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Abstract
We consider the problem of partitioning a line segment into two subsets, so that n finite measures
all have the same ratio of values for the subsets. Letting α ∈ [0, 1] denote the desired ratio,
this generalises the PPA-complete consensus-halving problem, in which α = 1

2 . Stromquist and
Woodall [30] showed that for any α, there exists a solution using 2n cuts of the segment. They also
showed that if α is irrational, that upper bound is almost optimal. In this work, we elaborate the
bounds for rational values α. For α = ℓ

k
, we show a lower bound of k−1

k
· 2n − O(1) cuts; we also

obtain almost matching upper bounds for a large subset of rational α.
On the computational side, we explore its dependence on the number of cuts available. More

specifically,
1. when using the minimal number of cuts for each instance is required, the problem is NP-hard for

any α;
2. for a large subset of rational α = ℓ

k
, when k−1

k
· 2n cuts are available, the problem is in PPA-k

under Turing reduction;
3. when 2n cuts are allowed, the problem belongs to PPA for any α; more generally, the problem

belong to PPA-p for any prime p if 2(p − 1) · ⌈p/2⌉
⌊p/2⌋ · n cuts are available.
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1 Introduction

The complexity class TFNP (standing for total functions, computable in nondeterministic
polynomial time), refers to problems of computing a solution that is guaranteed to exist,
and once found can be easily checked for correctness. Such problems are of particular
interest when they appear to be computationally hard, due to the fact that they cannot
be NP-hard unless NP = coNP [24]. Due to this point and the fact that TFNP does not
seem to have complete problems, hard problems in TFNP have been classified via certain
syntactic subclasses corresponding to the combinatorial existence principles that guarantee
the existence of solutions, without indicating an efficient algorithm for their construction.
They include the well-known classes PPAD, PPA, and PPP, introduced by Papadimitriou
[25] in 1994. PPAD represents the complexity of Nash equilibrium computation and related
problems, and more recently, PPA has been shown to capture the complexity of certain
problems of consensus division, discussed in more detail below. Papadimitriou [25] also
pointed out a collection of classes PPA-k (where k ≥ 2 is a natural number). PPA-k (Definition
4 below) consists of problems where the existence guarantee of solutions is due to a modulo-k
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57:2 Consensus Division in an Arbitrary Ratio

counting argument, and these classes turn out to be relevant for the problem we study here.
Note that PPA is the same as PPA-2: PPA stands for “polynomial parity argument”, i.e. a
modulo-2 counting argument.

We study a problem arising from a 1985 result of Stromquist and Woodall [30] saying
roughly, that if we have n valuation measures of an interval A, and we want to divide A

into two shares whose values – with respect to each of the n measures – are in some given
ratio α : 1 − α (for α ∈ (0, 1)), then it’s possible to divide up the interval using at most 2n

cut points, so that the pieces can indeed be allocated to the two shares to get the desired
outcome. This is what we mean by consensus division: if each valuation measure comes from
a separate agent, then the objective is to split up a resource (the interval) in such a way that
all agents agree on the values of the partition. We call this problem imbalanced-consensus-
division. What is the complexity of computing such a partition of the interval? This problem
generalizes consensus-halving (discussed in more detail in Section 1.2), the special case when
α = 1/2. In this case of α = 1/2, just n cuts suffice to find a solution, and the problem of
computing a suitable set of n cuts was recently shown to be PPA-complete [16, 17, 12, 10]
(the latter paper shows PPA-hardness even for additive-constant approximation). That gives
the consensus-halving problem a novel complexity-theoretic status and also indicates that it
is highly unlikely to be solvable in polynomial time.

A closely related problem is Consensus-k-Division, which also generalizes consensus-
halving (k = 2) and has been studied in recent works [19, 18] due to its connection to PPA-k.
Consensus-k-Division is the problem of splitting the interval into k ≥ 2 shares all of the
equal value with respect to all measures. We study the connection between Consensus-
k-Division and our model. In one direction, several results in our paper are based on
existing results of Consensus-k-Division (Theorems 10, 11); in the other direction, we
show a novel complexity result for Consensus-k-Division itself as a by-product of studying
imbalanced-consensus-division (Corollary 15).

We also define imbalanced-necklace-splitting as a generalization of the necklace-splitting
problem [3, 1], which could be taken as a discrete version of consensus-halving. The
equivalence between necklace-splitting and consensus-halving (with inverse-polynomial ap-
proximation) [16] can be generalized to our imbalanced variant (Theorem 3). We focus
on imbalanced-consensus-division in this paper, while all our results can be extended to
imbalanced-necklace-splitting via Theorem 3.

1.1 Our Contribution

On the combinatorial (as opposed to computational) side, we obtain more detailed bounds
on the number of cuts that may be needed in the worst case for rational ratio α. Recall that
Stromquist and Woodall [30] showed a general upper bound of 2n cuts for any ratio, and
proved the tightness of this bound for all irrational α. A series of instances are constructed
in Section 3 which provides the lower bound.

▶ Informal Theorem 1. For any rational ratio α = ℓ/k ∈ (0, 1), roughly 2(k−1)
k · n cuts are

needed in the worst case.

A visualization of the lower bound is in Figure 1. We believe our lower bound for any
rational ratio is tight.

1 Also called the Riemann Function, see https://en.wikipedia.org/wiki/Thomae%27s_function

https://en.wikipedia.org/wiki/Thomae%27s_function
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Figure 1 Lower bounds for all rationals with denominators smaller than 50. Constant terms are
ignored. This plot is identical to turning Thomae’s function upside down1.

In Section 4, we generalize the existence proof of [30] and build a reduction to the
Consensus-k-Division problem for some specific choices of α and k. We, therefore, improve
the previous general upper bound of 2n for any rational α.

▶ Informal Theorem 2. For a large subset Q∗ of rationals α = ℓ/k (formally specified in
Section 4), 2(k−1)

k · n cuts are enough in the worst case; for any other rational ratios, there
is an upper bound strictly smaller than 2n by a gap linear in n.

