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ABSTRACT

Various economic interactions can be modeled as two-sided
markets. A central solution concept to these markets are
stable matchings, introduced by Gale and Shapley. It is well
known that stable matchings can be computed in polynomial
time, but many real-life markets lack a central authority to
match agents. In those markets, matchings are formed by
actions of self-interested agents. Knuth introduced uncoor-
dinated two-sided markets and showed that the uncoordi-
nated better response dynamics may cycle. However, Roth
and Vande Vate showed that the random better response
dynamics converges to a stable matching with probability
one, but did not address the question of convergence time.

In this paper, we give an exponential lower bound for the
convergence time of the random better response dynamics
in two-sided markets. We also extend the results for the bet-
ter response dynamics to the best response dynamics, i.e., we
present a cycle of best responses, and prove that the random
best response dynamics converges to a stable matching with
probability one, but its convergence time is exponential. Ad-
ditionally, we identify the special class of correlated matroid
two-sided markets with real-life applications for which we
prove that the random best response dynamics converges in
expected polynomial time.
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1. INTRODUCTION
One main function of many markets is to match agents of

different kinds to one another, for example men and women,
students and colleges [8], interns and hospitals [17, 18], and
firms and workers. Gale and Shapley [8] introduced two-
sided markets to model these problems. A two-sided market
consists of two disjoint groups of agents. Each agent has
some preferences about the agents on the other side and can
be matched to one of them. A matching is stable if it does
not contain a blocking pair, that is, a pair of agents from
different sides who can deviate from this matching and both
benefit. Gale and Shapley [8] showed that stable matchings
always exist and can be found in polynomial time. Besides
their theoretical appeal, two-sided matching models have
proved useful in the empirical study of many labor markets
such as the National Resident Matching Program (NRMP).
Since the seminal work of Gale and Shapley, there has been
a significant amount of work in studying two-sided markets,
especially on extensions to many-to-one matchings and pref-
erence lists with ties [12, 19, 6, 4]. See for example, the book
by Knuth [13], the book by Gusfield and Irving [10], or the
book by Roth and Sotomayor [19].

In many real-life markets, there is no central authority to
match agents, and agents are self-interested entities. This
motivates the study of uncoordinated two-sided markets, first
proposed by Knuth [13]. Uncoordinated two-sided markets
can be modeled as a game among agents of one side, which
we call the active side. The strategy of each active agent is
to choose one agent from the passive side. Stable matchings
correspond to Nash equilibria of the corresponding games.



In order to understand the behavior of the agents in these
uncoordinated markets, it is interesting to consider better
response dynamics among agents and to analyze whether
uncoordinated agents reach a stable matching and if so how
long it takes. In this regard, Knuth showed that a sequence
of better responses of agents can cycle and posed a question
concerning the convergence of this dynamics. Consider the
following random better response dynamics: at each step,
pick a blocking pair of agents uniformly at random and let
the agents in this pair match to each other. Roth and Vande
Vate [20] proved that the random better response dynamics
converges to a stable matching with probability one. How-
ever, they do not address the question of convergence time.
We believe that studying this question is crucial for under-
standing the behavior of uncoordinated agents as it corre-
sponds to the question of how long an uncoordinated market
needs to stabilize.

Our first result in this paper is an exponential lower bound
for the convergence time of this better response dynamics in
uncoordinated two-sided markets. Both Knuth’s cycle [13],
and Roth and Vande Vate’s proof [20] hold only for the bet-
ter response dynamics, and not for the best response dynam-
ics. We extend the results in [13, 20] to best responses. That
is, we illustrate a cycle of best responses of agents, and then,
using a potential function argument, we show that starting
from any matching, there exists a short sequence of best re-
sponses of agents to a stable matching. As a corollary of
the latter result, we obtain that every sequence of best re-
sponses starting with the empty matching reaches a stable
matching after a polynomial number of steps. Hence, when
starting with the empty matching, no central coordination is
needed to reach a stable matching quickly if agents play only
best responses. In contrast to this, we show an exponential
lower bound for the convergence time of the random best re-
sponse dynamics when arbitrary starting configurations are
allowed.

