
febrUary 2009 | vol. 52 | no. 2 | CommunICatIons of the aCm 89

DoI:10.1145/1461928.1461951

abstract
How long does it take until economic agents converge to an
equilibrium? By studying the complexity of the problem of
computing a mixed Nash equilibrium in a game, we provide
evidence that there are games in which convergence to such an
equilibrium takes prohibitively long. Traditionally, computa-
tional problems fall into two classes: those that have a polyno-
mial-time algorithm and those that are nP-hard. However, the
concept of NP-hardness cannot be applied to the rare problems
where “every instance has a solution”—for example, in the case
of games Nash’s theorem asserts that every game has a mixed
equilibrium (now known as the Nash equilibrium, in honor of
that result). We show that finding a Nash equilibrium is com-
plete for a class of problems called PPaD, containing several
other known hard problems; all problems in PPaD share the
same style of proof that every instance has a solution.

1. IntRoDuCtIon
In a recent CACM article, Shoham22 reminds us of the long
relationship between Game Theory and Computer Science,
going back to John von Neumann at Princeton in the 1940s,
and how this connection became stronger and more crucial
in the past decade due to the advent of the Internet: Strategic
behavior became relevant to the design of computer systems,
while much economic activity now takes place on computa-
tional platforms.

Game Theory is about the strategic behavior of rational
agents. It studies games, thought experiments modeling vari-
ous situations of conflict. One commonly studied model aims
to capture two players interacting in a single round. For exam-
ple, the well-known school yard game of rock–paper–scissors
can be described by the mathematical game shown in Figure
1. There are two players, one choosing a row and one choosing
a column; the choices of a player are his/her actions. Once the
two players choose, simultaneously, an action, they receive
the corresponding payoffs shown in the table: The first num-
ber denotes the payoff of Row, the second that of Column.
Notice that each of these pairs of numbers sum to zero in the
case of Figure 1; such games are called zero-sum games. Three
other well-known games, called chicken, prisoner’s dilemma,
and penalty shot game, respectively, are shown in Figure 2; the
penalty shot game is zero-sum, but the other two are not. All
these games have two players; Game Theory studies games
with many players, but these are harder to display.a

The Complexity of Computing
a Nash Equilibrium
By Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou

A previous version of this paper appeared in the ACM 2006
Proceedings of the Symposium on Theory of Computing.

rock paper scissors

rock (0, 0) (-1, 1) (1, -1)

paper (1, -1) (0, 0) (-1, 1)

scissors (-1, 1) (1, -1) (0, 0)

figure 1: Rock–paper–scissors.

The purpose of games is to help us understand economic
behavior by predicting how players will act in each particu-
lar game. The predictions game theorists make about player
behavior are called equilibria. One such prediction is the
pure Nash equilibrium: Each player chooses an action that is
a “best response” to the other player’s choice—i.e., it is the
highest payoff, for the player, in the line, row or column, cho-
sen by the other player. In the game of chicken in Figure 2,
a pure Nash equilibrium is when one player chooses “dare”
and the other chooses “chicken.” In the prisoner’s dilemma,
the only pure Nash equilibrium is when both players choose
“defect.”

Unfortunately, not all games have a pure Nash equi-
librium. For example, it is easy to see that the rock–
paper–scissors game in Figure 1 has none. This lack of
universality is an important defect of the concept of pure
Nash equilibrium as a predictor of behavior. But the rock–
paper–scissors game does have a more sophisticated kind
of equilibrium, called a mixed Nash equilibrium—and in
fact one that is familiar to all who have played this game:
both players pick an action uniformly at random. That is, a
mixed Nash equilibrium is a probabilistic distribution on
the set of actions of each player. Each of the distributions
should have the property that it is a best response to the
other distributions; this means that each action assigned
positive probability is among the actions that are best
responses, in expectation, to the distribution(s) chosen by
the opponent(s).

In 1950, John Nash proved that all games have a mixed
Nash equilibrium.19 That is, in any game, distributions over
the players’ actions exist such that each is a best response
to what everybody else is doing. This important—and far
from obvious—universality theorem established the mixed
Nash equilibrium as Game Theory’s central equilibrium
concept, the baseline and gold standard against which all

a How about games such as chess? We can capture this and other similar
games in the present framework by considering two players, Black and
White, each with a huge action set containing all possible maps from posi-
tions to moves; but of course, such formalism is not very helpful for analyz-
ing chess and similar games.

90 CommunICatIons of the aCm | febrUary 2009 | vol. 52 | no. 2

research highlights

subsequent refinements and competing equilibrium con-
cepts were judged.

Universality is a desirable attribute for an equilibrium
concept. Of course, such a concept must also be natural and
credible as a prediction of behavior by a group of agents—
for example, pure Nash seems preferable to mixed Nash, in
games that do have a pure Nash equilibrium. But there is a
third important desideratum on equilibrium concepts, of a
computational nature: An equilibrium concept should be effi-
ciently computable if it is to be taken seriously as a prediction
of what a group of agents will do. Because, if computing a
particular kind of equilibrium is an intractable problem, of
the kind that take lifetimes of the universe to solve on the
world’s fastest computers, it is ludicrous to expect that it can
be arrived at in real life. This consideration suggests the fol-
lowing important question: Is there an efficient algorithm for
computing a mixed Nash equilibrium? In this article, we report
on results that indicate that the answer is negative—our own
work 5, 7, 8, 13 obtained this for games with three or more play-
ers, and shortly afterwards, the papers2, 3 extended this—
unexpectedly—to the important case of two-player games.