Notice that the bound for any rationals in set Q∗ is almost tight.
▶ Remark. Stromquist and Woodall [30] also showed a lower bound of 2n − 2 cuts for some
rational α and n. We clarify that their lower bounds for any rational α only work for
constant-size n (depending on α). In our paper, we treat ratio α as a fixed constant and all
the bounds are asymptotic in n. Our upper bound shows that for any rational ratio α, it is
impossible to require 2n − 2 cuts in the worst case for arbitrarily large n.

On the computational side, the reduction to Consensus-k-Division also reveals an
interesting connection with the complexity classes PPA-k. The most commonly studied
setting is that the minimum number of cuts (as a function of n and α) is given to make the
solution always exists, i.e., to make the problem a total problem. We study the complexity
in this setting for rationals in set Q∗, since we know the tight bound for them.

▶ Informal Theorem 3. For a large subset Q∗ of rationals α = ℓ/k, finding a solution using
2(k−1)

k · n cuts lies in PPA-k under Turing reductions. In particular, if k = pr for a prime p,
the problem lies in PPA-p.

When more cuts are allowed, the problem should become easier. Here we show that as
more cuts are allowed, the problem is contained in more and more of the complexity classes
PPA-p.

▶ Informal Theorem 4. For any α ∈ (0, 1) and any prime p, finding an inverse-polynomial
approximate solution using 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts is in PPA-p.

For example, solving consensus-halving (α = 1/2) with 8n cuts is in PPA-3. This fills
the blank of previous results in an intriguing way: on the one side, consensus-halving
(with inverse-polynomial approximation) remains PPA-complete for n + n1−δ cuts for any

ITCS 2023



57:4 Consensus Division in an Arbitrary Ratio

small constant δ [15, 18]; on the other side, Alon and Graur [2] showed that finding an
inverse-polynomial approximate solution with O(n log n) cuts is in P. Also, these are the
first natural2 problems in the intersection of multiple PPA-p classes.

Our results also yield further PPA-p containment for Consensus-k-Division as extra
cuts are allowed.

▶ Informal Theorem 5. For any prime p, solving Consensus-k-Division with 2(k − 1) ·
(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts with inverse-polynomial error lies in PPA-p.

In Section 5, we study the hardest setting, i.e., a solution with a minimal number of cuts
for each instance is required. Notice that this problem may not be a TFNP problem anymore
since there is no easy way to verify whether a solution does use a minimal number of cuts.

▶ Informal Theorem 6. For any α ∈ (0, 1), finding a solution using the minimum number
of cuts is NP-hard.

1.2 Background, Related Work
We have mentioned consensus-halving as an important special case of the problem of interest
in the present paper. Consensus-halving is the computational analog of the Hobby-Rice
theorem [22]. It was shown to be PPA-complete in [16]; this result was subsequently
strengthened to apply to the (two-thief) necklace-splitting problem [17]. (Necklace-splitting
is a discretized version of consensus-halving, and the extension to necklace-splitting required
PPA-hardness for inverse-polynomial additive error in the values of the two shares). This line
of work on PPA-completeness also highlights the close connection of the problem with the
ham-sandwich theorem from topology, as well as the Borsuk-Ulam theorem. Further work
has extended this to showing PPA-completeness even for simple measures (unions of uniform
distributions over just two sub-intervals). But at present, little is known about how much it
helps if we allow ourselves more than n cuts. Consensus-k-Division is another natural
generalization of consensus-halving, consisting of consensus division into k ≥ 2 shares, all of
equal value. Alon [1] identified the number of cuts needed to achieve this (namely (k − 1)n),
in the context of the necklace-splitting problem, and its computational complexity is recently
studied in [19], in which context the classes PPA-k are also important.

Goldberg et al. [20] and Segal-Halev [28] study versions of consensus-division where
the “cake” being partitioned is not a line segment, but an unordered collection of items on
which the agents have diverse valuations. Deligkas, Filos-Ratsikas, and Hollender [13] study
consensus-halving with a constant number of agents and more general valuation functions.
The complexity of computing the exact solution of consensus-halving is considered in Deligkas
et al. [11] and Batziou, Hansen, and Høgh [6].

Most of the literature on cake-cutting is about the search for a fair division into pieces
that get allocated to the agents (such that, for example, no agent values someone else’s pieces
more than his own), as opposed to consensus division, as considered here. In the context
of fair division, there is an “arbitrary proportions” analog to the problem studied in this
paper: Segal-Halevi [27] and Crew et al. [9] have studied an analogous generalization of fair
division in which each agent has a (non-negative fractional) claim on the cake, all claims
summing to 1. In common with consensus division, it is found that in the more general
case of unequal proportions, more cuts may be required than in the special case of equal
proportions. Segal-Halevi shows via a simple construction that 2n − 2 cuts may be required
(when proportions are equal, it is known that n − 1 are sufficient).

2 By natural we mean there is no explicit circuit in the input of the problem.
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There is a similar recent interest in considering unequal (or weighted) sharing, in the
context of indivisible items. Here, envy-freeness is unachievable in general, and instead one
considers envy-freeness subject to being able to remove a small number of items. This work
addresses the performance of standard algorithms such as round-robin picking sequences,
and whether various desiderata can be satisfied [5, 7, 8, 4].

2 Preliminaries

In this section, we give detailed definitions of the problem and complexity classes of interest
here.

The Consensus-Halving problem involves a set of n agents each of whom has a valuation
function on a 1-dimensional line segment A (here we set A to be the unit interval [0, 1]).
Consider the problem of selecting k “cut points” in A that partition A into k + 1 pieces,
then label each piece either “positive” or “negative” in such a way that each agent values
the positive pieces equally to the negative ones. In 2003, Simmons and Su [29] showed that
this can always be done for k = n; their proof applies the Borsuk-Ulam theorem and is a
proof of existence analogous to Nash’s famous existence proof of equilibrium points of games,
proved using Brouwer’s or Kakutani’s fixed point theorem. Significantly, Borsuk-Ulam is
the undirected version of Brouwer, and already from [25] we know that it relates to PPA.
The Consensus-Halving problem was shown to be PPA-complete in [16]. As detailed in
Definition 1, we assume that valuations are presented as step functions using the logarithmic
cost model of numbers.