The above lower bounds show that the decentralized game
theoretic approach for stable matchings does not converge
in polynomial time. This motivates studying special cases of
two-sided markets for which the convergence time is polyno-
mial. In this regard, we consider a natural class of correlated
two-sided markets, which are inspired from real-life one-sided
market games in which players have preferences about a set
of markets, and the preferences of markets are correlated
with the preferences of players. In a correlated two-sided
market, there is a payoff associated with every possible pair
of active and passive agent. Both active and passive agents
are interested in maximizing their payoff, that is, an agent i
prefers an agent j to an agent j′ if the payoff associated with
pair (i, j) is larger than the payoff associated with pair (i, j′).
Two illustrative examples of these markets are market shar-
ing games [9], and distributed caching games [7, 16]. These
markets have been also studied for finding stable geometric
configurations with applications in VLSI design [11]. This
special class of two-sided markets is shown to be a poten-
tial game in [2] and complexity related questions are studied
in [1]. For the stable roommates problem, Lebedev et al. [14]
and Mathieu [15] consider instances with acyclic preference
lists. It turns out that the classes of acyclic and of correlated
instances coincide [1]. Lebedev et al. show that for acyclic
instances the best response dynamics cannot cycle, that from
every state there exists a short sequence of best responses
leading to a Nash equilibirum, and that the random best

response dynamics converges in expected polynomial time.
Mathieu shows that in the worst case the best response dy-
namics can take an exponential number of steps to reach a
stable matching. We extend the result that the random best
response dynamics converges quickly to correlated matroid
two-sided markets, in which each active agent can propose
and can be matched to several passive agents.

2. PRELIMINARIES AND NOTATIONS
In this section, we define the problems and notations that

are used throughout the paper.
Two-sided Markets. A two-sided market consists of two
disjoint groups of agents X and Y, e.g., women and men.
Each agent has a preference list over the agents of the other
side. An agent i ∈ X ∪ Y can be assigned to one agent j in
the other side. Then she gets payoff pi(j). If the preference
list of agent i is (a1, a2, . . . , an), we say that agent i has
payoff k ∈ {0, . . . , n − 1} if she is matched to agent an−k.
Also, we say that an agent has payoff −1 if she is unmatched.
Given a matching M , we denote the payoff of an agent i in
matching M by pi(M).

Given a matching M , an agent x ∈ X and an agent y ∈ Y
form a blocking pair if {x, y} /∈ M and px(y) > px(M) and
py(x) > py(M). Given a matching M and a blocking pair
(x, y) in M , we say that a matching M ′ is obtained from M
by resolving the blocking pair (x, y) if the following holds:
{x, y} ∈ M ′, any partners with whom x and y are matched
in M are unmatched in M ′, and all other edges in M and
M ′ coincide. A matching is stable if it does not contain a
blocking pair.
Uncoordinated Two-sided Markets. We model the un-
coordinated two-sided market (X ,Y) as a game G(X ,Y)
among agents of the active side X . The strategy of each
active agent x ∈ X is to choose one agent y from the passive
side Y. The goal of each active agent x ∈ X is to maximize
her payoff px(y). Given a strategy vector of active agents, an
active agent x obtains payoff px(y) if she proposes to y, and
if she is the winner of y. Agent x is the winner of y if y ranks
x highest among all active agents who currently propose to
her. Additionally, passive agent y obtains py(x) if x is the
winner of y. We say that a strategy vector is a pure Nash
equilibrium if none of the active agents can increase their
payoff by unilaterally changing their strategy. Hence, stable
matchings in an uncoordinated two-sided market (X ,Y) cor-
respond to pure Nash equilibria of the corresponding game
G(X ,Y) and vice versa.

Consider two agents x ∈ X and y ∈ Y. If a block-
ing pair (x, y) is resolved, we say that x plays a better re-
sponse. If there does not exist a blocking pair (x, y′) with
px(y′) > px(y), then we say that x plays a best response
when the blocking pair (x, y) is resolved. In the random
better response dynamics at each step a blocking pair is cho-
sen uniformly at random and resolved. In the random best
response dynamics at each step an active agent from X is
chosen uniformly at random and allowed to play a best re-
sponse.

