
TFNP: An Update

Paul W. Goldberg1 and Christos H. Papadimitriou2(B)

1 University of Oxford, Oxford, UK
paul.goldberg@cs.ox.ac.uk

2 University of California at Berkeley, Berkeley, USA
christos@cs.berkeley.edu

Abstract. The class TFNP was introduced a quarter of a century ago
to capture problems in NP that have a witness for all inputs. A decade
ago, this line of research culminated in the proof that the Nash equilib-
rium problem is complete for the subclass PPAD. Here we review some
interesting developments since.

1 Introduction

Many apparently intractable problems in NP are total, that is, they are guaran-
teed to have a solution for all inputs. Factoring (given a non-prime integer,
find a prime factor) is perhaps the most accessible example of such a problem,
and was the first to be identified, but by now many natural problems of this
sort are known. (The hardness of Factoring stands in contrast with primality
testing, which is well known to be polynomial-time solvable [1].) This computa-
tional phenomenon is captured by the class TFNP (the initials stand for total
functions in NP) [19,20].

How does one provide evidence of intractability for such a problem? Since
problems in TFNP are unlikely to be NP-complete, and TFNP appears to have
no complete problems ([22], Sect. 6 constructs an oracle relative to which there is
no single TFNP problem to which all others reduce), focus quickly shifted to sub-
classes of TFNP with complete problems. To show that a problem is in TFNP,
one must establish a theorem of the form ∀x∃yΦ(x, y) stating that in all situa-
tions x of some kind (for example, in every bimatrix game) corresponding to the
problem’s input, a certain pattern y can be found (a solution, in this example a
Nash equilibrium). If the proof of this theorem is constructive in a computation-
ally meaningful sense, then the problem is in P. Hence, all intractable problems
in TFNP must harbor an exponentially non-constructive step in their proof,
presumably a combinatorial lemma guaranteeing the existence of a particular
kind of element in an exponential structure. A productive classification of the
problems in TFNP is in terms of the particular combinatorial lemma of the form
∀x∃yΦ(x, y) employed in their proof. The following subclasses of TFNP had been
known since the early 1990s.

1. PPP, for polynomial pigeonhole principle, the combinatorial lemma stating
that “for every function f : {0, 1}n �→ {0, 1}n there must be either an x ∈
{0, 1}n such that f(x) = 0n, or x, y ∈ {0, 1}n, x �= y such that f(x) = f(y).”

c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 3–9, 2017.
DOI: 10.1007/978-3-319-57586-5 1



4 P.W. Goldberg and C.H. Papadimitriou

2. PPA, for polynomial parity argument: “In every finite graph containing an
odd-degree node, a second such node must exist.”

3. PPAD, for polynomial parity argument for directed graphs: “In every finite
directed graph containing an unbalanced (in-degree �= out-degree) node, a sec-
ond such node must exist.” It is not hard to see that PPAD is a subset of
PPA, and also of PPP.

4. PPADS. A variant of PPAD, based on a slightly stronger lemma stating that
“a second oppositely unbalanced node must exist.” PPADS includes PPAD.

5. PLS, for polynomial local search: “Every dag has a sink.”

It is often quite nontrivial to capture these classes in terms of a concrete
“basic complete problem,” but in all these cases it can be done [16,21]; typically,
the class is then defined as all search problems reducible to the basic complete
problem. In the case of PPAD, the basic complete problem is called End of
the Line, seeking a second degree-one node in a directed graph where no node
has in-degree or out-degree greater than one, and 0n has in-degree zero and
out-degree one.

But are these classes different from P and one another? In [3] and elsewhere
evidence was provided, through oracle constructions, that essentially all these
classes are “compellingly different” from P and from each other, and that no
easy inclusions seem to hold beyond the ones noted above.

Arguably, the whole TFNP research direction was motivated by one main
quest, establishing that the Nash problem mentioned above is intractable; this
was resolved in 2006 [7,8], by showing that Nash is PPAD-complete.

2 Recent Developments

Rogue Problems. The Factoring problem does not immediately belong to any
of these classes, as its totality seems to draw from the Fundamental Theorem
of Arithmetic: “any non-prime has a prime divisor that is smaller”. What is
the relation between this important total problem and the subclasses of TFNP
already defined? Recently, Emil Jeřábek [15] employed elementary algebraic
number theory to show that Factoring belongs to both PPAD and PPP through
randomized reductions. Combinatorial Nullstellensatz, another “rogue” problem,
was recently shown to be in PPA [24]. There are further rogue problems still defy-
ing classification within TFNP. Two examples are Ramsey: “Given a Boolean
circuit encoding the edges of a graph with 4n nodes, find n nodes that are either
a clique or an independent set” and Bertrand-Chebyshev: “Given n, produce
a prime between n and 2n”, both embodying important and classical eponymous
existence theorems in combinatorics and number theory, respectively.