Consensus-splitting in an arbitrary ratio α : 1 − α is one of the open problems raised
in [29]. Clearly, a single cut suffices for n = 1, and for n = 2 it remains the case that 2 cuts
suffice (to see this, assume by rescaling so that agent 1’s distribution is uniform, and consider
sliding an interval of length α along the unit interval, keeping track of agent 2’s value for the
interval). For n > 2, things get more complicated. For any real number α ∈ [0, 1], we define
the following variant of the Consensus-Halving problem.

▶ Definition 1 (α-Imbalanced-Consensus-Division, α-ICD). Input: ε > 0 and n

continuous probability measures µ1, . . . , µn on [0, 1], representing the valuation function of
each agent. We assume the probability measures are presented as piecewise constant functions
on [0, 1], i.e., step functions (explicitly given in the input).

Output: A partition of the unit interval into two (not necessarily connected) subsets A+
and A−, such that for any i ∈ [n], we have |µi (A+) − α| ≤ ε.

It is easy to see that α-ICD is equivalent to (1 − α)-ICD. Definition 1 is not quite complete,
since we care about the number of cuts needed to make the partition, which in general is
dependent on α. The most commonly studied setting is when the number of cuts allowed,
which is a function of n and α in our case, is minimal to make the problem a total problem,
i.e., the solution always exists. Without further specification, we solve α-ICD in this setting.
We also study the cases where more or fewer cuts are available in this paper, in which the
number of cuts will be specified explicitly.

As noted in [31], piecewise-constant functions have been used in various previous works
on cake-cutting and can approximate natural real-valued functions. Another advantage
of piecewise-constant functions is that by the same argument as Theorem 5.2 of [14], an
exact solution (ε = 0) of α-ICD with rational α could be efficiently calculated from an
approximated solution with inverse-exponential ε. Most of our results could be extended to
additive valuation function under inverse-polynomial approximation.

ITCS 2023



57:6 Consensus Division in an Arbitrary Ratio

In this paper, we describe each piecewise-constant function by a set of value blocks. Each
value block represents an interval on which the valuation function takes a constant value.
Naturally, the total weights of value blocks add up to one for each agent.

If a subinterval of the partition belongs to A+ or A−, we say it has the label “+” or “−”
respectively. We assume the label of each subinterval alternates after each cut without loss
of generality (two consecutive subintervals having the same label can be merged).

We similarly define α-Imbalanced-Necklace-Splitting (α-INS) problem for any
rational α.

▶ Definition 2 (α-Imbalanced-Necklace-Splitting, α-INS). Input: An open necklace
with t beads, each of which has one of n colors. There are ai beads of color i, where
ai, α · ai ∈ N for any i ∈ [n].

Output: A partition of the necklace into two (not necessarily connected) pieces A+ and
A−, such that for any i ∈ [n], piece A+ contains exactly α · ai beads of color i.

▶ Theorem 3 (Essentially from Section 6 of [16]). For any rational α, there is a many-to-one
reduction from α-INS to α-ICD, and vice versa. Moreover, the reductions in both directions
preserve the number of agents/colors and the number of cuts.

The complexity classes PPA-k are defined as follows [25, 23]. For any integer k ≥ 2,
PPA-k is the set of problems reducible in polynomial time to the problem Bipartite-mod-k:

▶ Definition 4 (the problem Bipartite-mod-k). We are given a bipartite graph on the
vertices (0 × {0, 1}n, 1 × {0, 1}n represented concisely via a circuit C, that given as input a
vertex in 0 × {0, 1}n, outputs a set of ≤ k potential neighbours in 1 × {0, 1}n, and vice versa.
An edge (u, v) is present provided that v is one of the potential neighbors of u, and vice versa.
Suppose that the number of neighbours of 0n+1 lies in {1, 2, . . . , k − 1}. A solution consists
of some other vertex having a degree in {1, 2, . . . , k − 1}.

The existence of at least one solution to any instance of Bipartite-mod-k follows from a
modulo-k counting argument. In the case of k = 2 we have complexity class PPA, in which
the corresponding problem is called Leaf, consisting of a concisely-represented undirected
graph of degree ≤ 2, in which the all-zeroes vector is a leaf (a degree-1 vertex), and the
problem is the find another leaf of the graph. PPA-p is closed under Turing reductions for
any prime p, while PPA-k for general k (except for prime or power of prime) is believed to
be not closed under Turing reductions [23, 21].

3 Lower Bound

We assume that all fractions discussed in this paper are written down as rational numbers
ℓ/k, where ℓ, k are coprime and ℓ < k.

▶ Theorem 5 (Lower Bound). For any rational number α = ℓ/k ∈ [0, 1], 2(k−1)
k · n − O(1)

cuts are necessary (in the worst case) for an exact solution of α-ICD with n agents.

▶ Remark. The O(1) term in the lower bound is bounded by k, the denominator of α.
Before introducing the construction of α-ICD instances establishing this lower bound,

Lemmas (6,7) identify two simple properties of fractions. Their proofs are left in Appendix A.
Let α1 := ℓ1/k1, α2 := ℓ2/k2, α1 < α2 be two fractions. We say α1 and α2 are adjacent

if ℓ2 · k1 − ℓ1 · k2 = 1.

▶ Lemma 6. Let α1 := ℓ1/k1, α2 := ℓ2/k2, α1 < α2 be two adjacent fractions. For any
fraction α := ℓ/k, α ∈ (α1, α2), we have k ≥ k1 + k2.
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▶ Remark. It’s easy to verify that by taking α := (ℓ1 + ℓ2)/(k1 + k2), we have α ∈ (α1, α2),
and α is adjacent to both α1, α2.

▶ Lemma 7. Given a fraction α := ℓ/k, k ≥ 2, let (α1, α2) be the smallest interval satisfying
that α ∈ (α1, α2) and k1, k2 < k, where α1 := ℓ1/k1, α2 := ℓ2/k2. Then
1. α1 and α2 are adjacent;
2. ℓ = ℓ1 + ℓ2, k = k1 + k2;
3. α is adjacent to both α1, α2.

▶ Corollary 8. Define set Qk := {a/b ∈ [0, 1] : a, b coprime, b ≤ k}, i.e., all the fractions in
[0, 1] with denominator smaller than or equal to k.

When elements in Qk are listed in increasing order, every two consecutive elements are
adjacent.

Now we are ready to introduce the construction of the α-ICD instances matching the
bound.