Throughout the paper, we use women or players as ac-
tive agents, and men or resources as passive agents in the
corresponding market game.
Correlated Two-sided Markets. In general, there are
no dependencies between the preference lists of agents. Cor-
related two-sided markets are examples in which the pref-
erence lists are correlated. Assume that there is a payoff



px,y ∈ N associated with every pair (x, y) of agents x ∈ X
and y ∈ Y such that px(y) = py(x) = px,y. The preference
lists of both active and passive agents are then defined ac-
cording to these payoffs, e.g., a passive agent y prefers an
active agent x to an active agent x′ if px,y > px′,y . We
assume that for every agent i, the payoffs associated to all
pairs including agent i are pairwise distinct. Then the pref-
erence lists are uniquely determined by the ordering of the
payoffs.
Many-to-One Two-Sided Markets. In a many-to-one
two-sided market, the strategy space Fx ⊆ 2Y of every player
x ∈ X is a collection of subsets of resources, that is, every
player x ∈ X can propose to a subset Sx ∈ Fx of resources.
Each resource y ∈ Y has a strict preference list over the set
of players in X . Given a vector of strategies S = (S1, . . . , Sn)
for the players from X = {1, . . . , n}, a resource y is matched
to the winner x of y, that is, the most preferred player who
proposes to y. The goal of each player x ∈ X is to maxi-
mize the total payoff of the resources that she wins. More
formally, given a strategy vector S, let Tx(S) ⊆ Sx be the
set of resources that agent x wins. The goal of each player
x is to maximize

P

y∈Tx(S) px(y).
Matroid Two-Sided Markets. A matroid two-sided mar-
ket is a many-to-one two-sided market in which for each
player x, the family Fx of subsets of resources corresponds
to the independent sets of a matroid. In other words, in a
matroid two-sided market for every player x ∈ X , the set
system (Y,Fx) is a matroid. This means, that for every
player x ∈ X it holds: ∅ ∈ Fx; if A ∈ Fx and B ⊆ A, then
also B ∈ Fx; and if A, B ∈ Fx with |A| < |B|, then there
must be a b ∈ B such that A∪{b} ∈ Fx. Such matroid two-
sided markets arise naturally if, for example, every employer
is interested in hiring a fixed number of workers or if the
workers can be partitioned into different classes and a certain
number of workers from each class is to be hired. We define
correlated matroid two-sided markets analogously to the sin-
gleton case, that is, there is a payoff px,y ∈ N associated with
every pair (x, y) ∈ X × Y such that px(y) = py(x) = px,y.

3. BETTER RESPONSE DYNAMICS
In this section, we consider the random better response

dynamics and present instances for which with high proba-
bility the better response dynamics takes exponential time.
We present our instances using an edge-weighted bipartite
graph with an edge for each pair of woman and man. A
woman w prefers a man m to a man m′ if the weight of the
edge {w, m} is smaller than the weight of {w, m′}. On the
other hand, a man m prefers a woman w to a woman w′ if
the weight of the edge {m, w} is larger than the weight of the
edge {m, w′}. The bipartite graph is depicted in Figure 1.
Before we analyze the number of better responses needed to
reach a stable matching, we prove a structural property of
the instances we construct.

Lemma 1. For the family of two-sided markets that is de-
picted in Figure 1, a matching M is stable if and only if it
is perfect and every woman has the same payoff in M .

Proof. First we show that every perfect matching M in
which every woman has the same payoff is stable. One cru-
cial property of our construction is that whenever a woman
w and a man m are matched to each other, the sum pw(m)+
pm(w) of their payoffs is n − 1. In order to see this, as-
sume that the edge between w and m has weight l + 1.

m1 m2 m3 . . . mn−2 mn−1 mn

w1 1 2 3 . . . n − 2 n − 1 n
w2 n 1 2 . . . n − 3 n − 2 n − 1
w3 n − 1 n 1 . . . n − 4 n − 3 n − 2
...

...
...

...
...

...
...

...
wn−1 3 4 5 . . . n 1 2
wn 2 3 4 . . . n − 1 n 1

Figure 1: The weights of the edges in our construc-

tion.