Ever since Nash’s paper was published in 1950, many
researchers have sought algorithms for finding mixed Nash
equilibria—that is, for solving the computational problem
which we will call Nash in this paper. If a game is zero-sum,
like the rock–paper–scissors game, then it follows from the
work of John von Neumann in the 1920s that Nash can be
formulated in terms of linear programming (a subject iden-
tified by George Dantzig in the 1940s); linear programs can
be solved efficiently (even though we only realized this in the
1970s). But what about games that are not zero-sum? Several
algorithms have been proposed over the past half century,

but all of them are either of unknown complexity, or known
to require, in the worst case, exponential time.

During the same decades that these concepts were being
explored by game theorists, Computer Science theorists
were busy developing, independently, a theory of algo-
rithms and complexity addressing precisely the kind of
problem raised in the last two paragraphs: Given a compu-
tational problem, can it be solved by an efficient algorithm?
For many common computational tasks (such as finding a
solution of a set of linear equations) there is a polynomial-
time algorithm that solves them—this class of problems is
called P. For other such problems, such as finding a truth
assignment that satisfies a set of Boolean clauses (a prob-
lem known as sat), or the traveling salesman problem, no
such algorithm could be found after many attempts. Many
of these problems can be proved nP-complete, meaning
they cannot be solved efficiently unless P = nP—an event
considered very unlikely.11

From the previous discussion of failed attempts to
develop an efficient algorithm for Nash, one might be
tempted to suppose that this problem too is nP-complete.
But the situation is not that simple. Nash is unlike any
nP-complete problem because, by Nash’s theorem, it is guar-
anteed to always have a solution. In contrast, nP-complete
problems like sat draw their intractability from the possi-
bility that a solution might not exist—this possibility is used
heavily in the nP-completeness proof.b See Figure 3 for an
argument (due to Nimrod Megiddo) why it is very unlikely
that nP-completeness can characterize the complexity of
Nash. (Note however that if one seeks a Nash equilibrium
with additional properties—such as the one that maximizes
the sum of player utilities, or one that uses a given strategy
with positive probability—then the problem does become
nP-complete.4, 12)

Since nP-completeness is not an option, to understand
the complexity of Nash one must essentially start all over in

Suppose we have a reduction from sat to Nash, that is, an efficient algo-

rithm that takes as input an instance of sat and outputs an instance of Nash,

so that any solution to the instance of Nash tells us whether or not the sat

instance has a solution. Then we could turn this into a nondeterministic

algorithm for verifying that an instance of sat has no solution: Just guess a

solution of the Nash instance, and check that it indeed implies that the sat

instance has no solution.

The existence of such a nondeterministic algorithm for sat (one that can

verify that an unsatisfiable formula is indeed unsatisfiable) is an eventuality

that is considered by complexity theorists almost as unlikely as P = NP.

We conclude that Nash is very unlikely to be NP-complete.

figure 3: megiddo’s proof that nash is unlikely to be nP-complete.

b “But what about the traveling salesman problem?” one might ask.
“Does not it always have a solution?” To compare fairly the traveling sales-
man problem with sat and Nash, one has to first transform it into a search
problem of the form “Given a distance matrix and a budget B, find a tour that
is cheaper than B, or report that none exists”. Notice that an instance of this
problem may or may not have a solution. But, an efficient algorithm for this
problem could be used to find an optimal tour.

figure 2: three other two-player games.

chicken dare

chicken (0, 0) (-5, 1)

dare (1, -5) (-10, -10)

In the chicken game above, there are two Nash equilibria, in which one
player chooses "chicken," and the other player "dare.” There is also a mixed
equilibrium, in which each player makes a random choice that equalizes
the expected payoffs to the opponent, of either of the opponent's actions.

cooperate defect

cooperate (0, 0) (-5, 1)

defect (1, -5) (-4, -4)

In the prisoner's dilemma game above, there is just one Nash equilibrium,
in which both players defect. This is despite the fact that each player does
better when they both cooperate.

kick left kick right

dive left (1, -1) (-1, 1)

dive right (-1, 1) (1, -1)

In the penalty shot game above, there is just one Nash equilibrium which
is mixed, and in which both the goalkeeper and the penalty kicker choose
left or right at random.

febrUary 2009 | vol. 52 | no. 2 | CommunICatIons of the aCm 91

the path that led us to nP-completeness: We must define a
class of problems which contains, along with Nash, some
other well-known hard problems, and then prove that Nash
is complete for that class. Indeed, in this paper we describe a
proof that Nash is PPaD-complete, where PPaD is a subclass
of nP that contains several important problems that are sus-
pected to be hard, including Nash.

1.1.Problem statement: nash and approximate nash
equilibria
A game in normal form has some number k of players, and for
each player p (p ∈ {1, …, k}) a finite set Sp of pure actions or
strategies. The set S of pure strategy profiles is the Cartesian
product of the Sp’s. Thus, a pure strategy profile represents
a choice, for each player, of one of his actions. Finally, for
each player p and s ∈ S the game will specify a payoff or util-
ity u p

s ≥ 0, which is the value of the outcome to player p when
all the players (including p) choose the strategies in s. In a
Nash equilibrium, players choose probability distributions
over their Sp’s, called mixed strategies, so that no player can
deviate from his mixed strategy and improve on his expected
payoff; see Figure 4 for details.

For two-player games there always exists a Nash equilib-
rium in which the probabilities assigned to the various strat-
egies of the players are rational numbers—assuming the
utilities are also rational. So, it is clear how to write down
such a solution of a two-player game. However, as pointed
out in Nash’s original paper, when there are more than two
players, there may be only irrational solutions. In this gen-
eral situation, the problem of computing a Nash equilibrium
has to deal with issues of numerical accuracy. Thus, we intro-
duce next the concept of approximate Nash equilibrium.