Proof of Theorem 5. We first fix a rational number α := ℓ/k. Let (α1, α2) be the smallest
interval satisfying that α ∈ (α1, α2) and k1, k2 < k, where α1 := ℓ1/k1, α2 := ℓ2/k2. (So,
Lemma 7 applies.)

We construct an α-ICD instance with k1 + k2 agents, partitioned into two types:
Type-1 There are k1 type-1 agents. A type-1 agent has k2 value blocks with 1/k2 weight

each;
Type-2 There are k2 type-2 agents. A type-2 agent has k1 value blocks with 1/k1 weight

each.

There are in total 2k1 ·k2 value blocks, half of which belong to type-1 agents and the other
half to type-2 agents. The arrangement of these value blocks is specified by the following
rules, see Figure 2 for a visualization:

all the value blocks are disjoint;
all the value blocks from the i-th type-1 (respectively, type-2) agent are on the left of any
value blocks from the (i + 1)-th type-1 (respectively, type-2) agent;
from left to right, the value blocks from type-1 and type-2 agents occur in turn; the first
block comes from the first type-2 agent.

1/2 1/2 1/2 1/2 1/2 1/2
Type-1:

Type-2:
1/3 1/3 1/3 1/3 1/3 1/3

Figure 2 The arrangement of value blocks in a (2/5)-ICD instance. There are three type-1 agents
and two type-2 agents. Each color corresponds to a different agent. Note that α1 = 1/3 < 2/5 <

1/2 = α2.

To lower-bound the number of cuts needed for this instance, we start with the following
observations, recalling that A+ is supposed to have measure α:

▶ Observation 9.
1. For each type-1 agent, at most ℓ2 − 1 of its value blocks are entirely included in the set

A+. Otherwise, the set A+ will contain at least ℓ2/k2 = α2 fraction of measure for that
agent, which is strictly greater than α.

ITCS 2023



57:8 Consensus Division in an Arbitrary Ratio

2. For each type-2 agent, at least ℓ1 + 1 of its value blocks have positive measure in the set
A+. Otherwise, the set A+ will contain at most ℓ1/k1 = α1 fraction of measure for that
agent, which is strictly smaller than α.

Now assuming in a valid solution, there are t intervals labeled with “+”, denoted by
I1, . . . , It. For each i ∈ [t] define ai to be the number of value blocks from type-2 agents that
are intersected with the i-th interval Ii. Then from our construction, it follows that there are
at least ai − 1 of value blocks from type-1 agents that are entirely included in the interval Ii.

We have the following constraints regarding the observation above:

t∑
i=1

max{ai − 1, 0} ≤ (ℓ2 − 1) · k1; (1)

t∑
i=1

ai ≥ (ℓ1 + 1) · k2, (2)

where the LHS of inequality (1) lower-bounds the total number of value blocks from type-1
agents that are entirely included in the set A+; the LHS of the inequality (2) is the total
number of value blocks from type-2 agents that are intersected with the set A+.

Reformulating inequality (1) as

t∑
i=1

ai ≤
t∑

i=1
max{ai − 1, 0} + t ≤ (ℓ2 − 1) · k1 + t,

and combining it with inequality (2), we know that both inequalities could be satisfied only
when

t ≥ (ℓ1 + 1) · k2 − (ℓ2 − 1) · k1 = k1 + k2 − 1 = k − 1,

where the last two equalities come from Lemma 7. Notice that k − 1 intervals need at least
2(k − 1) − 2 cuts to separate them. Therefore, we prove that this α-ICD instance, which has
k1 + k2 = k agents, needs at least 2(k − 1) − 2 cuts.

We prove the lower bound for arbitrary n by first copying the instance above for c = ⌊n/k⌋
times. The first value block of the next copy is on the right of the last value block of the
previous copy. By a similar argument, this new instance needs at least c · t intervals labeled
with “+”. Thus, 2 · c · t − 2 = 2c · (k − 1) − 2 cuts are needed for these c copies with c · k

agents. Finally, inserting n − c · k dummy agents with non-overlapping value blocks if k is
not a factor of n. Each dummy agent needs at least one cut and the total number of cuts
needed are

2c · (k − 1) − 2 + (n − c · k) ≥ 2(k − 1)
k

· n − k .

This concludes the lower bound for any rational number α. ◀

▶ Remark. The proof suggests that the lower bound also applies to the ε-approximate
version of α-ICD with rational α for a sufficiently small constant ε. Precisely, let (α1, α2)
be the smallest interval satisfying that α ∈ (α1, α2) and k1, k2 < k, where k, k1, k2 are
the denominators of α, α1, α2 respectively. The lower bound still holds as long as ε <

min{α − α1, α2 − α}.
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4 Upper Bound and Implications on Complexity

We generalize the technique from [30] to improve the upper bounds for rational ratios α.
We define the set Q∗ ⊂ [0, 1] by the following generating rules:

1. 0, 1 ∈ Q∗;
2. If ℓ

k ∈ Q∗, then for any prime p that is not a factor of ℓ, we have ℓ
k·p , 1 − ℓ

k·p ∈ Q∗.

Notice that if k is prime, ℓ/k belongs to Q∗ only when ℓ ∈ {1, k − 1}. For other values of
k, there are still usually some fractions ℓ/k missing from Q∗, for example, 4/9.

We show an upper bound for the set of ratios α in Q∗ that differs from the corresponding
lower bound of Theorem 5 by at most k. For any other rational number α, we give an upper
bound that is smaller than 2n by a margin linear in n and thus separate the case of rational
and irrational numbers α.

▶ Theorem 10 (Upper Bound). For getting an exact solution of an α-ICD instance with n

agents,
1. if α is rational and α = ℓ/k ∈ Q∗, 2(k−1)

k · n cuts are always sufficient;
2. if α is rational and α /∈ Q∗, there is a constant cα > 0 such that (2 − cα) · n cuts are

always sufficient;
3. if α is irrational, 2n cuts are always sufficient.

Proof. Since [30] provided a general upper bound of 2n cuts for α-ICD with any ratio
α ∈ [0, 1], it remains to consider the case with rational α.

