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Abstract

Query complexity is a very widespread and recurring theme in the
analysis of algorithms and computational complexity. Algorithms are
assumed to have access to their input data via certain stylised queries,
which impose a constraint on the way an algorithm can behave. In the
context of computing equilibria of games, this is a relatively recent line
of work, which we review here. The talk mostly focuses on the paper [6].

1 Background and generalities

Algorithmic Game Theory (AGT) has introduced the ideas of viewing games
and auctions through the lenses of computational complexity, and price of an-
archy; these are very prominent themes in AGT. Here, we try to give query
complexity more recognition as a research theme. I hope to develop the fol-
lowing discussion into a more detailed survey.

There are many reasons for studying query complexity, some of which are
specific to game-theoretic contexts, and others which have been articulated in
earlier works — query complexity is a widespread theme in algorithms and
computational complexity. We note the following:

• There may be some function on which we wish to avoid imposing any
kind of constraint (computational or syntactic), other than certain con-
straints (such as monotonicity) that would not, on their own, allow the
function to have a concise representation. As a result, the size of the
“input data” may be exponentially large, when expressed as a function
of parameters such as the number of players, or the number of items
being sold/traded. In that situation it is standard to assume that the
data is presented as an “black-box oracle” (for example, in the context
of cake-cutting). In this kind of setting, any polynomial-time algorithm
implicitly gives polynomial query complexity. Note, however, that most
of this work is mainly focused on computational complexity rather than
query complexity.
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• When the entity being queried is an agent, or player, it may be con-
sidered onerous to have to answer many queries (this consideration has
been noted in various previous works in the context of matchings; also
in the context of auctions). Then it is important to elicit information
efficiently, and avoid asking for information that will not be used. A
related point, is that a full revelation of bidders’ preferences may elicit
more information than is needed to allocate an item efficiently. Bidders
may prefer to be economical with the truth1, due to concerns about pri-
vacy, or due to concerns about their valuations being exploited against
them, in subsequent auctions or negotiations.

• It is sometimes a good model for how data is made available to an
algorithm.

• It imposes a benign constraint on how the algorithm may interact with
the data, but with that constraint, one can obtain upper/lower bounds
that are sometimes quite detailed and informative, serving as a criterion
to distinguish between alternative solution concepts.2

• General understanding of algorithms being presented: for example, [14,
10] show how to compute exact CE of multiplayer games; it’s useful to
observe that the information obtained by these algorithms is the pay-
offs obtained by the players in response to mixed-strategy profiles con-
structed by the algorithm.

• It has a strong relationship with communication complexity, which in
turn has been studied in a game-theoretic context; e.g. the “bisection
auction” is advocated as having low communication complexity.

Comparing computational complexity against query complexity, it is often
easier to obtain lower bounds for query complexity. Indeed, query complex-
ity may be used as a criterion to separate, or distinguish, the difficulty of
alternative problems, in situations where computational complexity fails to do
so.

2 Details on payoff queries

The main focus of the talk is on equilibrium computation in the payoff query
model. This has been studied in the papers [2, 3, 6, 7, 8, 9, 12], but the
earliest reference (that I know of) to the idea is the blog post of [13]. It has
been noted in [4] that [14] can be seen as a payoff-query algorithm, but the
focus of [14] is on queries to mixed-strategy profiles rather than pure ones.

1In a more literal sense than the common usage of this phrase
2For example, separation of randomized and deterministic computation [1, 11] in the

context of computing boolean functions. Ambainis et al. [1] note: “The advantage of query
complexity is that we can often prove tight lower bounds and have provable separations
between different computational models. This is in contrast to the Turing machine world
where lower bounds and separations between complexity classes often have to rely on un-
proven assumptions.”
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That would appear to be a technical-looking distinction, but [14] requires
exact payoffs for mixed-strategy queries to be obtained, and random sampling
only obtains (additively) approximate ones. The focus of the talk on Fearnley
et al. [6] which is the first published paper to study the pure-strategy payoff-
query model. Besides to motivations mentioned above, the motivation for this
paper came from experimental work (mainly by Wellman and co-authors) on
empirical game-theoretic analysis. The following is an overview of the results
of [6].

We study a variety of different settings. We first consider bimatrix games.
Our first result is a lower bound for computing an exact Nash equilibrium: we
show that computing an exact Nash equilibrium in a k× k bimatrix game has
payoff query complexity k2, even for zero-sum games. In other words, we have
to query every pure strategy profile.

We then turn our attention to approximate Nash equilibria, where we
obtain some more positive results. With the standard assumption that all
payoffs lie in the range [0, 1], we show that, when 2 ≤ i ≤ k − 1, the payoff
query complexity of computing a (1− 1

i )-approximate Nash equilibrium is at
most 2k − i+ 1 and at least k − i+ 1. We also observe that, when ε ≥ 1− 1

k ,
no payoff queries are needed at all, because an ε-Nash equilibrium is achieved
when both players mix uniformly over their pure strategies.

The query complexity of computing an approximate Nash equilibrium
when ε < 1

2 appears to be a challenging problem, and we provide an ini-
tial lower bound in this direction: we show that the payoff query complexity
of finding a ε-approximate Nash equilibrium for ε = O( 1

log k ) is Ω(k · log k).

This gives an interesting contrast with the ε ≥ 1
2 case. Whereas we can always

compute a 1
2 -approximate with 2k − 1 payoff queries, there exists a constant

ε < 1
2 for which this is not the case.