If Nash equilibrium means “no incentive to deviate,”
then approximate Nash equilibrium stands for “low incentive
to deviate.” Specifically, if e is a small positive quantity, we
can define an e-Nash equilibrium as a profile of mixed strat-
egies where any player can improve his expected payoff by
at most e by switching to another strategy. Figure 4 gives a
precise definition, and shows how the problem reduces to
solving a set of algebraic inequalities. Our focus on approxi-
mate solutions is analogous to the simpler problem of poly-
nomial root-finding. Suppose that we are given a polynomial
f with a single variable, and we have to find a real root, a real
number r satisfying f (r) = 0. In general, a solution to this
problem (the number r) cannot be written down as a frac-
tion, so we should really be asking for some sort of numeri-
cal approximation to r (for example, computing a rational
number r such that | f (r)| ≤ e, for some small e). If f happens
to have odd degree, we can even say in advance that a solu-
tion must exist, in a further analogy with Nash. Of course,
the analogy breaks down in that for root-finding we know
of efficient algorithms that solve the problem, whereas for
Nash equilibria we do not.

We are now ready to define the computational problem
Nash: Given the description of a game (by explicitly giving
the utility of each player corresponding to each strategy pro-
file) and a rational number e > 0, compute an e-Nash equilib-
rium. This should be at least as tractable as finding an exact
equilibrium, hence any hardness result for approximate

figure 4: Writing down the problem algebraically.

Recall that a game is specified by the payoffs associated with each pure
strategy profile s, so that for some player p and s ∈ S, u

p
s ≥ 0 denotes p’s

payoff from s. The set of pure strategy profiles of all players other than p is
denoted by S–p. for j ∈Sp and s′∈ S–p , let up

js′ be the payoff to p when p plays
j and the other players play s′.

The problem of finding a Nash equilibrium boils down to finding a set
of numbers x pj that satisfy the expressions below. x pj will be the probability
that p plays j, so for these quantities to be valid probabilities we require,
for each player p,

 (1)

for a set of k mixed strategies to be a Nash equilibrium, we need that,
for each p, Ss Î S up

s xs is maximized over all mixed strategies of p—where for
a strategy profile s = (s1 , . . . , sk) ∈ S, we denote by xs the product x1

s1
×x2

s2 , . . . , x
k
sk
.

(The expresssion Ss Î S up
s xs represents p’s expected payoff.) That is, a

Nash equilibrium is a set of mixed strategies from which no player has
a unilateral incentive to deviate. It is well known20 that the follow-
ing is an equivalent condition for a set of mixed strategies to be a Nash
equilibrium:

 (2)

The summation Ss Î S–pup
js xs in the above equation is the expected utility of

player p if p plays pure strategy j ∈Sp and every other player q uses the
mixed strategy {xq

j}jÎsq
.

We next turn to approximate notions of equilibrium. We say that a set of
mixed strategies x is an e-approximately well supported Nash equilibrium,
or e-Nash equilibrium for short, if for each p the following holds:

 (3)

Condition (3) relaxes (2) by allowing a strategy to have positive probability
in the presence of another strategy whose expected payoff is better by at
most e.

equilibria carries over to exact equilibria. Note that an
approximate equilibrium as defined above need not be at all
close to an exact equilibrium; see Etessami and Yannakakis9
for a complexity theory of exact Nash equilibria.

2. totaL seaRCh PRoBLems
We think of nP as the class of search problems of the form
“Given an input, find a solution (which then can be easily
checked) or report that none exists.” There is an asymme-
try between these outcomes, in that “none exists” is not
required to be easy to verify.

We call such a search problem total if the solution always
exists. There are many apparently hard total search problems
in nP—even though, as we argued in the introduction, they
are unlikely to be nP-complete. Perhaps the best-known is
Factoring, the problem of taking an integer as an input
and outputting its prime factors. Nash and several other
problems introduced below are also total.

A useful classification of total search problems was pro-
posed in Papadimitriou.20 The idea is this: If a problem is
total, the fact that every instance has a solution must have a
mathematical proof. Unless the problem can be easily solved
efficiently, in that proof there must be a “nonconstructive

92 CommunICatIons of the aCm | febrUary 2009 | vol. 52 | no. 2

research highlights

step.” It turns out that, for all known total search problems
in the fringes of P, these nonconstructive steps are one of
very few simple arguments:

•	 	“If a graph has a node of odd degree, then it must have
another.” This is the parity argument, giving rise to the
class PPa.

•	 	“If a directed graph has an unbalanced node (a vertex with
different in-degree and out-degree), then it must have
another.” This is the parity argument for directed graphs,
giving rise to the class PPaD considered in this article.
Figure 5 describes the corresponding search problems.

•	 	“Every directed acyclic graph must have a sink.” The
corresponding class is called PLS for polynomial local
search.

•	 	“If a function maps n elements to n – 1 elements, then
there is a collision.” This is the pigeonhole principle, and
the corresponding class is PPP.

We proceed with defining more precisely the second class in
the list above.

2.1. the class PPaD
There are two equivalent ways to define nP: First, it is the
class of all search problems whose answers are verifiable
in polynomial time. For example, the search problem sat
(“Given a Boolean formula in CNF, find a satisfying truth
assignment, or report that none exists”) is in nP because it
is easy to check whether a truth assignment satisfies a CNF.
Since we know that sat is nP-complete, we can also define nP
as the class of all problems that can be reduced into instances
of sat. By “reduce” we refer to the usual form of polynomial-
time reduction from search problem A to search problem B:
An efficient algorithm for transforming any instance of A to
an equivalent instance of B, together with an efficient algo-
rithm for translating any solution of the instance of B back to
a solution of the original instance of A.