For technical simplicity, we assume the measure function is defined on the circle S1,
parameterized by [0, 1] where the points 0 and 1 are identified as the same point. Any
solution to the α-ICD defined on S1 is also a valid solution to the corresponding α-ICD
defined on the interval [0, 1]. Thus, any upper bound for the S1 case is also valid for the
interval case.

Case 1: α ∈ Q∗.

We proceed by induction following the generating rule of Q∗.
Base Case: 0 cuts are needed when α = 0 or α = 1.
Induction Step: Assume we already have that for α = ℓ

k ∈ Q∗, 2(k−1)
k · n cuts are enough.

In other words, there is a solution with at most k−1
k · n intervals of “+” label.

For any prime p that is not a factor of ℓ, let α′ = ℓ
k·p . To get a solution for the α′-ICD

instance, we first get a solution for the α-ICD with the same set of measure functions. We
then solve the Consensus-p-Division problem, which uses (p − 1) · n cuts, on the intervals
with “+” labels in the first step.

Now, k−1
k · n intervals of “+” label are divided into ( k−1

k + p − 1) · n intervals with label
+1, . . . , +p. Intervals of each label take α/p = α′ fraction of measure and thus correspond to
a possible solution for the α′-ICD instance. By averaging principle, there must be a label +i

that labels at most (( k−1
k + p − 1) · n)/p intervals. Observing that

((k − 1
k

+ p − 1) · n)/p = (k − 1) + (p − 1) · k

k · p
· n = k · p − 1

k · p
· n,

there is a solution to the α′-ICD instance using at most 2(k·p−1)
k·p · n cuts (two cuts for each

interval with label +i). Finally, (1 − α′)-ICD is equivalent to α′-ICD. This concludes the
proof for any ratio α in the set Q∗.
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Case 2: α /∈ Q∗.

Let α1 = α = ℓ1/k1 /∈ Q∗. We recursively generate a sequence of ratios as follows:
1. take αi = (ki−1 mod ℓi−1)/ki−1; let ℓi and ki be the numerator and the denominator of

αi in the simplest term;
2. if αi ∈ Q∗, take t = i and stop this process.

Since ℓi < ℓi−1, the process above will stop in finite steps. We now prove by induction in
the reverse order of index i.

Base Case: Since αt ∈ Q∗, there is a constant cαt = 2/kt > 0 such that (2 − cαt) · n cuts
are always sufficient for αt-ICD.

Induction Step: Assume we already know that (2 − cαi) · n cuts are always sufficient for
αi-ICD with a constant cαi

> 0. The same constant also holds for (1 − αi)-ICD.
Notice that 1 − αi = (ki − ℓi)/ki = (d · ℓi−1)/ki−1 for some positive integer d. Therefore,

αi−1-ICD could be solved by first finding a solution of the (1 − αi)-ICD instance with the
same set of measure functions, and then solving the Consensus-d-Division problem on the
previous solution set.

We use a similar argument in case 1 to count the number of cuts needed. The intervals
labeled with “+” in the solution of (1 − αi)-ICD is (1 − cαi/2) · n. Solving Consensus-d-
Division incurs (d − 1) · n cuts and divides the previous solution set into (d − cαi

/2) · n

intervals, with labels ranging from +1, . . . , +d. Each label corresponds to a valid solution
for αi−1-ICD, and there must be a label +i that labels at most (1 − cαi

/2d) · n intervals.
Therefore, there is a constant cαi−1 = cαi

/d > 0 such that (2 − cαi−1) · n cuts are always
sufficient for αi−1-ICD. ◀

The proof of Theorem 10 is essentially a reduction from α-ICD to Consensus-k-Division,
and we thus derive several results on the complexity of α-ICD.

▶ Theorem 11. For any α = ℓ/k ∈ Q∗, k ≥ 2, solving exact α-ICD with ⌊ 2(k−1)
k · n⌋ cuts is

in PPA-k under Turing reductions. In particular, if k = pr for a prime p, the problem lies in
PPA-p.

Proof. Let k = pr1
1 pr2

2 . . . prt
t , where each pi is prime and ri ≥ 1. In the proof of Theorem 10,

α-ICD is solved by calling r1 times of Consensus-p1-Division, r2 times of Consensus-p2-
Division, . . . , rt times of Consensus-pt-Division in a specific order.

The exact Consensus-p-Division problem is in the class PPA-p for any prime p [19].
PPA-p is a subset of PPA-q if p is a factor of q [23, 21], so we can deduce that solving exact
α-ICD with ⌊ 2(k−1)

k · n⌋ cuts lies in PPA-k under Turing reductions.
In particular, when k = pr for a prime p, PPA-k is equal to PPA-p and PPA-p is closed

under Turing reductions [23, 21]. ◀

We also consider the complexity of α-ICD when there are more available cuts than
necessary.

▶ Theorem 12. For any prime p and any ratio α ∈ [0, 1], solving α-ICD for inverse-
polynomial approximation error ε with 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts lies in PPA-p.

Fixing a prime p, for any ratio α, our plan is to find a ratio α′ = ℓ′/pm such that
|α − α′| ≤ 1/n, and showing that solving exact α′-ICD is in PPA-p. By definition 1, the
exact solution for an α′-ICD instance is also a (1/n)-approximate solution for the α-ICD
instance with the same set of measure functions. The choice of m will be specified later.
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To this end, we define a sequence of m + 1 sets Q0
p, Q1

p, . . . , Qm
p ⊂ [0, 1] as follows:

1. Q0
p = {0, 1};

2. if α ∈ Qi
p, we have α, ⌈p/2⌉

p · α and 1 − ⌈p/2⌉
p · α in the set Qi+1

p .

We now present two lemmas on the properties of sets Q0
p, Q1

p, . . . , Qm
p .

▶ Lemma 13. For any α ∈ Qt
p, t ∈ [m], an α-ICD instance with n agents can be solved exactly

by calling Consensus-p-Division at most t times, while using at most 2(p − 1) · ⌈p/2⌉
⌊p/2⌋ · n

cuts.

Proof. We prove our claim by an induction argument on t, which is similar to case 1 of
Theorem 10.