Then there are l men whom woman w prefers to m, i.e.,
pw(m) = n − 1− l. Furthermore, there are n− 1− l women
whom man m prefers to w, i.e., pm(w) = l. This implies
pw(m) + pm(w) = n − 1, regardless of l. We consider the
case that every woman has payoff k and hence every man
has a payoff of n − 1 − k in M . Assume that there exists
a blocking pair (w, m). Currently w has payoff k, m has
payoff n − 1 − k, and w and m are not matched to each
other. Since (w, m) is a blocking pair, pw(m) > k and hence
pm(w) = n−1−pw(m) < n−1−k = pm(M), contradicting
the assumption that (w, m) is a blocking pair. This implies
that every state in which all women have the same payoff is
stable.

Now we have to show that a state M in which not every
woman has the same payoff cannot be a stable matching.
We can assume that M is a perfect matching as otherwise
it obviously cannot be stable. Let M be a perfect match-
ing and define l(M) to be the lowest payoff that one of the
women receives, i.e., l(M) = min{pw(M) | w ∈ X}. Fur-
thermore, by L(M) we denote the set of women receiving
payoff l(M), i.e., L(M) = {w ∈ X | pw(M) = l(M)}. We
claim that there exists at least one woman in L(M) who
forms a blocking pair with one of the men.

First we consider the case that the lowest payoff is unique,
i.e., L(M) = {w}. Let m be the man with pw(m) = l(M) +
1. We claim that (w, m) is a blocking pair. To see this,
let M ′ denote the matching obtained from M by resolving
(w, m). We have to show that the payoff pm(M) of man m in
matching M is smaller than his payoff pm(M ′) in M ′. Due to
our construction pm(M ′) = n−1−pw(m) and pm(M) = n−
1−pw′(m), where w′ denotes m’s partner in M . Due to our
assumption, w is the unique woman with the lowest payoff in
M . Hence, pw′(m) = pw′(M) > pw(M) = pw(m) − 1. This
implies pm(M ′) ≥ pm(M), which in turn implies pm(M ′) >
pm(M) since w 6= w′, and hence, (w, m) is a blocking pair.

It remains to consider the case that the woman with the
lowest payoff is not unique. We claim that also in this case
we can identify one woman in L(M) who forms a block-

ing pair. Let w(1) ∈ L(M) be chosen arbitrarily and let

m(1) denote her partner in M . Let m(2) denote the man
with pw(1) (m(2)) = pw(1) (m(1)) + 1 and let w(2) denote the

woman matched to m(2) in M . If the payoff of w(2) in
M is larger than the payoff of w(1) in M , then by the
same arguments as for the case |L(M)| = 1 it follows that

(w(1), m(2)) is a blocking pair. Otherwise, if pw(1) (M) =

pw(2) (M), we continue our construction with w(2). To be

more precise, we choose the man m(3) with pw(2) (m(3)) =

pw(2) (m(2)) +1 and denote by w(3) his partner in M . Again

either w(3) ∈ L(M) or (w(2), m(3)) is a blocking pair. In the



former case, we continue the process analogously, yielding
a sequence m(1), m(2), m(3), . . . of men. If the sequence is
finite, a blocking pair exists. Now we consider the case that
the sequence is not finite. Let j ∈ {1, . . . , n} be chosen such

that m(1) = mj . Due to the weights shown in Figure 1, it
holds m(i) = m(j−i mod n)+1 for i ∈ N. Hence, in this case,
every man appears in the sequence, and hence, every woman
has the same payoff l(M).

Now we can prove that with high probability the number
of better responses needed to reach a stable matching is
exponential.

Theorem 2. There exists a family of two-sided markets
I1, I2, I3, . . . with corresponding matchings M1, M2, M3, . . .
such that, for n ∈ N, In consists of n women and n men
and a sequence of random better responses starting in Mn

needs 2Ω(n) steps to reach a stable matching with probability
1 − 2−Ω(n).

Proof. We consider the instances shown in Figure 1. In
Lemma 1, we have shown that in any stable matching all
women have the same payoff. For a given matching M , we
are interested in the most common payoff among the women
and denote by χ(M) the number of women receiving this
payoff, i.e.,

χ(M) = max
i∈{0,...,n−1}

|{w ∈ X | pw(M) = i}| .

In the following, we show that whenever χ(M) is at least
15n/16, then χ(M) is more likely to decrease than to in-
crease. This yields a biased random walk that takes with
high probability exponentially many steps to reach χ(M) =
n. If the most common payoff is unique, which is always the
case if χ(M) > n/2, then we denote by X ′(M) the set of
women receiving this payoff and by Y ′(M) the set of men
matched to women from X ′(M).