Having studied payoff query complexity in bimatrix games, it is then nat-
ural to look for improved payoff query complexity results in the context of
“structured” games. In particular, we are interested in concisely represented
games, where the payoff query complexity may be much smaller than the
number of pure strategy profiles. As an initial result in this direction, we
consider graphical games, where we show that for graphical games with con-
stant degree d, a Nash equilibrium can be found with a polynomial number of
payoff-queries. This algorithm works by discovering every payoff in the game,
however unlike bimatrix games, this can be done without querying every pure
strategy profile.

Finally, we focus on two different models of congestion games. We consider
the case of parallel links, where the game has a origin and destination vertex,
and m parallel links between them. We show both lower and upper bounds for
this setting. If n denotes the number of players, then we obtain a log(n) +m
payoff query lower bound, which applies to both query models. We obtain

an upper bound of O
(

log(n) · log2(m)
log log(m) +m

)
normal-queries. Note that there

are n · m different payoffs in a parallel links game, and so our upper bound
implies that you do not need to discover the entire payoff function in order to
solve a parallel links game.

Subsequently we consider the more general case of symmetric network
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congestion games on directed acyclic graphs. We show that if the game has
m edges and n players, then we can find a Nash equilibrium using m ·n payoff
queries. The algorithm discovers every payoff in the game, but it only queries
a small fraction of the pure strategy profiles.

3 Conclusions and further work

We first consider open questions in the setting of payoff queries, which has been
the main setting for the results presented here. We then consider alternative
query models.

Open questions concerning payoff queries. In the context of strategic-
form games, there are a number of open problems. In [6], we show a super-
linear lower bound on the payoff query complexity when ε is allowed to depend
on k. Can we prove a super-linear lower bound for a constant ε? Is there
a deterministic algorithm that can find an ε-Nash equilibrium with ε < 1

2
without querying the entire payoff matrices? [7] achieve ε < 1

2 with the use
of randomization, but doing so with a deterministic algorithm appears to be
challenging. Finally, when 2 ≤ i ≤ k−1, we have shown that the payoff query
complexity of finding a (1− 1

i )-Nash equilibrium lies somewhere in the range
[k− i+ 1, 2k− i+ 1]. Determining the precise payoff query complexity for this
case is an open problem.

For congestion games, our lower bound of log n + m arises from a game
with two parallel links and a one-player game with m links. The above-noted
upper bound (on the number of normal queries) is a poly-logarithmic factor
off from this lower bound, with the factor depending on m. Can this factor be
improved? It seems unlikely that the dependence of this factor on m can be
completely removed, in which case, in order to provide tight bounds, a single
lower bound construction that depends simultaneously on n and m would be
necessary.

For symmetric network congestion games on DAGs it is unclear whether
the payoff query complexity is sub-linear in n. Non-trivial lower and up-
per bounds for more general settings, such as asymmetric network congestion
games (DAG or not) or general (non-network) congestion games would also
be interesting.

Other query models. We have defined a payoff query as given by a pure
(not mixed) profile s, since that is of main relevance to empirical game-
theoretic modelling. Furthermore, if s was a mixed profile, it could be simu-
lated by sampling a number of pure profiles from s and making the correspond-
ing sequence of pure payoff queries. An alternative definition might require a
payoff query to just report a single specified player’s payoff, but that would
change the query complexity by a factor at most n.

Our main results have related to exact payoff queries, though other query
models are interesting too.

A very natural type of query is a best-response query, where a strategy
s is chosen, and the algorithm is told the players’ best responses to s. In
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general s may have to be a mixed strategy; it is not hard to check that pure-
strategy best response queries are insufficient; even for a two-player two-action
game, knowledge of the best responses to pure profiles is not sufficient to
identify an ε-Nash equilibrium for ε < 1

2 . Fictitious Play can be regarded as a
query protocol that uses best-response queries (to mixed strategies) to find a
Nash equilibrium in zero-sum games, and essentially a 1/2-Nash equilibrium in
general-sum games. We can always synthesize a pure best-response query with
n(k − 1) payoff queries. Hence, for questions of polynomial query complexity,
payoff queries are at least as powerful as best-response queries.

Are there games where best-response queries are much more useful than
payoff queries? If k is large then it is expensive to synthesize best-response
queries with payoff queries. A simple algorithm of Daskalakis, Mehta and
Papadimitriou finds a 1

2 -Nash equilibrium via only two best-response queries,
whereas Theorem 7 of [6] notes that O(k) payoff queries are needed.

A noisy payoff query outputs an observation of a random variable taking
values in [0, 1] whose expected value is the true payoff. Alternative versions
might assume that the observed payoff is within some distance ε from the true
payoff. Noisy query models might be more realistic, and they are suggested
by by the experimental papers on querying games. However in a theoretical
context, one could obtain good approximations of the expected payoffs for a
profile s, by repeated sampling.

Recently, Chen et al. [5] showed that for general n-player games, there
is an exponential lower bound on the number of payoff queries required to
compute an ε-Nash equilibrium, for constant ε. This answered a question of
[12]; previous an exponential lower bound was known for the stronger solution
concept of ε-well-supported Nash equilibrium [2]. These results indicate that
for large games, some kind of structure has to be assumed for their payoff
function, in order to obtain a positive result for query complexity.
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