We define the class PPaD using the second strategy. In
particular, PPaD is the class of all search problems that can be
reduced to the problem end of the line, defined in Figure 5.
Note that, since end of the line is a total problem, so are
all problems in PPaD. Proceeding now in analogy with nP,
we call a problem PPaD-complete if end of the line (and
therefore all problems in PPaD) can be reduced to it.

2.2. Why should we believe that PPaD contains
hard problems?
In the absence of a proof that P ≠ nP we cannot hope to be
sure that PPaD contains hard problems. The reason is that
PPaD lies “between P and nP” in the sense that, if P = nP, then
PPaD itself, as a subset of nP, will be equal to P. But even if
P ≠ nP, it may still be the case that PPaD-complete problems
are easy to solve. We believe that PPaD-complete problems
are hard for the same reasons of computational and math-
ematical experience that convince us that nP-complete
problems are hard (but as we mentioned, our confidence is
necessarily a little weaker): PPaD contains many problems
for which researchers have tried for decades to develop effi-
cient algorithms; in the next section we introduce one such

let us say that a vertex in a directed graph is “unbalanced” if the number of
its incoming edges differs from the number of its outgoing edges. observe
that, given a directed graph and an unbalanced vertex, there must exist at
least one other unbalanced vertex. This is the parity argument on directed
graphs. (PPAD stands for “polynomial parity argument for directed graphs.”)
Hence, the following is a total search problem:

Input: a directed graph G and a specified unbalanced vertex of G.
Output: Some other unbalanced vertex.

Note that, before we even begin to search G, the parity argument assures
us that we are searching for something that really exists. Now, if G were
presented in the form of a list of its vertices and edges, the problem could
of course be solved efficiently. Suppose however that we are given a graph
that is too large to be written out in full, but must be represented by a
program that tells us whether an edge exists or not.

To be specific, suppose G has 2n vertices, one for every bit string of length n
(the parameter denoting the size of the problem). for simplicity, we will sup-
pose that every vertex has at most one incoming edge and at most one outgoing
edge. The edges of G will be represented by two Boolean circuits, of size poly-
nomial in n, each with n input bits. Denote the circuits P and S (for predecessor
and successor). our convention is that there is a directed edge from vertex v to
vertex w, if, given input v, S outputs w and, vice versa, given input w, P outputs
v. Suppose now that some specific, identified vertex (say, the string 00 . . . 0) has
an outgoing edge but no incoming edge, and is thus unbalanced. Since there
is at most one incoming and one outgoing edge per node, the directed graph
must be a set of paths and cycles; hence, following the path that starts at the
all-zeroes node would eventually lead us to a solution. The catch is, of course,
that this may take exponential time. Is there an efficient algorithm for finding
another unbalanced node without actually following the path?

figure 5: enD of the LIne: an apparently hard total search problem.

problem called Brouwer. However, end of the line itself
is a pretty convincingly hard problem: How can one hope to
devise an algorithm that telescopes exponentially long paths
in every implicitly given graph?

3. fRom nash to PPaD
Our main result is the following:

Theorem 3.1. Nash is PPaD-complete.
In the remainder of this article we outline the main ideas

of the proof; for full details see Daskalakis et al.8 We need to
prove two things: First, that Nash is in PPaD, that is, it can
be reduced to end of the line. Second (see Section 4), that
it is complete—the reverse reduction. As it turns out, both
directions are established through a computational prob-
lem inspired by a fundamental result in topology, called
Brouwer’s fixed point theorem, described next.

3.1. Brouwer’s fixed point theorem
Imagine a continuous function mapping a circle (together
with its interior) to itself—for example, a rotation around the
center. Notice that the center is fixed, it has not moved under
this function. You could flip the circle—but then all points
on a diagonal would stay put. Or you could do something
more elaborate: Shrink the circle, translate it (so it still lies
within the original larger circle), and then rotate it. A little
thought reveals that there is still at least one fixed point. Or
stretch and compress the circle like a sheet of rubber any way
you want and stick it on the original circle; still points will
be fixed, unless of course you tear the circle—the function

February 2009 | vol. 52 | no. 2 | communications of the acm 93

must be continuous. There is a topological reason why you
cannot map continuously the circle on itself without leaving
a point unmoved, and that’s Brouwer’s theorem.16 It states
that any continuous map from a compact (that is, closed and
bounded) and convex (that is, without holes) subset of the
Euclidean space into itself always has a fixed point.

Brouwer’s theorem immediately suggests an interest-
ing computational total search problem, called Brouwer:
Given a continuous function from some compact and con-
vex set to itself, find a fixed point. But of course, for a mean-
ingful definition of Brouwer we need to first address two
questions: How do we specify a continuous map from some
compact and convex set to itself? And how do we deal with
irrational fixed points?

First, we fix the compact and convex set to be the unit
cube [0, 1]m—in the case of more general domains, for
example, the circular domain discussed above, we can
translate it to this setting by shrinking the circle, embed-
ding it into the unit square, and extending the function to
the whole square so that no new fixed points are introduced.
We then assume that the function F is given by an efficient
algorithm ΠF which, for each point x of the cube written in
binary, computes F(x). We assume that F obeys a Lipschitz
condition:

 (4)

where d(·,·) is the Euclidean distance and K is the Lipschitz
constant of F. This benign well-behavedness condition
ensures that approximate fixed points can be localized by
examining the value F(x) when x ranges over a discretized
grid over the domain. Hence, we can deal with irrational
solutions in a similar maneuver as with Nash, by only seek-
ing approximate fixed points. In fact, we have the following
strong guarantee: for any e, there is an e-approximate fixed
point—that is, a point x such that d(F(x), x) ≤ e—whose coor-
dinates are integer multiples of 2−d, where d depends on K, e,
and the dimension m; in the absence of a Lipschitz constant
K, there would be no such guarantee and the problem of
computing fixed points would become intractable. Formally,
the problem Brouwer is defined as follows.