Base Case: When α ∈ {0, 1}, α-ICD is trivial.
Induction Step: Now assume α ∈ Qt−1

p and we have an exact solution of α-ICD by calling
at most t − 1 times of Consensus-p-Division and using at most 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts. By
definition, we also have α ∈ Qt

p.
Let α′ = ⌈p/2⌉

p · α. We apply Consensus-p-Division to the intervals with “+” label in
the solution of α-ICD, which results in p labels {+1, . . . , +p}, and each of them corresponds
to a set of intervals that consists of α/p fraction of measure. The total number of intervals
that have one of labels {+1, . . . , +p} are (p − 1) · ⌈p/2⌉

⌊p/2⌋ · n + (p − 1) · n. We can find ⌈p/2⌉
labels (+i1 , . . . , +i⌈p/2⌉) and they correspond to at most(

(p − 1) · ⌈p/2⌉
⌊p/2⌋

· n + (p − 1) · n

)
· ⌈p/2⌉

p
= (p − 1) · ⌈p/2⌉

⌊p/2⌋
· n

intervals. Therefore, we show that α′-ICD can be solved by calling at most t times of
Consensus-p-Division and using at most 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts. The case of (1 − α′)-ICD
also holds by the equivalence. Our claim is now proven. ◀

▶ Lemma 14. Let gi (0 ≤ i ≤ m) to be the size of the largest hole of set Qi
p, formally,

gi = max{d ∈ R : ∃α ∈ [0, 1] s.t. (α − d/2, α + d/2) ∩ Qi
p = ∅} .

Then, there is gi ≤ gi−1 · ⌈p/2⌉
p .

Proof. Since for any α ∈ Qi−1
p , there is ⌈p/2⌉

p · α ∈ Qi
p, the largest hole of Qi

p within interval
[0, ⌈p/2⌉

p ] is at most gi−1 · ⌈p/2⌉
p . On the other hand, α ∈ Qi

p implies 1 − α ∈ Qi
p. Thus, the

largest hole of Qi
p within interval [1 − ⌈p/2⌉

p , 1] is also at most gi−1 · ⌈p/2⌉
p . Combining the

two parts, we prove that gi ≤ gi−1 · ⌈p/2⌉
p . ◀

Proof of Theorem 12. Notice that ⌈p/2⌉
p ≤ 2/3 for any prime p. By taking m = 2 log2 n,

for any ratio α ∈ [0, 1], there exists α′ ∈ Qm
p such that |α − α′| ≤ 1/n by Lemma 14. We

also have |Qm
p | ≤ 2 · 3m ≤ O(n4), which means that we can calculate the whole set Qm

p and
remember how each value in Qm

p is generated. Thus, we can find α′ and know how to reduce
α′-ICD to m times of calling Consensus-p-Division in polynomial time. Again, using the
fact Consensus-p-Division is in the class PPA-p for any prime p [19] and PPA-p is closed
under Turing reductions [23, 21], we get solving exact α′-ICD with 2(p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts
lies in PPA-p.

Finally, the exact solution of α′-ICD is also an inverse-polynomial approximated solution
for α-ICD, which completes our proof. ◀
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▶ Corollary 15. For any prime p, solving Consensus-k-Division for inverse-polynomial ε

with 2(k − 1) · (p − 1) · ⌈p/2⌉
⌊p/2⌋ · n cuts lies in PPA-p.

Proof. Consensus-k-Division can be solved by calling α-ICD k − 1 times such that we
carve out 1/k fraction in each time.

Formally, in the i-th (i ∈ [k − 1]) step,
1. we first rescale every measure function to weight 1;
2. we then solve (1/(k − i + 1))-ICD on these measure functions and mark intervals in the

set A+ (from the solution of (1/(k − i + 1))-ICD) with label i;
3. finally, we set the function value in A+ to be zero for all measure functions.
In the k-th step, we mark all the remaining intervals with the label k. The approximation
error for solving each α-ICD instance will add up linearly. The overall approximation error of
Consensus-k-Division is still inverse-polynomial if the error of solving each α-ICD instance
is also inverse-polynomial. By Theorem 12, we conclude that solving Consensus-k-Division
with 2(k − 1) · (p − 1) · ⌈p/2⌉

⌊p/2⌋ · n cuts lies in PPA-p. ◀

5 NP-Hardness for the Exact Number of Cuts

The lower bound and upper bound results in Theorems 5 and 10 focus on the worst-case
scenario. In practice, the number of cuts needed for a specific instance could be much fewer
than the bound, and a solution with the minimum number of cuts would be preferred. In
this section, we show that it’s hard to decide the minimum number of cuts needed for a given
α-ICD instance, which also implies finding such a solution is hard.

▶ Theorem 16. For any α ∈ (0, 1), deciding the minimum number of cuts needed for a given
α-ICD instance is NP-hard.

Filos-Ratsikas et al. [15] show that deciding whether a Consensus-Halving instance
with n agents has a solution using n − 1 cuts is NP-complete. Therefore, we only need to
consider the case for α < 1/2.

We reduce the Exactly-1-3Sat problem to α-ICD for any α < 1/2. Exactly-1-3Sat
is a variant of 3SAT where the problem is to determine whether there exists a satisfying
assignment such that exactly one literal in each clause is true, instead of at least one as in
ordinary 3SAT. The NP-completeness of Exactly-1-3Sat is first shown in [26] as a special
case of Schaefer’s Dichotomy Theorem.

Suppose the given Exactly-1-3Sat instance ϕ has N variables x1, . . . , xN and M

clauses c1, . . . , cM . Let k be an integer such that α ∈ [1/(k + 1), 1/k). The α-ICD instance
constructed is based on the construction in Section 3 for the lower bound, but has two more
types of agents representing variables and clauses.

Type-1 agent

There are N type-1 agents and each of them has 2k value blocks with 1/2k weight each.
All the value blocks of type-1 agents are evenly spaced from left to right. Formally, the

j-th block of i-th type-1 agent locates at interval [T1(i, j), T1(i, j) + 1], where

T1(i, j) = (3M + 3) · ((i − 1) · 2k + (j − 1)) .
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Type-2 agent

There are N · k − 1 type-2 agents and each of them has a single value block of weight 1.
The value block of the i-th type-2 agent is placed between the 2i-th and the (2i + 1)-

th blocks among all N · 2k blocks from type-1 agents. More specifically, it locates at
[T2(i), T2(i) + 1], where T2(i) = (3M + 4) + (i − 1) · (6M + 6).

