reaches n−dδne during the
first z steps by taking a union bound over values of i, j of the probabilities of the Fi,j :

Pr [∃i, j ∈ {0, . . . , z} : Fi,j ] ≤ z2 · 2−cn .
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Hence, for z = 2cn/3, the probability that the random walk reaches position n − dδne
during the first z steps, is bounded from above by 2−cn/3, which concludes the proof.

4 Best Response Dynamics

In this section, we study the best response dynamics in two-sided markets. First we show
that this dynamics can cycle. Let us remark again, that we use women to denote active
agents and men to denote passive agents.

Theorem 3. There exists a two-sided market with three women and three men in which
the best response dynamics can cycle.

Proof. We denote by w1, w2, w3 the women and we denote by m1,m2,m3 the men. We
choose the following preference lists for women and men:

w1 m2 m3 m1

w2 m1 m2 m3

w3 m3 m1 m2

m1 w1 w3 w2

m2 w2 w1 w3

m3 w1 w2 w3

We describe a state by a triple (x, y, z), meaning that the first woman is matched to
the man mx, the second woman to man my, and the third woman to man mz. A value
of −1 indicates that the corresponding woman is unmatched. The following sequence of
states constitutes a cycle in the best response dynamics:

(−1, 2, 3)→ (3, 2,−1)→ (3, 1,−1)→ (3,−1, 1)

→ (2,−1, 1)→ (−1, 2, 1)→ (−1, 2, 3) .

Roth and Vande Vate [20] show that from every matching there exists a polynomial
sequence of better responses leading to a stable matching. We show that this is also true
for the best response dynamics. The following approach is not based on [20], and we
cannot see any simple modification of their algorithm to restrict it to best responses.

Theorem 4. For every two-sided market with n women and m men and every matching
M , there exists a sequence of at most 2nm best responses starting in M and leading to a
stable matching.

Proof. We divide the sequence of best responses into two phases. In the first phase,
only matched women are allowed to change their matches. If no matched woman can
improve her payoff anymore, then the second phase starts. In the second phase, all women
are allowed to play best responses in an arbitrary order. In the first phase, we use the
potential function

Φ(M) =
∑
x∈X

(m− px(M)) ,

where X denotes the set of matched women. This potential function decreases with every
best response of a matched woman by at least 1 because this woman increases her payoff
and the set X can only become smaller. Since Φ is bounded from above by nm, the first
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phase terminates after at most nm best responses in a state in which no matched woman
can improve her payoff.

Now consider the second phase. We claim that if we start in a state M ′ in which no
matched woman can improve her match, then every sequence of best responses terminates
after at most nm steps in a stable matching. This will be established using the potential
function consisting of the sum of all the men’s payoffs. We will see that this potential is
monotonically increasing.

Assume that we start in a state M ′ in which no matched woman can improve her
match and that an unmatched woman plays a best response and gets matched with a man
y, leading to state M ′′. If y was not already matched, then the sum of the men’s payoffs
has increased, and it remains the case that no matched woman can improve on her match.
Alternatively, if y was already matched, note first that y’s payoff has increased (or he
would not have accepted the new match). Also we have maintained the property that no
matched woman can improve on her match (the set of matched women has gained one
member and lost one, and note that the members who have remained in that set are not
able to propose successfully to y). In either case, note that matched men never become
unmatched and therefore they can only improve their payoffs. With every best response
one man increases his payoff by at least 1. This concludes the proof of the theorem as
each of the m men can increase his payoff at most n times.

From the previous proof, the following corollary is immediate.

Corollary 5. For every two-sided market with n women and m men and every matching
M in which no matched woman can improve, every sequence of best responses starting in
M has length at most nm. In particular, this is true if M is the empty matching.

Let us remark that this result is not true for the better response dynamics, as from the
empty matching any other matching M is reachable by a sequence of better responses.

Finally, we show that Theorem 2 is also valid for the random best response dynamics.
The following result is in a sense weaker than Theorem 2 in that here, both the preference
lists and the starting configuration need to be chosen by an adversary. (In Theorem 2 it
was just the preference lists that are chosen by an adversary, and after that, nearly all
initial matchings run into the same problem.)

Theorem 6. There exists a family of two-sided markets I1, I2, I3, . . . and corresponding
matchings M1,M2,M3, . . . such that, for n ∈ N, In consists of n women and n men and a
sequence of random best responses starting in Mn with probability 1 − 2−Ω(n) needs 2Ω(n)

steps to reach a stable matching.