Brouwer
Input: An efficient algorithm ΠF for the evaluation of a

 function F: [0, 1]m → [0, 1]m; a constant K such that F satis-
fies (4); and the desired accuracy e.

Output: A point x such that d(F(x), x) ≤ e.

It turns out that Brouwer is in PPAD. (Papadimitriou20

gives a similar result for a more restrictive class of Brouwer
functions.) To prove this, we will need to construct an end
of the line graph associated with a Brouwer instance.
We do this by constructing a mesh of tiny triangles over the
domain, where each triangle will be a vertex of the graph.
Edges, between pairs of adjacent triangles, will be defined
with respect to a coloring of the vertices of the mesh. Vertices
get colored according to the direction in which F displaces
them. We argue that if a triangle’s vertices get all possible
colors, then F is trying to shift these points in conflicting

directions, and we must be close to an approximate fixed
point. We elaborate on this in the next few paragraphs, focus-
ing on the two-dimensional case.
Triangulation: First, we subdivide the unit square into small
squares of size determined by e and K, and then divide each
little square into two right triangles (see Figure 7, ignoring for
now the colors, shading, and arrows). (In the m- dimensional
case, we subdivide the m-dimensional cube into
m- dimensional cubelets, and we subdivide each cubelet into
the m-dimensional analog of a triangle, called an m-simplex.)
Coloring: We color each vertex x of the triangles by one
of three colors depending on the direction in which F maps
x. In two dimensions, this can be taken to be the angle
between vector F(x) – x and the horizontal. Specifically, we
color it red if the direction lies between 0 and −135°, blue if it
ranges between 90 and 225°, and yellow otherwise, as shown
in Figure 6. (If the direction is 0°, we allow either yellow or
red; similarly for the other two borderline cases.) Using the
above coloring convention the vertices get colored in such a
way that the following property is satisfied:
(P1): None of the vertices on the lower side of the square
uses red, no vertex on the left side uses blue, and no vertex
on the other two sides uses yellow. Figure 7 shows a coloring
of the vertices that could result from the function F; ignore
the arrows and the shading of triangles.
Sperner’s Lemma: It now follows from an elegant result in
Combinatorics called Sperner’s Lemma20 that, in any color-
ing satisfying Property (P1), there will be at least one small tri-
angle whose vertices have all three colors (verify this in Figure
7; the trichromatic triangles are shaded). Because we have
chosen the triangles to be small, any vertex of a trichromatic
triangle will be an approximate fixed point. Intuitively, since F
satisfies the Lipschitz condition given in (4), it cannot fluctu-
ate too fast; hence, the only way that there can be three points
close to each other in distance, which are mapped in three dif-
ferent directions, is if they are all approximately fixed.
The Connection with PPAD: . . . is the proof of Sperner’s
Lemma. Think of all the triangles containing at least one red
and yellow vertex as the nodes of a directed graph G. There
is a directed edge from a triangle T to another triangle T ′ if
T and T ′ share a red–yellow edge which goes from red to yel-
low clockwise in T (see Figure 7). The graph G thus created
consists of paths and cycles, since for every T there is at most
one T ′ and vice versa (verify this in Figure 7). Now, we may

figure 6: the colors assigned to the different directions of F(x) – x.
there is a transition from red to yellow at 0∞, from yellow to blue at
90∞, and from blue to red at 225∞.

94 CommunICatIons of the aCm | febrUary 2009 | vol. 52 | no. 2

research highlights

also assume: On the left side of the square there is only one
change from yellow to red.c Under this assumption, let T * be
the unique triangle containing the edge where this change
occurs (in Figure 7, T* is marked by a diamond). Observe that,
if T* is not trichromatic (as is the case in Figure 7), then the
path starting at T* is guaranteed to have a sink, since it can-
not intersect itself, and it cannot escape outside the square
(notice that there is no red–yellow edge on the boundary that
can be crossed outward). But, the only way a triangle can be a
sink of this path is if the triangle is trichromatic. This estab-
lishes that there is at least one trichromatic triangle. (There
may of course be other trichromatic triangles, which would
correspond to additional sources and sinks in G, as in Figure
7.) G is a graph of the kind in Figure 5. To finish the reduction
from Brouwer to end of the line, notice that given a trian-
gle it is easy to compute its colors by invoking ΠF, and find its
neighbors in G (or its single neighbor, if it is trichromatic).
finally, from nash to brouwer: To finish our proof that
Nash is in PPaD we need a reduction from Nash to
Brouwer. Such a reduction was essentially given by Nash
himself in his 1950 proof: Suppose that the players in a game
have chosen some (mixed) strategies. Unless these already
constitute a Nash equilibrium, some of the players will be
unsatisfied, and will wish to change to some other strate-
gies. This suggests that one can construct a “preference
function” from the set of players’ strategies to itself, that
indicates the movement that will be made by any unsatisfied

players. An example, of how such a function might look, is
shown in Figure 8. A fixed point of such a function is a point
that is mapped to itself—a Nash equilibrium. And Brouwer’s
fixed point theorem, explained above, guarantees that such
a fixed point exists. In fact, it can be shown that an approxi-
mate fixed point corresponds to an approximate Nash
 equilibrium. Therefore, Nash reduces to Brouwer.