Variable agent

There are N variable agents and each of them has five value blocks. The first four blocks
weigh α/2 each, and the last block weighs 1 − 2α.

The first two blocks of i-th variable agent are located at

[T1(i, 1) + 1, T1(i, 1) + 2], [T1(i, 1) + 3M + 2, T1(i, 1) + 3M + 3]

respectively, both of which are between the first two blocks of the i-th type-1 agent; the next
pair of blocks are placed between the third and the fourth blocks of the i-th type-1 agent,
that are

[T1(i, 3) + 1, T1(i, 3) + 2], [T1(i, 3) + 3M + 2, T1(i, 3) + 3M + 3]

respectively.
The last block is located at [T1(N, 2k) + i, T1(N, 2k) + i + 1], which is on the right of any

blocks of type-1 agents.
Define intervals

Iv
i,0 := [T1(i, 1) + 1, T1(i, 1) + 3M + 3] and Iv

i,1 := [T1(i, 3) + 1, T1(i, 3) + 3M + 3],

where Iv
i,0 covers the first two blocks, and Iv

i,1 covers the next two blocks. By definition,
Iv

i,0, Iv
i,1 are between the first two and the next two blocks of the i-th type-1 agents respectively.

Roughly speaking, only one of Iv
i,0, Iv

i,1 would be labeled with “+”, which corresponds to the
value of variable xi taking 0 or 1.

Clause agent

There are M clause agents and each of them has four value blocks. If α ≥ 1/3, the first three
blocks have weight (1 − α)/2 each and the last block has weight (3α − 1)/2; otherwise, the
first three blocks have weight α each and the last block has weight 1 − 3α.

Assuming the j-th (j ≤ 3) literal of clause ci is xk or ¬xk, let ℓi,j = 1 if it’s xk and
ℓi,j = 0 if it’s ¬xk. The j-th block of the i-th clause agent is then placed at

[Tc(i, j, k, ℓi,j), Tc(i, j, k, ℓi,j) + 1] ∈ Iv
k,ℓi,j

,

where

Tc(i, j, k, ℓ) = T1(k, 1 + 2ℓ) + 2 + (j − 1) · M + i − 1, for ℓ ∈ {0, 1} .

If α ≥ 1/3, the last block of i-th clause agent is located in [T2(2) + i, T2(2) + i + 1],
which is next to the value block of the second type-2 agent; otherwise, it is located in
[T1(N, 2k) + N + i, T1(N, 2k) + N + i + 1], which is on the right of any blocks from type-1
agents.
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Figure 3 An incomplete view of value blocks in an α-ICD instance with α < 1/3. Each color
corresponds to a different agent. The clause agent in dark blue has ¬xi as one of its literals. The
two black dashed lines represent possible locations of cuts that satisfy xi = 0. The scale of each
interval is not preserved.

Analysis

We first ignore all the variable agents and clause agents.

▶ Lemma 17. At least 2 · (N · k − 1) cuts are needed if only type-1 and type-2 agents are
considered. Also, such a solution must satisfy the following conditions,
1. there are exactly (N · k − 1) intervals labeled with “+”, denoted by I+

1 , . . . , I+
N ·k−1 from

left to right. The length of [T2(i), T2(i) + 1] ∩ I+
i is exactly α for any i.

2. the first and the last interval are labeled with “−”;
3. for any i ∈ [N ], at most one of intervals Iv

i,0, Iv
i,1 could possibly have intersection with

“+” labeled intervals.

Proof. Similar to the proof of Theorem 5, notice that each block from type-2 agents is
separated by two blocks of type-1 agents, and the sum of their weight is 1/k > α. Thus, each
“+” labeled interval could only intersect with at most one type-2 agent; also, if a “+” labeled
interval intersects with any type-2 agent, it can not be the first or the last interval in the
solution.

Since each type-2 agent should be intersected with at least one “+” labeled interval,
there are at least (N · k − 1) intervals labeled with “+”, and those intervals need at least
2 · (N · k − 1) cuts. On the other hand, any solution with 2 · (N · k − 1) cuts must satisfy
conditions 1 and 2 by our discussion above.

For the last condition, if both Iv
i,0, Iv

i,1 are intersected by “+” labeled intervals, then
at least two value blocks of i-th type-1 agent are fully covered with “+” label, which is
impossible since 1/k > α. ◀

Next, we show that the Exactly-1-3Sat instance ϕ is satisfiable if and only if 2·(N ·k−1)
cuts are enough for the whole α-ICD instance, including variable and clause agents.

▶ Lemma 18. If the Exactly-1-3Sat instance ϕ is satisfiable, then 2 · (N · k − 1) cuts are
enough for the α-ICD instance.

Proof. Let (y1, . . . , yN ) be a set of satisfying assignments of ϕ. We construct a valid solution
for the α-ICD instance by specifying each “+” labeled intervals I+

1 , . . . , I+
N ·k−1.

for any i ∈ [N ], if yi = 0, interval I+
(i−1)·k+1 is chosen as

[T1(i, 1) + 2k · ((1/k) − α), T2((i − 1) · k + 1) + α],
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otherwise, it’s set as

[T2((i − 1) · k + 1) + (1 − α), T1(i, 4) + 1 − 2k · ((1/k) − α)];

for any j ≠ (i−1)·k+1 for all i ∈ [N ], interval I+
j is set to be [T2(j)+(1−α), T2(j)+M +1].

Now let’s verify that all types of agents are satisfied by the solution above.

Type-1 For any i ∈ [N ], interval I+
(i−1)·k+1 always covers exactly α fraction of the i-th type-1

agent, and any other “+” labeled intervals have no intersection with the i-th type-1 agent.
Type-2 For any j ∈ [N · k − 1], interval I+

j covers exactly α fraction of the j-th type-2 agent,
and any other “+” labeled intervals have no intersection with the j-th type-2 agent.

Variable For any i ∈ [N ], interval I+
(i−1)·k+1 always covers one of the Iv

i,0, Iv
i,1, and has no

intersection with the other one. Thus, exactly two blocks of weight α/2 from the i-th
variable agent are covered with the label “+”. The last block is always not covered.