Let δ = 15/16 and assume that χ(M) ≥ δn. First, we
consider the case that the current matching M is not perfect,
i.e., there exists at least one unmatched woman w and at
least one unmatched man m. We call a blocking pair good
if for the matching M ′ obtained from resolving it, χ(M ′) ≤
χ(M) − 1. On the other hand, we call a blocking pair bad
if χ(M ′) = χ(M) + 1 or if M ′ is a perfect matching. Let
us count the number of good and of bad blocking pairs. Let
k denote the most common payoff. Both the unmatched
woman w and the unmatched man m form a blocking pair
with each person who prefers her/him to his/her current
partner. Since the current payoff of the women in X ′(M)
is k, at most k of these women do not improve their payoff
by marrying the unmatched man m. Analogously, since the
payoff of the men in Y ′(M) is n − 1 − k, at most n − 1 − k
of these men do not improve their payoff by marrying the
unmatched woman w. This implies that the number of good
blocking pairs is at least max{δn− k, δn−n+1+ k} ≥ (δ−
1/2)n. On the other hand, there can be at most (1− δ)n+1
bad blocking pairs. This follows easily because only women
from X \ X ′(M) can form bad blocking pairs and each of
these women forms at most one bad blocking pair as there
is only one man who is at position n − k in her preference
list. Furthermore, there exists at most one blocking pair
that makes the matching perfect.

The aforementioned arguments show that for a matching
M with χ(M) ≥ δn and sufficiently large n, the ratio of

good blocking pairs to bad blocking pairs is bounded from
below by

(δ − 1/2)n

(1 − δ)n + 1
≥

7

2
.

This implies that the conditional probability of choosing a
good blocking pair under the condition that either a good
or a bad blocking pair is chosen is bounded from below by
7/9.

If a good blocking pair is chosen, χ decreases by at least
1. If a bad blocking pair is chosen, χ increases by 1 or the
matching obtained is perfect. In any other case, χ remains
unchanged. If the matching obtained is perfect, after the
next step again a matching M ′′ is obtained that is not per-
fect. For this matching M ′′, we have χ(M ′′) ≤ χ(M) + 2.
Since we are interested in proving a lower bound, we can pes-
simistically assume that the current matching is not perfect
and that whenever a bad blocking pair is chosen, χ increases
by 2. Hence, we can obtain a lower bound on the number of
better responses needed to reach a stable state, i.e., a state
M with χ(M) = n, by considering a random walk on the set
{⌈δn⌉, ⌈δn⌉+1, . . . , n} that starts at ⌈δn⌉, terminates when
it reaches n, and has the transition probabilities as shown
in Figure 2. This is a biased random walk. If we start with
an arbitrary matching M satisfying χ(M) ≤ δn, then one
can show by applying standard arguments from the theory
of random walks (see e.g. [5], Chapter 14.3) that the biased

random walk takes 2Ω(n) steps with probability 1 − 2−Ω(n)

to reach state n.

4. BEST RESPONSE DYNAMICS
In this section, we study the best response dynamics in

two-sided markets. First we show that this dynamics can
cycle. Let us remark again, that we use women to denote
active agents and men to denote passive agents.

Theorem 3. There exists a two-sided market with three
women and three men in which the best response dynamics
can cycle.

Proof. We denote by w1, w2, w3 the women and we de-
note by m1, m2, m3 the men. We choose the following pref-
erence lists for women and men:

w1 m2 m3 m1

w2 m1 m2 m3

w3 m3 m1 m2

m1 w1 w3 w2

m2 w2 w1 w3

m3 w1 w2 w3

We describe a state by a triple (x, y, z), meaning that the
first woman is matched to the man mx, the second woman
to man my, and the third woman to man mz. A value of −1
indicates that the corresponding woman is unmatched. The
following sequence of states constitutes a cycle in the best
response dynamics:

(−1, 2, 3) → (3, 2,−1) → (3, 1,−1) → (3,−1, 1)

→ (2,−1, 1) → (−1, 2, 1) → (−1, 2, 3) .