4. fRom PPaD BaCK to nash
To show that Nash is complete for PPaD, we show how to
convert an end of the line graph into a corresponding
game, so that from an approximate Nash equilibrium of
the game we can efficiently construct a corresponding end
of the line. We do this in two stages. The graph is converted
into a Brouwer function whose domain is the unit three-
 dimensional cube. The Brouwer function is then represented
as a game. The resulting game has too many players (their
number depends on the size of the circuits that compute the
edges of the end of the line graph), and so the final step of
the proof is to encode this game in terms of another game,
with three players.

4.1. from paths to fixed points: the PPaD- completeness
of Brouwer

We have to show how to encode a graph G, as described in
Figure 5, in terms of a continuous, easy-to-compute Brouwer
function F—a very different-looking mathematical object.
The encoding is unfortunately rather complicated, but is the
key to the PPaD-completeness result…

We proceed by, first, using the three-dimensional unit
cube as the domain of the function F. Next, the behavior of F
shall be defined in terms of its behavior on a (very fine) rec-
tilinear mesh of “grid points” in the cube. Thus, each grid
point lies at the center of a tiny “cubelet,” and the behavior

figure 7: the subdivision of the square into smaller squares, and the
coloring of the vertices of the subdivision according to the direction
of F(x) – x. the arrows correspond to the end of the line graph on the
triangles of the subdivision; the source T* is marked by a diamond.

figure 8: an illustration of nash’s function fn for the penalty shot game.
the horizontal axis corresponds to the probability by which the penalty
kicker kicks right, and the vertical axis to the probability by which the
goalkeeper dives left. the arrows show the direction and magnitude of
FN(x) – x. the unique fixed point of fn is (1/2, 1/2) corresponding to the
unique mixed nash equilibrium of the penalty shot game. the colors
respect figure 6, but our palette here is continuous.

c Suppose F gives rise to multiple yellow/red adjacencies on the left-hand
side. We deal with this situation by adding an extra array of vertices to the
left of the left side of the square, and color all these vertices red, except for
the bottom one which we color yellow. This addition does not violate (P1)
and does not create any additional trichromatic triangles since the left side
of the square before the addition did not contain any blue.

febrUary 2009 | vol. 52 | no. 2 | CommunICatIons of the aCm 95

of F away from the centers of the cubelets shall be gotten by
interpolation with the closest grid points.

Each grid point x shall receive one of four “colors” {0,
1, 2, 3}, that represent the value of the three-dimensional
displacement vector F(x) – x. The four possible vectors can
be chosen to point away from each other such that F(x) – x
can only be approximately zero in the vicinity of all the four
colors.

We are now ready to fit G itself into the above frame-
work. Each of the 2n vertices of G shall correspond with two
special sites in the cube, one of which lies along the bot-
tom left-hand edge in Figure 9 and the other one along the
top left edge. (We use locations that are easy to compute
from the identity of a vertex of G.) While most other grid
points in the cube get color 0 from F, at all the special sites
a particular configuration of the other colors appears. If G
has an edge from node u to node v, then F shall also color
a long sequence of points between the corresponding sites
in the cube (as shown in Figure 9), so as to connect them
with sequences of grid points that get colors 1, 2, and 3.
The precise arrangement of these colors can be chosen to
be easy to compute (using the circuits P and S that define
G) and such that all four colors are adjacent to each other (an
approximate fixed point) only at sites that correspond to an
“end of the line” of G.

Having shown earlier that Brouwer is in PPaD, we estab-
lish the following:

Theorem 4.1. Brouwer is PPaD-complete.

4.2. from Brouwer to nash

The PPaD-complete class of Brouwer functions that we iden-
tified above have the property that their function F can be
efficiently computed using arithmetic circuits that are built
up using a small repertoire of standard operators such as
addition, multiplication, and comparison. These circuits
can be written down as a “data flow graph,” with one of
these operators at each node. In order to transform this into
a game whose Nash equilibria correspond to (approximate)
fixed points of the Brouwer function, we introduce players
for every node on this data flow graph.
games that Do arithmetic: The idea is to simulate each
arithmetic gate in the circuit by a game, and then compose
the games to get the effect of composing the gates. The
whole circuit is represented by a game with many players,
each of whom “holds” a value that is computed by the cir-
cuit. We give each player two actions, “stop” and “go.” To
simulate, say, multiplication of two values, we can choose
payoffs for three players x, y, and z such that, in any Nash
equilibrium, the probability that z (representing the out-
put of the multiplication) will “go” is equal to the product
of the probabilities that x and y will “go.” The resulting
“multiplication gadget” (see Figure 10) has a fourth player
w who mediates between x, y, and z. The directed edges
show the direct dependencies among the players’ payoffs.
Elsewhere in the game, z may input his value into other
related gadgets.

Here is how we define payoffs to induce the players to
implement multiplication. Let X, Y, Z, and W denote the
mixed strategies (“go” probabilities) of x, y, z, and w. We pay

w the amount $X · Y for choosing strategy stop and $Z for
choosing go. We also pay z to play the opposite from player
w. It is not hard to check that in any Nash equilibrium of the
game thus defined, it must be the case that Z = X · Y. (For
example, if Z > X · Y, then w would prefer strategy go, and
therefore z would prefer stop, which would make Z = 0, and
would violate the assumption Z > X · Y.) Hence, the rules of
the game induce the players to implement multiplication in
the choice of their mixed strategies.

By choosing different sets of payoffs, we could ensure that
Z = X + Y or It is a little more challenging to simulate
the comparison of two real values, which also is needed to
simulate the Brouwer function. Below we discuss that issue
in more detail.
computing a brouwer function with games: Suppose we
have a Brouwer function F defined on the unit cube. Include
three players x1, x2, and x3 whose “go” probabilities repre-
sent a point x in the cube. Use additional players to compute

figure 9: embedding the end of the line graph in a cube. the embed-
ding is used to define a continuous function F, whose approximate
fixed points correspond to the unbalanced nodes of the end of the line
graph.

u5

u4

u6

u3

u1

n1�

n1

y

x

u1�

u2�u2

z

w z

y

x

figure 10: the players of the multiplication game. the graph shows
which players affect other players’ payoffs.