The Class CLS. There had been a number of interesting total problems which
have, frustratingly, defied polynomial-time algorithms for too long, and which
were known to be inside both PPAD and PLS. Examples: finding an approximate
fixpoint of a contraction map; finding the max-min of a simple stochastic game;
finding a solution of a linear complementarity problem with a P-matrix; finding



TFNP: An Update 5

a Nash equilibrium in a network coordination, or congestion, game; or finding
a stationary point of a multivariate polynomial. A new class called CLS (for
“continuous local search”) lying within (and probably well within) the intersec-
tion of the two classes PLS and PPAD was defined in [9]; there are no known
non-generic complete problems for this class (roughly, generic problems are ones
whose instances contain generic boolean circuits). Very recently, a new problem
was added to this collection, a version of the End of the Line problem in which
there is only one line starting at zero (no floating cycles or paths) and the nodes
of the line are numbered 0, 1, 2, 3, . . ., while the remaining nodes are numbered
∞. This new problem, End of the Metered Line, renders existing black-box
complexity lower bounds for PPAD and PLS [25], as well as cryptographic lower
bounds (see next), applicable to CLS as well.

Cryptographic Assumptions. There are obvious connections between TFNP
classes and Cryptography, as cryptosystems can be based on intractable TFNP
problems such as Factoring. In the other direction, if there are hashing
functions that are secure with respect to collisions, then PPP is clearly not
P. Recently, sophisticated arguments were articulated establishing hardness
for other subclasses of TFNP, based on other standard (if not universally
accepted) cryptographic assumptions. In [5,11] it is shown that, if indistinguisha-
bility obfuscation of software is possible, then PPAD (and therefore Nash) is
intractable. Such results can be extended to CLS, as noted above. Furthermore,
it was recently established in [14] that, under the assumption that NP has a prob-
lem that is hard on the average for some distribution (an assumption that has
many consequences of interest to cryptography but is not per se cryptographic),
then PPAD also has such a problem. A new paper [17] shows that hardness of
Ramsey follows from the existence of collision-resistant hash functions.

Approximate Nash. The major concrete problem in complexity left open by the
establishment of the PPAD-completeness of Nash had been whether there is a
PTAS for approximate Nash equilibria, or whether there is a finite ε such that
finding an ε-approximate Nash equilibrium is PPAD-complete. This was recently
resolved by Rubinstein [23] in favor of the latter eventuality through a brilliant
PCP construction for PPAD.

Finitary Lemmata. One of the curiosities of the class TFNP and its subclasses
is the surprising poverty (or, depending on your point of view, parsimony) of
proof techniques needed to establish totality of functions in NP: in a quarter of
a century, no new classes, no new combinatorial lemmata, have been added to
the original five (we are not counting CLS, which lies within the intersection of
all five classes). A look at the list of the five “combinatorial lemmata” reveals
that they share an intriguing property: They are all finitary, that is, they fail
to hold if the underlying structure is infinite. It has been recently pointed out
in [12], by using a classical theorem from Logic [13], that this is necessary: Any
combinatorial lemma that is not finitary must yield a subclass of TFNP that is
necessarily a subset of P — an observation that may help focus the pursuit of a
sixth combinatorial lemma.



6 P.W. Goldberg and C.H. Papadimitriou

Provable TFNP and Wrong Proof

The fragmented nature of TFNP has been quite productive over the years, but
it is also intriguing, and a little disturbing. Is there a way to unify all these
genres of totality? Are there problems, perhaps complete for a master class, that
generalize all total problems known to be complete for the subclasses?1 Can we
think of the phenomenon of total problems as a whole?

We have recently proposed such a unified theory [12]. The idea is to define
a new class that we call provable TFNP, or PTFNP, which includes all total
problems whose totality is proven within some minimalistic logical framework.
The logical framework should be strong enough to supply proofs of the five lem-
mata, and versatile enough for the other important mission, namely identifying
a complete problem for the whole class.