Proof. We will assume throughout that 8 divides n, to avoid rounding when we refer to
various multiples of n/8.

For every large enough n ∈ N, we construct an instance In with n women and n men in
which the preference lists and the initial state Mn are chosen as shown in Figure 3. That
is, every woman wi with i ∈ {2, . . . , n} prefers man mi−1 to man mi whom she prefers
to every other man. Woman w1 prefers the men m7n/8, . . . ,mn−1 to man m1 whom she
prefers to every other man. Man m1 prefers woman w1 to woman w2 whom he prefers to
every other woman. Every man mi with i ∈ {2, . . . , n − 1} prefers woman wi to woman
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Figure 3: Nodes in the upper and lower row correspond to women and men, respectively.
The figure also shows the initial state and the preference lists. The lists are only partially
defined, but they can be completed arbitrarily. This matching belongs to M, where the
right-hand block is empty, i.e. l = n.

wj−1 wl+1

mk

Figure 4: Matching from M.

wi+1 whom he prefers to woman w1 whom he prefers to every other woman. Man mn

prefers woman wn to all other women.
Let M denote the set of matchings that contain the edges

(w1,m1), . . . , (wj−2,mj−2), (wj ,mj−1), . . . , (wk,mk−1),

(wk+1,mk+1), . . . , (wl,ml), (wl+2,ml+1), . . . , (wn,mn−1)

for some j < k < l with n/16 ≤ k − j ≤ n/4, k < n/4, and l ≥ 5n/8 (cf. Figure 4). We
claim that if one starts in a matching that belongs to M, then with probability 1− 2−cn,
for an appropriate constant c > 0, another matching from M is reached after Θ(n) many
steps. Since no matching from M is stable, this implies the theorem.

If the current matching belongs to M, then there are at most three women who are
able to change the matching via a best response. Woman wj−1 can propose to man mj−1,
woman wk+1 can propose to man mk, and, if l < n, woman wl+1 can propose to man
ml+1.

Define a block to be a maximal-length sequence of matches of the form (wr,mr−1), . . . , (ws,ms−1),
where 1 ≤ r ≤ s ≤ n. When a change occurs to the matching, the effect is to either

• cause one end of a block to move 1 to the right, or

• to eliminate a block of length 1, or to merge two blocks.

mk

Figure 5: w1 proposes to mk if 7n
8 ≤ k < n.

11



Figure 6: A new diagonal is introduced.

We continue by showing two things. First, changes of the second kind are (exponentially)
unlikely to take place. Second, by the time the old block leaves the right-hand end of the
sequence, a new block has been generated at the left-hand side of the sequence with an
expected length of n/8.

In M there is a block of length Ω(n), possibly another block to its right, and a gap
of length Ω(n) between them. When a change of the first kind above takes place, the
midpoint of the affected block moves 1/2 to the right. Hence any block is altered at most
2n times by these changes. On the i-th occasion that the midpoint of the left-hand block
moves to the right, associate with that event a Bernoulli trial Xi that is 1 if the left-hand
end of the block moves, and 0 if the right-hand end moves. Each value has probability
1/2. Let X be the sum of the Xi. Provided that the block has length Ω(n), the probability
that the block vanishes before reaching the right-hand side corresponds to X exceeding
its expected value by some factor greater than 1, which by (1) is exponentially small in
n. By a similar argument, the gap between the two blocks is equally unlikely to vanish
(which would cause the blocks to merge).

Next we analyse the mechanism whereby new blocks are generated at the left-hand
side of the gadget at the time that an existing block is exiting the right-hand side —
a process that is designed to (with high probability) return us to a matching in M.
When the right end of the first block has reached man m7n/8, i.e., m7n/8 is unmatched,
then with probability exponentially close to 1, the second block has already vanished (see
Figure 5) because the initial distance between the two blocks is at least 3n/8 and only with
probability 2−Ω(n) does it decrease to n/8 before the second block vanishes (applying (1) as
we did above). Now consider the case that the second block has vanished and the right end
of the first block lies in the interval {7n/8, . . . , n− 1}. Then, woman w1 has an incentive
to change her match since she prefers mk with k ∈ {7n/8, . . . , n − 1} to m1. Once she
has changed her strategy, a new block of diagonals can be created on the left end of the
gadget (see Figure 6). In particular, woman w1 will only return to m1 if no man mk with
k ∈ {7n/8, . . . , n− 1} is unmatched, that is, she will only return to m1 if the right end of
the first block has reached man mn. At this stage, at any step there is equal probability
that the new block is extended by 1, or that the right-hand block’s right-hand side moves
1 to the right. Hence, when that right-hand block has reached mn−1, the length of the
new block (to the left) has the distribution of the random variable X of Lemma 7. (Each
time the right-hand block moves one to the right, the left-hand block’s length increase
is a geometric random variable with parameter 1/2.) By Lemma 7 it follows that the
length of the new block lies with high probability in the interval [n/16, n/4]. Only with
exponentially small probability the left end of the block has not passed man m5n/8 when
the right end has reached man mn because this would imply that the length of the block
has increased from at most n/4 to 3n/8. If none of these exponentially unlikely failures
events occurs, we are again in a matching from M.