96 CommunICatIons of the aCm | febrUary 2009 | vol. 52 | no. 2

research highlights

F(x) via gadgets as described above. Eventually, we can end
up with three players y1, y2, and y3 whose “go” probabilities
represent F(x). Finally, we can give payoffs to x1, x2, and x3
that ensure that in any Nash equilibrium, their probabilities
agree with y1, y2, and y3. Then, in any Nash equilibrium, these
probabilities must be a fixed point of F.
the brittle comparator Problem: There’s just one catch: our
comparator gadget, whose purpose is to compare its inputs
and output a binary signal according to the outcome of the
comparison, is “brittle” in that if the inputs are equal then
it outputs anything. This is inherent, because one can show
that, if a nonbrittle comparator gadget existed, then we
could construct a game that has no Nash equilibria, con-
tradicting Nash’s theorem. With brittle comparators, our
computation of F is faulty on inputs that cause the circuit to
make a comparison of equal values. We solve this problem
by computing the Brouwer function at a grid of many points
near the point of interest, and averaging the results, which
makes the computation “robust,” but introduces a small
error in the computation of F. Therefore, the construction
described above approximately works, and the three special
players of the game have to play an approximate fixed point
at equilibrium.
the final Step: three Players: The game thus constructed
has many players (the number depends mainly on how com-
plicated the program for computing the function F was), and
two strategies for each player. This presents a problem: To
represent such a game with n players we need n2n numbers—
the utility of each player for each of the 2n strategy choices of
the n players. But our game has a special structure (called a
graphical game, see Kearns et al.15): The players are vertices of
a graph (essentially the data flow graph of F), and the utility
of each player depends only on the actions of its neighbors.

The final step in the reduction is to simulate this game
by a three-player normal form game—this establishes that
Nash is PPaD-complete even in the case of three players.
This is accomplished as follows: We color the players (nodes
of the graph) by three colors, say red, blue, and yellow, so
that no two players who play together, or two players who are
involved in a game with the same third player, have the same
color (it takes some tweaking and argument to make sure the
nodes can be so colored). The idea is now to have three “law-
yers,” the red lawyer, the blue lawyer, and the yellow lawyer,
each represent all nodes with their color, in a game involv-
ing only the lawyers. A lawyer representing m nodes has 2m
actions, and his mixed strategy (a probability distribution
over the 2m actions) can be used to encode the simpler stop/
go strategies of the m nodes. Since no two adjacent nodes
are colored the same color, the lawyers can represent their
nodes without a “conflict of interest,” and so a mixed Nash
equilibrium of the lawyers’ game will correspond to a mixed
Nash equilibrium of the original graphical game.

But there is a problem: We need each of the “lawyers”
to allocate equal amounts of probability to their custom-
ers; however, with the construction so far, it may be best
for a lawyer to allocate more probability mass to his more
“lucrative” customers. We take care of this last difficulty by
having the lawyers play, on the side and for high stakes, a

generalization of the rock–paper–scissors game of Figure
1, one that forces them to balance the probability mass
allocated to the nodes of the graph. This completes the
reduction from graphical games to three-player games,
and the proof.

5. ReLateD teChnICaL ContRIButIons
Our paper 7 was preceded by a number of important papers
that developed the ideas outlined here. Scarf’s algorithm21
was proposed as a general method for finding approximate
fixed points, more efficiently than brute force. It essentially
works by following the line in the associated end of the
line graph described in Section 3.1. The Lemke–Howson
algorithm17 computes a Nash equilibrium for two-player
games by following a similar end of the line path. The
similarity of these algorithms and the type of parity argu-
ment used in showing that they work inspired the definition
of PPaD in Papadimitriou.20

Three decades ago, Bubelis1 considered reductions
among games and showed how to transform any k-player
game to a three-player game (for k > 3) in such a way that
given any solution of the three-player game, a solution of the
k-player game can be reconstructed with simple algebraic
operations. While his main interest was in the algebraic
properties of solutions, his reduction is computationally
efficient. Our work implies this result, but our reduction is
done via the use of graphical games, which are critical in
establishing our PPaD-completeness result.

Only a few months after we announced our result, Chen
and Deng2, 3 made the following clever, and surprising,
observation. The graphical games resulting from our con-
struction are not using the multiplication operation (except
for multiplication by a constant), and therefore can even be
simulated by a two-player game, leading to an improvement
of our hardness result from three- to two-player games. This
result was unexpected, one reason being that the probabili-
ties that arise in a two-player Nash equilibrium are always
rational numbers, which is not the case for games with three
or more players.

Our results imply that finding an e -Nash equilibrium is
PPaD-complete, if e is inversely proportional to an expo-
nential function of the game size. Chen et al.3 extended
this result to the case where e is inversely proportional to a
 polynomial in the game size. This rules out a fully polyno-
mial-time approximation scheme for computing approximate
equilibria.

Finally, in this paper, we have focused on the com-
plexity of computing an approximate Nash equilibrium.
Etessami and Yannakakis9 develop a very interesting
complexity theory of the problem of computing the exact
equilibrium (or other fixed points), a problem that is
important in applications outside Game Theory, such as
Program Verification.