Next, we show that from every matching there exists a
short sequence of best responses to a stable matching.

Theorem 4. For every two-sided market with n women
and m men and every matching M , there exists a sequence
of at most 2nm best responses starting in M and leading to
a stable matching.



2

9

7

9

. . .

. . .

7

9

7

9

7

9

7

9

7

9

2

9

2

9

2

9

2

9
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Figure 2: Transition probabilities of the random walk.

Proof. We divide the sequence of best responses into
two phases. In the first phase, only matched women are
allowed to change their marriages. If no matched woman can
improve her payoff anymore, then the second phase starts.
In the second phase, all women are allowed to play best
responses in an arbitrary order. In the first phase, we use
the potential function

Φ(M) =
X

x∈X

(m − px(M)) ,

where X denotes the set of matched women. This potential
function decreases with every best response of a matched
woman by at least 1 because this woman increases her payoff
and the set X can only become smaller. Since Φ is bounded
from above by nm, the first phase terminates after at most
nm best responses in a state in which no matched woman
can improve her payoff.

Now consider the second phase. We claim that if we start
in a state M ′ in which no matched woman can improve her
marriage, then every sequence of best responses terminates
after at most nm steps in a stable matching. Assume that
we start in a state M ′ in which no matched woman can im-
prove her marriage and that an unmatched woman plays a
best response and marries a man x, leading to state M ′′.
Then the payoff of x can only increase. Hence, man x does
not accept proposals in state M ′′ that he did not accept in
M ′. This implies that also in M ′′ no matched woman can
improve her marriage. Since no matched woman becomes
unhappy with her marriage, men are never left and there-
fore they can only improve their payoffs. With every best
response one man increases his payoff by at least 1. This
concludes the proof of the theorem as each of the m men
can increase his payoff at most n times.

From the previous proof, the following corollary is imme-
diate.

Corollary 5. For every two-sided market with n women
and m men and every matching M in which no matched
woman can improve, every sequence of best responses start-
ing in M has length at most nm. In particular, this is true
if M is the empty matching.

Let us remark that this result is not true for the better
response dynamics, as from the empty matching each other
matching M is reachable by a sequence of better responses.

Finally, we show that Theorem 2 is also valid for the ran-
dom best response dynamics.

Theorem 6. There exists a family of two-sided markets
I1, I2, I3, . . . and corresponding matchings M1, M2, M3, . . .
such that, for n ∈ N, In consists of n women and n men
and a sequence of random best responses starting in Mn

needs 2Ω(n) steps to reach a stable matching with probability
1 − 2−Ω(n).

wj−1 wl+1

mk

Figure 4: Matching from M.

mk

Figure 5: w1 proposes to mk if 7n
8

≤ k < n.

Proof. For every large enough n ∈ N, we construct an
instance In with n women and n men in which the pref-
erence lists and the initial state Mn are chosen as shown
in Figure 3. That is, every woman wi with i ∈ {2, . . . , n}
prefers man mi−1 to man mi whom she prefers to every
other man. Woman w1 prefers the men m7n/8, . . . , mn−1 to
man m1 whom she prefers to every other man. Man m1

prefers woman w1 to woman w2 whom he prefers to every
other woman. Every man mi with i ∈ {2, . . . , n− 1} prefers
woman wi to woman wi+1 whom he prefers to woman w1

whom he prefers to every other woman. Man mn prefers
woman wn to all other women.

Let M denote the set of matchings that contain the edges

(w1, m1), . . . , (wj−2, mj−2), (wj , mj−1), . . . , (wk, mk−1),

(wk+1, mk+1), . . . , (wl, ml), (wl+2, ml+1), . . . , (wn, mn−1)

for some j < k < l with n/16 ≤ k − j ≤ n/4, k < n/4,
and l ≥ 5n/8 (cf. Figure 4). We claim that if one starts in a
matching that belongs to M, then with probability 1−2−cn,
for an appropriate constant c > 0, another matching from
M is reached after Θ(n) many steps. Since no matching
from M is stable, this implies the theorem.