In [12] this was achieved through the framework of a first-order propositional
logic. The language has a polynomial (in the underlying complexity parameter
n) collection of Boolean variables of the form xi, as well as the Boolean con-
stants 0–1, connectives such as ∨,→ and quantifiers ∀,∃, all with the standard
meaning. Importantly, the framework also allows an exponential collection of
n-ary Boolean function symbols, represented as fi(x1, . . . , xn), where “f” is a
symbol of the language and the index i is expressed in binary (it is at present an
open question whether these function symbols are necessary). The framework
also includes a rather standard axiom system, encompassing a complete seman-
tic understanding of the roles of connectives, functions, and quantifiers (see [12]
for details).

Once we have all that, and having fixed the complexity parameter n, we can
now have succinctly represented proofs (a concept studied earlier in [18]) in our
system; these proofs play an important role in providing us with a complete
problem (and from that, as it is common with total functions, a definition of the
class PTFNP). In particular, consider a Boolean circuit C, with n input gates
and of size polynomial in n, which maps an input j (a binary integer with n
bits) to C(j) where C(j) can be of one of two forms:

Either C(j) is a sentence that holds due to an axiom (and this can be
checked easily), or it is of the form (F (j), k, �), where F (j) is (the Boolean
encoding of) a logical formula in the language, and k, � are integers smaller
than j, such that F (j) follows from F (k) and F (�) due to an inference rule.

Call the above condition “correctness of C at j.” Note that a circuit C satisfying
the correctness condition at all j = 0, . . . , 2n − 1 encodes a proof of length 2n in
our system.

But suppose now that we are given such a circuit C standing for a purported
proof in our language (it will be an actual proof if it is correct at all j), and we

1 Notice immediately that there is a trivial way of combining any finite number of
classes with complete problems via some kind of “direct product” construction to
obtain one all-encompassing class and complete problem. The challenge is to do this
in a way that does not explicitly refer to the parts.



TFNP: An Update 7

notice that the last line C(2n−1) is of the form (F (2n−1), k, �) with F (2n−1) =
False. Since our logical system is consistent, it must be the case that there is
a j < 2n such that C is not correct at j. The point is that finding this j may be
nontrivial!

This is the total problem which we call Wrong Proof:. Given n and a
Boolean circuit C polynomial in n such that F (2n − 1) = False, find a j such
that C is not correct at j. Finally, we define PTFNP (for provable TFNP) as the
class of all search problems in NP that reduce to Wrong Proof.

The main theorem in [12] is the following:

Theorem 1. PTFNP contains the five classes.

We note that, in related work, Arnold Beckmann and Sam Buss prove in a
recent paper [4] certain results that appear to be closely related to Theorem 1.
They define two problems similar to Wrong Proof, one corresponding to Frege
systems, and another to extended Frege, and show these complete for two classes
of total function problems in NP whose totality is provable within the bounded
arithmetic [6] systems U1

2 and V 1
2 , respectively. Theorem 1 differs from [4] in that

we reduce TFNP problems to a propositional proof system capable of encoding
concisely instances of these problems, without resorting to bounded arithmetic.

3 Open Problems

There are many proof systems, some of them more powerful than others. It is
possible that the one we propose in [12] can be simplified, while continuing to
generalise PPP and the related complexity classes. So, one direction of future
research is to look for minimal proof systems that continue to have this capability.
One can also look in the opposite direction, and study more powerful proof
systems, which may allow us to construct a hierarchy of increasingly general
TFNP problems.

Some more concrete open problems include the following:

– Is factoring in PPAD? is a consequential and tempting conjecture, as the
problem is in both PPP and PPA, the two important classes containing PPAD.
Note that inclusion in PPAD would probably be through randomized reduc-
tions, as such are the reductions of [15] to PPP and PPA.

– How about the remaining “rogue problems” Bertrand-Chebyshev and
Ramsey, discussed in the introduction? We conjecture that they are both
in PPP.

– Are there natural complete problems for PPA? Even though several discrete
fixpoint-type problems are by now known to be PPA-complete, they all contain
in their input the description of a computational device such as a circuit or a
Turing machine; see [10] for an intriguing possibility.

– How about PPP? It is shown in [2] that several natural problems in PPP such
as Equal Sums (given n integers, find two subsets with the same sum modulo
2n − 1) and Dirichlet (Given n rational numbers and integer n find 1

Nq



8 P.W. Goldberg and C.H. Papadimitriou

approximations for some denominator q) can be reduced to Minkowski (given
an matrix A with determinant less than one, find a nontrivial combination of
its rows within the unit square) and thus the latter becomes an interesting
target in which to encode all of PPP.