Clause For any j ∈ [M ], exactly one of the first three blocks of the j-th clause agent is
covered, since (y1, . . . , yN ) is a set of satisfying assignment of ϕ. If α ≥ 1/3, the last
block is covered by I+

2 ; if α < 1/3, the last block is not covered. In both cases, exactly α

fraction of the j-th clause agents are covered by “+” label. ◀

In the reverse direction, we have the following characterization for any valid solution with
2 · (N · k − 1) cuts.

▶ Lemma 19. If there is a valid solution to the α-ICD instance with 2 · (N · k − 1) cuts, then
1. for any i ∈ [N ], exactly one of the Iv

i,0, Iv
i,1 is fully covered with label “+”, while the other

one is fully covered with label “−” ;
2. for any i ∈ [M ], exactly one of the first three value blocks of the clause agent i is fully

covered with the label “+”, while the other two are fully covered with the label “−”.

Proof. By the second condition in Lemma 17, we know that the last block of any variable
agents will not be covered by the “+” label. Then by the third condition in Lemma 17, we
know that the i-th variable agent could be satisfied only when one of the Iv

i,0, Iv
i,1 is fully

covered with the label “+”. This concludes our first statement.
Any one of the first three value blocks of the clause agent i would be either fully covered

with the label “+”, or fully covered with the label “−”. given by the first statement.
When α < 1/3, exactly one of the first three blocks should be fully covered with the label
“+” since the last block will never be covered.
When α ≥ 1/3, at most one of the first three blocks should be fully covered with the
label “+”, since 2 · ((1 − α)/2) > α; also, at least one of the first three blocks should be
fully covered with the label “+”, since the weight of the last block is (3α − 1)/2 < α. ◀

By Lemma 19, we could retrieve a satisfying assignment (y1, . . . , yN ) for the Exactly-1-
3Sat instance ϕ by letting yi = ℓ if interval Iv

i,ℓ is covered with label “+”. Combining with
Lemma 18, we conclude the correctness of our reduction.

6 Future Work

The number of cuts needed for α-ICD

There is still a small gap between our lower bound and upper bound (Theorem 5, 10) for
any rational ratio α that is not in the set Q∗. We believe the lower bound is tight, while the
upper bound could be further improved, e.g., by applying an appropriate Zp variant of the
Borsuk-Ulam theorem.
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Computational complexity

Given the minimal number of cuts that make α-ICD a total problem, we show the connection
of solving α-ICD with the complexity classes PPA-k in Theorem 11 when α is in the set Q∗.
To extend this result to all rational ratios, the same technique which improves the upper
bound may be required. When more cuts than necessary are available, we conjecture that
with 2n cuts, for any ratio α ∈ [0, 1], solving α-ICD will be in the intersection of PPA-p for
all prime p.

Any hardness result for α-ICD would also be of interest. α-ICD seems a promising
candidate to be a natural complete problem of classes PPA-k, while very few natural complete
problems for PPA-k are known [21]. Moreover, α-ICD is closely related to Consensus-k-
Division, as the proof of Theorem 10 builds a reduction from α-ICD to Consensus-k-
Division. The only hardness result currently known for Consensus-k-Division is that
Consensus-3-Division is PPAD-hard, given by [18].
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A Proof of Lemmas 6,7

▶ Lemma 6. Let α1 := ℓ1/k1, α2 := ℓ2/k2, α1 < α2 be two adjacent fractions. For any
fraction α := ℓ/k, α ∈ (α1, α2), we have k ≥ k1 + k2.
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Proof.

1
k1 · k2

= ℓ2

k2
− ℓ1

k1
=

( ℓ2

k2
− ℓ

k

)
+

( ℓ

k
− ℓ1

k1

)
≥ 1

k · k2
+ 1

k · k1
= k1 + k2

k · k1 · k2
.

Thus, we have k ≥ k1 + k2. ◀

▶ Lemma 7. Given a fraction α := ℓ/k, k ≥ 2, let (α1, α2) be the smallest interval satisfying
that α ∈ (α1, α2) and k1, k2 < k, where α1 := ℓ1/k1, α2 := ℓ2/k2. Then
1. α1 and α2 are adjacent;
2. ℓ = ℓ1 + ℓ2, k = k1 + k2;
3. α is adjacent to both α1, α2.

Proof. We first prove the first statement by induction on k.
Base Case k = 2: The numerator ℓ takes value 1 in this case. It’s easy to verify the

correctness as we denote 0, 1 by 0/1, 1/1 respectively.
Now for any k > 2, we prove by contradiction. Assume ℓ2 · k1 − ℓ1 · k2 = t > 1, and

consider the following three cases:
1. k1 < k2: take (α3, α4) as the smallest interval satisfying that α2 ∈ (α3, α4) and α3, α4 have

smaller denominator than that of α2. We know that α3 ≥ α1 since k1, the denominator
of α1, is also smaller than k2. By the induction hypothesis, α2 and α3 are adjacent, while
α1 and α2 are not adjacent, indicating that α3 is strictly larger than α1. Thus, either
(α1, α3) or (α3, α2) contains α, contradicting to the fact that (α1, α2) is the smallest
interval;

2. k1 > k2: this case follows from similar argument as the case of k1 < k2;
3. k1 = k2: since k > 2, we know that k1 > 1 and 0 < ℓ1 < ℓ2 < k1. Take α3 := ℓ1/(k1 − 1),

and it’s easy to verify that α3 ∈ (α1, α2). Thus, either (α1, α3) or (α3, α2) contains α, a
contradiction.

We conclude the first statement by induction. Next, we claim that k = k1 + k2; otherwise,
by the Lemma 6, we must have k > k1 + k2 and either (α1, (ℓ1 + ℓ2)/(k1 + k2)) or ((ℓ1 +
ℓ2)/(k1 + k2), α2) will contain α, which again contradicts to the fact that (α1, α2) is the
smallest interval.

Now, we argue that ℓ = ℓ1 + ℓ2. If ℓ > ℓ1 + ℓ2, then

1
k

≤ ℓ

k
− ℓ1 + ℓ2

k
<

ℓ2

k2
− ℓ1 + ℓ2

k
= 1

k2 · k
,

which is impossible; the case with ℓ < ℓ1 + ℓ2 could be ruled out with same argument.
The third statement follows from statements 1 and 2. ◀
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