If the current matching belongs to M, then there are at
most three women who have an incentive to change their
marriage. Woman wj−1 can propose to man mj−1, woman
wk+1 can propose to man mk, and, if l < n, woman wl+1

can propose to man ml+1. Intuitively, as long as we are in a
state that belongs to M, there exists one block of diagonal
marriages in the first half, and possibly a second block at
the right end of the gadget. In every step the left end of
the first block, the right end of the first block, and the left
end of the second block move with the same probability one

Figure 6: A new diagonal is introduced.
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Figure 3: Nodes in the upper and lower row correspond to women and men, respectively. The figure also

shows the initial state and the preference lists. The lists are only partially defined, but they can be completed

arbitrarily.

position to the right. Since the length of the first block is
Ω(n), one can show by a standard application of a Chernoff
bound that the probability that the first block vanishes, i.e.,
its left end catches up with its right end, before its right end
reaches man mn is exponentially small. Furthermore, since
the distance between the first and the second block is Ω(n),
the probability that the right end of the first block catches
up with the left end of the second block before the second
block has vanished is also exponentially small.

When the right end of the first block has reached man
m7n/8, i.e., m7n/8 is unmatched, then with probability ex-
ponentially close to 1, the second block has already van-
ished (see Figure 5) because the initial distance between
the two blocks is at least 3n/8 and only with probability

2−Ω(n) it decreases to n/8 before the second block van-
ishes. Now consider the case that the second block has van-
ished and the right end of the first block lies in the interval
{7n/8, . . . , n−1}, woman w1 has an incentive to change her
marriage since she prefers mk with k ∈ {7n/8, . . . , n − 1}
to m1. Once she has changed her strategy, a new block of
diagonals can be created on the left end of the gadget (see
Figure 6). In particular, woman w1 will only return to m1 if
no man mk with k ∈ {7n/8, . . . , n − 1} is unmatched, that
is, she will only return to m1 if the right end of the first
block has reached man mn. Since it is as likely that a new
diagonal at the beginning is inserted as it is that the right
end of the block moves one position further to the right,
the expected length of the newly created block is n/8. By
Lemma 7 it follows that the length of the new block lies
with high probability in the interval [n/16, n/4]. Only with
exponentially small probability the left end of the block has
not passed man m5n/8 when the right end has reached man
mn because this would imply that the length of the block
has increased from at most n/4 to 3n/8. If none of these
exponentially unlikely failures events occurs, we are again in
a matching from M.

In the following lemma, we use the notion of a geometric
random variable with parameter 1/2. Such a random vari-
able X describes in a sequence of Bernoulli trials with suc-
cess probability 1/2, the number of failures before the first
success is obtained, that is, for i ∈ {0, 1, 2, . . .}, Pr [X = i] =
(1/2)i+1.

Lemma 7. Let X be the sum of n/8 geometric random
variables with parameter p = 1/2. There exists a constant
c > 0 such that

Pr [X /∈ [n/16, n/4]] ≤ 2e−cn .

Proof. The random variable X is negative binomially
distributed with parameters n/8 and 1/2. For a series of in-

dependent Bernoulli trials with success probability 1/2, the
random variable X describes the number of failures before
the (n/8)-th success is obtained. For a ∈ N, let Ya be a
binomially distributed random variable with parameters a
and 1/2. Then

Pr [X > n/4] = Pr
ˆ

Y3n/8 < n/8
˜

= Pr

»

Y3n/8 <
2

3
E

ˆ

Y3n/8

˜

–

≤ e−cn ,

where the last inequality follows, for an appropriate constant
c > 0, from a Chernoff bound. Furthermore,

Pr [X < n/16] = Pr
ˆ

Y3n/16 > n/8
˜

= Pr

»

Y3n/16 >
4

3
E

ˆ

Y3n/16

˜

–

≤ e−cn .

5. CORRELATED TWO-SIDED MARKETS
In [2], it is shown that correlated two-sided markets are

potential games. In this section, we show that, in contrast to
general two-sided markets, the convergence time of the ran-
dom better and best response dynamics in correlated two-
sided markets is polynomial. Correlated two-sided markets
have already been considered by Abraham et al. [1], Lebe-
dev et al. [14], and Mathieu [15]. In the latter two publica-
tions these markets are defined in a different way and they
are called acyclic. It is, however, shown by Abraham et al.
that the classes of acyclic and of correlated markets coincide.
Lebedev et al. [14] prove that every correlated market has
a unique stable matching, that the best response dynamics
cannot cycle, and that from every state a short sequence of
best responses to a Nash equilibrium exists. They also con-
clude that the random best response dynamics converges
quickly. For the sake of completeness, we present a proof of
this result next. In this section, we use the terms players and
resources to denote active and passive agents, respectively.