12



In the following lemma, we use the notion of a geometric random variable with pa-
rameter 1/2. Such a random variable Z describes, in a sequence of Bernoulli trials with
success probability 1/2, the number of failures before the first success is obtained, that is,
for i ∈ {0, 1, 2, . . .}, Pr [Z = i] = (1/2)i+1.

Lemma 7. Assume n is a multiple of 8. Let X be the sum of n/8 geometric random
variables with parameter p = 1/2. There exists a constant c > 0 such that

Pr [X /∈ [n/16, n/4]] ≤ 2e−cn .

Proof. For a series of independent Bernoulli trials with success probability 1/2, the random
variable X describes the number of failures before the (n/8)-th success is obtained. For
a ∈ N, let Ya be a binomially distributed random variable with parameters a and 1/2.
Now, suppose we generate an observation of X by flipping a coin until we obtain n/8
successes (and X is the number of failures). If the observed value of X is greater than
n/4, then the first 3n/8 coin flips contained less than n/8 successes. Hence observe that

Pr [X > n/4] = Pr
[
Y3n/8 < n/8

]
.

This in turn is equal to

Pr

[
Y3n/8 <

2

3
E
[
Y3n/8

]]
≤ e−cn ,

where the last inequality follows, for an appropriate constant c > 0, from (2). Furthermore,
by a similar argument

Pr [X < n/16] = Pr
[
Y3n/16 > n/8

]
= Pr

[
Y3n/16 >

4

3
E
[
Y3n/16

]]
≤ e−cn .

A natural question about the proof of Theorem 6 is whether it is really necessary to
divide the agents into active and passive agents and to require the active agents to play
only best responses. Here we sketch why both assumptions are necessary for the particular
construction in the proof. Assume that instead we consider the random better response
dynamics or a symmetric best response dynamics in which one agent from X ∪Y is chosen
uniformly at random and allowed to play a best response. As long as the right-hand end of
the initial block of diagonals has not reached man m7n/8, the better, best, and symmetric
best response dynamics behave identically.

However, the generation of the new block of diagonals does not work as desired for the
better and the symmetric best response dynamics. To see this assume that we have reached
a situation in which the first couple of diagonals have been inserted at the left-hand end.
Then either w1 is unmatched or she is matched to a man mi with i ∈ {7n/8, . . . , n − 1}.
In the latter case it takes in expectation a constant number of steps until w1 is again
unmatched. As soon as w1 is unmatched, the best response of m1 is to get matched to w1.
Hence, both in the better response dynamics and in the symmetric best response dynamics
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the blocking pair {w1,m1} will be resolved after a constant number of steps. This means
that a new vertical edge is inserted at the beginning, which removes the leftmost diagonal.
From that moment on, the block of diagonals can shrink as new vertical edges can replace
the diagonal edges on its left-hand end. Hence, the block has a significant probability of
vanishing before it reaches man m7n/8. At the same time another block of diagonals can
be generated so that after the initial block of diagonals has reached the right-hand end,
there is not only a single new block, but multiple disjoint blocks whose total length will
likely be much smaller than Ω(n).

5 Correlated Two-Sided Markets

In this section, we show that, in contrast to general two-sided markets, the convergence
time of the random better and best response dynamics in correlated two-sided markets is
polynomial.

In the context of a 2-sided market, a strategy of a player is the (possibly empty) set
of members of the opposite side that she is matched with. A strategy vector is the set
of all the players’ strategies, associated with a particular matching. In a potential game
there is a function Φ that maps strategy vectors to the real numbers, in such a way that
a better response by any player results in a new strategy vector with a smaller value of Φ.
The existence of such a function Φ is a sufficient condition for termination of sequences of
better responses, and in addition, one can often study the rate of decrease of Φ to obtain
quantitative bounds on the number of steps required.