– How robust is PPP? The class PPP can be parametrised as PPPK(n), for any
function K: given f : {0, 1}n �→ {0, 1}n identify either a collision x �= y with
f(x) = f(y), or a x ∈ {0, 1}n such that f(x) ≤ K(n), where ≤ is meant in
the standard binary notation. Obviously, PPP0 is the standard PPP, and it
is easy to see that PPPp(n) = PPP, and PPP2n−p(n) = P for all polynomials
p(n). But what happens for faster growing K(n), for example if K(n) = 2n−1

(the case known as “weak pigeonhole principle”)? Are there oracle separation
results?

– Prove that one of the problems known to be in CLS is CLS-complete. Alter-
natively, show that CLS is in P.

Acknowledgments. Many thanks to the “PPAD-like classes reading group” at the
Simons Institute during the Fall 2015 program on Economics and Computation for
many fascinating interactions. We also thank Arnold Beckmann, Pavel Pudlák, and
Sam Buss for helpful discussions. Work supported by NSF grant CCF-1408635.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793
(2004)

2. Ban, F., Jain, K., Papadimitriou, C.H., Psomas, C.A., Rubinstein, A.: Reductions
in PPP. Manuscript (2016)

3. Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative com-
plexity of NP search problems. In: 27th ACM Symposium on Theory of Computing,
pp. 303–314 (1995)

4. Beckmann, A., Buss, S.: The NP Search Problems of Frege and Extended Frege
Proofs, preliminary draft, December 2015

5. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: FOCS 2015, pp. 1480–1498 (2015)

6. Buss, S.: Bounded Arithmetic, Bibliopolis, Naples, Italy (1986). www.math.ucsd.
edu/∼sbuss/ResearchWeb/BAthesis/

7. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 1–57 (2009)

8. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

9. Daskalakis, C., Papadimitriou, C.H.: Continuous local search. In: SODA 2011, pp.
790–804 (2011)

10. Filos-Ratsikas, A., Frederiksen, S.K.S., Goldberg, P.W., Zhang, J.: Hardness
Results for Consensus-Halving. Corr, arXiv:1609.05136 [cs.GT] (2016)

11. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness
of finding a Nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 20

www.math.ucsd.edu/~sbuss/ResearchWeb/BAthesis/
www.math.ucsd.edu/~sbuss/ResearchWeb/BAthesis/
http://arxiv.org/abs/1609.05136
http://dx.doi.org/10.1007/978-3-662-53008-5_20
http://dx.doi.org/10.1007/978-3-662-53008-5_20


TFNP: An Update 9

12. Goldberg, P.W., Papadimitriou, C.H.: Towards a Unified Complexity Theory of
Total Functions (2017). Submitted

13. Herbrand, J.: Récherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris (1930)

14. Hubáček, P., Naor, M., Yogev, E.: The journey from NP to TFNP hardness. In:
8th ITCS (2017)

15. Jeřábek, E.: Integer factoring and modular square roots. J. Comput. Syst. Sci.
82(2), 380–394 (2016)

16. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J.
Comput. Syst. Sci. 37(1), 79–100 (1988)

17. Komargodski, I., Naor, M., Yogev, E.: White-Box vs. Black-Box Complexity of
Search Problems: Ramsey and Graph Property Testing. ECCC Report 15 (2017)

18. Kraj́ıček, J.: Implicit proofs. J. Symbolic Logic 69(2), 387–397 (2004)
19. Megiddo, N.: A note on the complexity of P -matrix LCP and computing an equi-

librium. Res. Rep. RJ6439, IBM Almaden Research Center, San Jose, pp. 1–5
(1988)

20. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and
computational complexity. Theoret. Comput. Sci. 81(2), 317–324 (1991)

21. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. J. Comput. Syst. Sci. 48, 498–532 (1994)

22. Pudlák, P.: On the complexity of finding falsifying assignments for Herbrand dis-
junctions. Arch. Math. Logic 54, 769–783 (2015)

23. Rubinstein, A.: Settling the complexity of computing approximate two-player Nash
equilibria. In: FOCS (2016)

24. Varga, L.: Combinatorial Nullstellensatz modulo prime powers and the parity argu-
ment. arXiv:1402.4422 [math.CO] (2014)

25. Zhang, S.: Tight bounds for randomized and quantum local search. SIAM J. Com-
put. 39(3), 948–977 (2009)

http://arxiv.org/abs/1402.4422

	TFNP: An Update
	1 Introduction
	2 Recent Developments
	3 Open Problems
	References