6. ConCLusIon anD futuRe WoRK
Our hardness result for computing a Nash equilibrium
raises concerns about the credibility of the mixed Nash
equilibrium as a general-purpose framework for behavior

febrUary 2009 | vol. 52 | no. 2 | CommunICatIons of the aCm 97

identify novel concepts of rationality and equilibrium, espe-
cially applicable in the context of the Internet and its com-
putational platforms.

prediction. In view of these concerns, the main question
that emerges is whether there exists a polynomial-time
approximation scheme (PTAS) for computing approximate
Nash equilibria. That is, is there an algorithm for e-Nash
equilibria which runs in time polynomial in the game size,
if we allow arbitrary dependence of its running time on 1/e?
Such an algorithm would go a long way towards alleviating
the negative implications of our complexity result. While
this question remains open, one may find hope (at least for
games with a few players) in the existence of a subexponen-
tial algorithm18 running in time O(nlogn/e 2), where n is the size
of the game.

How about classes of concisely represented games with
many players? For a class of “tree-like” graphical games,
a PTAS has been given in Daskalakis and Papadimitriou,6
but the complexity of the problem is unknown for more
general low-degree graphs. Finally, another positive recent
development7 has been a PTAS for a broad and important
class of games, called anonymous. These are games in
which the players are oblivious to each other’s identities;
that is, each player is affected not by who plays each strat-
egy, but by how many play each strategy. Anonymous games
arise in many settings, including network congestion, mar-
kets, and social interactions, and so it is reassuring that
in these games approximate Nash equilibria can be com-
puted efficiently.

An alternative form of computational hardness, exempli-
fied in Hart and Mansour,14 arises where instead of identi-
fying problems that are resistant to any efficient algorithm,
one identifies problems that are resistant to specific “nat-
ural” algorithms. In Hart,14 lower bounds are shown for
“decoupled” dynamics, a model of strategic interaction in
which there is no central controller to find an equilibrium.
Instead, the players need to obtain one in a decentralized
manner. The study and comparison of these models will
continue to be an interesting research theme.

Finally, an overarching research question for the
Computer Science research community investigating game-
theoretic issues, already raised in Friedman and Shenker10
but made a little more urgent by the present work, is to

References

 1. bubelis, v. on equilibria in finite
games. Int. J. Game Theory 8, 2
(1979), 65–79.

 2. chen, X., deng, X. settling the
complexity of 2-player nash-equilibrium.
Proceedings of FOCS (2006).

 3. chen, X., deng, X., teng, s. computing
nash equilibria: approximation and
smoothed complexity. Proceedings of
FOCS (2006).

 4. conitzer, v., sandholm, t. complexity
results about nash equilibria.
Proceedings of IJCAI (2003).

 5. daskalakis, c., Papadimitriou, c.h.
three-player games are hard.
Electronic Colloquium in Computational
Complexity, tr05-139, 2005.

 6. daskalakis, c., Papadimitriou, c. h.
discretized multinomial distributions
and nash equilibria in anonymous
games. Proceedings of FOCS (2008).

 7. daskalakis, c., goldberg, P.W.,
Papadimitriou, c.h. the complexity
of computing a nash equilibrium.
Proceedings of STOC (2006).

 8. daskalakis, c., goldberg, P.W.,
Papadimitriou, c.h. the complexity
of computing a nash equilibrium.
SICOMP. to appear.

 9. etessami, k., yannakakis, M. on
the complexity of nash equilibria
and other fixed points (extended
abstract). Proceedings of FOCS
(2007), 113–123.

 10. friedman, e., shenker, s. Learning
and implementation on the Internet.
department of economics, rutgers
University, 1997.

 11. garey, M.r., Johnson, d.s. Computers
and Intractability: A Guide to
the Theory of NP-Completeness.

freeman, 1979.
 12. gilboa, i., zemel, e. nash and

correlated equilibria: some
complexity considerations. Games
Econ. Behav. (1989).

 13. goldberg, P.W., Papadimitriou, c.h.
reducibility among equilibrium
problems. Proceedings of STOC (2006).

 14. hart, s. Mansour, y. how long to
equilibrium? the communication
complexity of uncoupled equilibrium
procedures. Proceedings of STOC (2007).

 15. kearns, M., littman, M., singh, s.
graphical models for game theory.
Proceedings of UAI (2001).

 16. knaster, b., kuratowski, c.,
mazurkiewicz, s. ein beweis des
fixpunktsatzes für n-dimensionale
simplexe. Fundamenta Mathematicae
14, (1929), 132–137.

 17. lemke, c.e., howson, Jr.J.t.
equilibrium points of bimatrix games.
SIAM J. Appl. Math. 12, (1964),
413–423.

 18. lipton, r., Markakis, e., Mehta, a.
Playing large games using simple
strategies. Proceedings of the ACM
Conference on Electronic Commerce
(2003).

 19. nash, J. noncooperative games. Ann.
Math. 54, (1951), 289–295.

 20. Papadimitriou, c.h. on the complexity
of the parity argument and other
inefficient proofs of existence.
J. Comput. Syst. Sci. 48, 3 (1994),
498–532.

 21. scarf, h.e. the approximation of
fixed points of a continuous mapping.
SIAM J. Appl. Math. 15, (1967),
1328–1343.

 22. shoham, y. computer science and game
theory. Commun. ACM 51, 8, 75–79.

Constantinos Daskalakis
(costis@cs.berkeley.edu), computer
science division, Uc berkeley.

Paul W. Goldberg
(P.W.goldberg@liverpool.ac.uk),
department of computer science,
University of liverpool.

Christos H. Papadimitriou
(christos@cs.berkeley.edu), computer
science division, Uc berkeley.

the research reported here by daskalakis
and Papadimitriou was supported by nsf
grant ccf0635319.

© 2009 acM 0001-0782/09/0200 $5.00