In [2], it is shown that correlated two-sided markets are potential games. Correlated
two-sided markets have previously been considered by Abraham et al. [1], Lebedev et
al. [13], and Mathieu [14]. In the latter two publications these markets are defined in a
different way and they are called acyclic. It is, however, shown by Abraham et al. that the
classes of acyclic and of correlated markets coincide. Lebedev et al. [13] prove that every
correlated market has a unique stable matching, that the best response dynamics cannot
cycle, and that from every state a short sequence of best responses to a Nash equilibrium
exists. They also conclude that the random best response dynamics converges quickly (the
expected number of steps is at most quadratic in the number of players). Finally, let us
mention that Mathieu [14] also presented an exponential lower bound on the convergence
time if an adversary selects the next player to play a best response.

5.1 Correlated Matroid Two-Sided Markets

In matroid two-sided markets, we consider a restricted class of better responses, so-called
lazy better responses, introduced in [3]. Let a vector of strategies S = (S1, . . . , Sn) be given
and denote by S⊕S∗x for S∗x ∈ Fx the state S except that player x plays S∗x instead of Sx.
Assume that a player x ∈ X plays a better response and changes her strategy from Sx to
S′x. We call this better response lazy if it can be decomposed into a sequence of strategies
Sx = S0

x, S
1
x, . . . , S

k
x = S′x such that |Si+1

x \ Six| = 1 and the payoff of player x in state
S ⊕ Si+1

x is strictly larger than her payoff in state S ⊕ Six for all i ∈ {0, . . . , k − 1}. That
is, a lazy better response can be decomposed into a sequence of additions and exchanges
of single resources such that each step strictly increases the payoff of the corresponding
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player.
In [3], it is observed that for matroid strategy spaces, there does always exist a best

response that is lazy. In particular, the best response that exchanges the least number of
resources is lazy, and in singleton games, every better response is lazy. On the other hand,
the following example demonstrates that even in simple matroid markets there can be
non-lazy best responses: Let X = {x}, Y = {y1, y2, y3, y4}, and Fx = {S ⊂ Y | |S| ≤ 2}.
Then (Y,Fx) is a so-called uniform matroid. Let px(y1) = 1, px(y2) = px(y3) = 2, and
px(y4) = 3, and let {y1, y2} be the current strategy of player x. Then {y3, y4} is a best
response that is not lazy. The only lazy best response is {y2, y4}.

In [2], it is shown that correlated matroid two-sided markets are potential games with
respect to the lazy better response dynamics. Furthermore, it is shown that the restriction
to lazy better responses is necessary as even the best response dynamics can cycle in
correlated matroid two-sided markets.

Theorem 8. In correlated matroid two-sided markets, the random lazy best response dy-
namics converges to a stable matching in expected polynomial time.

Proof. Let p denote the highest possible payoff that can be achieved. As long as no pair
(x, y) ∈ X ×Y with py(x) = p is contained in the matching, there exists one player whose
best response would result in such a pair. This follows since players allocate optimal bases
and an optimal basis of a matroid must contain the most valuable element. Since this
player is allowed to play a best response with probability at least 1/n in each step, it
takes O(n) best responses until a pair (x, y) ∈ X × Y with py(x) = p is contained in the
matching in expectation.

After an edge (x, y) ∈ X × Y with py(x) = p is contained in the matching, player x
will never leave resource y again because she only plays lazy best responses. Furthermore,
x cannot be displaced from y since no player is strictly preferred to x by resource y.
Hence, the assignment of x to y can be fixed and we can modify the strategy space of
x by contracting its matroid by removing y. By this contraction, we obtain another
matroid two-sided market in which the rank of x’s matroid is decreased by 1. Now we can
inductively apply the same argument to this game.

Theorem 9. In correlated two-sided markets (where each agent is matched to at most one
other agent) the best and better response dynamics converge in expected polynomial time.

Proof. At any point in the process, let p be the highest payoff that can be obtained
by players who are not already making a best response. There is a probability at least
1/n2 that a player who is not making a best response, will be chosen and will make a
best response, with payoff p. When this happens, that player (and her chosen resource)
become inactive, and since there are n players, this gives us a polynomial expected time
taken for all players to become inactive, at which point the process has converged.
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