Theorem 8. In correlated two-sided markets, the ran-
dom better and best response dynamics reach a stable match-
ing in expected polynomial time.

Proof. Let n denote the number of players and let m
denote the number of resources. We first consider the best
response dynamics. Let p denote the highest possible pay-
off that can be achieved. As long as no pair (x, y) ∈ X × Y
with py(x) = p is contained in the matching, there exists one
player whose best response would result in such a pair. Since
this player is allowed to play a best response with probabil-
ity at least 1/n in each step, it takes O(n) best responses



until a pair (x, y) ∈ X × Y with py(x) = p is contained
in the matching in expectation. After that, player x never
leaves resource y anymore. Furthermore, x cannot be dis-
placed from y since no player is strictly preferred to x by
resource y. Hence, the assignment of x to y can be fixed
and we can remove x and y from the game. By this, we ob-
tain another two-sided market with one player and resource
less, and we can inductively apply the same argument to
this game. Hence, the random best response dynamics ter-
minates after O(n2) steps in expectation.

Similar arguments can also be applied to the random bet-
ter response dynamics. As long as no pair with the highest
possible payoff p is formed, there is at least one blocking
pair (x, y) with py(x) = p. Since there can be at most nm
blocking pairs, it takes O(nm) steps in expectation until an
assignment with profit p is obtained. Then we can remove
player x and resource y and apply the same argument to the
remaining two-sided market.

Finally, we should mention that Mathieu [15] also pre-
sented an exponential lower bound on the convergence time
if an adversary selects the next player to play a best re-
sponse.

5.1 Correlated Matroid Two-Sided Markets
In matroid two-sided markets, we consider a restricted

class of better responses, so-called lazy better responses, in-
troduced in [3]. Let a vector of strategies S = (S1, . . . , Sn)
be given and denote by S⊕S∗

x for S∗
x ∈ Fx the state S except

that player x plays S∗
x instead of Sx. Assume that a player

x ∈ X plays a better response and changes her strategy from
Sx to S′

x. We call this better response lazy if it can be decom-
posed into a sequence of strategies Sx = S0

x, S1
x, . . . , Sk

x = S′
x

such that |Si+1
x \ Si

x| = 1 and the payoff of player x in state
S ⊕ Si+1

x is strictly larger than her payoff in state S ⊕ Si
x

for all i ∈ {0, . . . , k−1}. That is, a lazy better response can
be decomposed into a sequence of additions and exchanges
of single resources such that each step strictly increases the
payoff of the corresponding player. In [3], it is observed
that for matroid strategy spaces, there does always exist a
best response that is lazy. In particular, the best response
that exchanges the least number of resources is lazy, and in
singleton games, every better response is lazy.

In [2], it is shown that correlated matroid two-sided mar-
kets are potential games with respect to the lazy better re-
sponse dynamics. Furthermore, it is shown that the restric-
tion to lazy better responses is necessary as even the best
response dynamics can cycle in correlated matroid two-sided
markets.

Theorem 9. In correlated matroid two-sided markets, the
random lazy best response dynamics converges to a stable
matching in expected polynomial time.

Proof. The proof follows the arguments in Theorem 8.
Let p denote the highest possible payoff that can be achieved.
It takes O(n) best responses in expectation until a pair
(x, y) ∈ X × Y with py(x) = p is contained in the match-
ing. This follows since players allocate optimal bases and
an optimal basis of a matroid must contain the most valu-
able element. After an edge (x, y) ∈ X × Y with py(x) = p
is contained in the matching, player x will never leave re-
source y again because she only plays lazy best responses.
Furthermore, x cannot be displaced from y since no player

is strictly preferred to x by resource y. Hence, the assign-
ment of x to y can be fixed and we can modify the strategy
space of x by contracting its matroid by removing y. By this
contraction, we obtain another matroid two-sided market in
which the rank of x’s matroid is decreased by 1. Now we
can inductively apply the same argument to this game.
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