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Abstract. We investigate the problem of equilibrium computation for
“large” n-player games where each player has two pure strategies. Large
games have a Lipschitz-type property that no single player’s utility is
greatly affected by any other individual player’s actions. In this paper,
we assume that a player can change another player’s payoff by at most
1
n by changing her strategy. We study algorithms having query access
to the game’s payoff function, aiming to find ε-Nash equilibria. We seek
algorithms that obtain ε as small as possible, in time polynomial in n.

Our main result is a randomised algorithm that achieves ε approach-
ing 1

8 in a completely uncoupled setting, where each player observes her
own payoff to a query, and adjusts her behaviour independently of other
players’ payoffs/actions. O(log n) rounds/queries are required. We also
show how to obtain a slight improvement over 1

8 , by introducing a small
amount of communication between the players.

1 Introduction

In studying the computation of solutions of multi-player games, we have the well-
known problem that a game’s payoff function has description length exponential
in the number of players. One approach is to assume that the game comes from
a concisely-represented class (for example, graphical games, anonymous games,
or congestion games), and another one is to consider algorithms that have query
access to the game’s payoff function.

In this paper, we study the computation of approximate Nash equilibria of
multi-player games having the feature that if a player changes her behaviour,
she only has a small effect on the payoffs that result to any other player. These
games, sometimes called large games, or Lipschitz games, have recently been
studied in the literature, since they model various real-world economic interac-
tions; for example, an individual’s choice of what items to buy may have a small
effect on prices, where other individuals are not strongly affected. Note that
these games do not have concisely-represented payoff functions, which makes
them a natural class of games to consider from the query-complexity perspective.
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It is already known how to compute approximate correlated equilibria for unre-
stricted n-player games. Here we study the more demanding solution concept of
approximate Nash equilibrium.

Large games (equivalently, small-influence games) are studied in Kalai [16]
and Azrieli and Shmaya [1]. In both of these the existence of pure ε-Nash equi-
libria for ε = γ

√
8n log(2mn) is established, where γ is the largeness/Lipschitz

parameter of the game. In particular, since we assume that γ = 1
n and m = 2 we

notice that ε = O(n−1/2) so that there exist arbitrarily accurate pure Nash equi-
libria in large games as the number of players increases. Kearns et al. [17] study
this class of games from the mechanism design perspective of mediators who aim
to achieve a good outcome to such a game via recommending actions to play-
ers. Babichenko [2] studies large binary-action anonymous games. Anonymity
is exploited to create a randomised dynamic on pure strategy profiles that with
high probability converges to a pure approximate equilibrium in O(n log n) steps.

Payoff query complexity has been recently studied as a measure of the
difficulty of computing game-theoretic solutions, for various classes of games.
Upper and lower bounds on query complexity have been obtained for bima-
trix games [6,7], congestion games [7], and anonymous games [11]. For general
n-player games (where the payoff function is exponential in n), the query com-
plexity is exponential in n for exact Nash, also exact correlated equilibria [15];
likewise for approximate equilibria with deterministic algorithms (see also [4]).
For randomised algorithms, query complexity is exponential for well-supported
approximate equilibria [3], which has since been strengthened to any ε-Nash
equilibria [5]. With randomised algorithms, the query complexity of approxi-
mate correlated equilibrium is Θ(log n) for any positive ε [10].

Our main result applies in the setting of completely uncoupled dynamics in
equilibria computation. These dynamics have been studied extensively: Hart and
Mas-Colell [13] show that there exist finite-memory uncoupled strategies that
lead to pure Nash equilibria in every game where they exist. Also, there exist
finite memory uncoupled strategies that lead to ε-NE in every game. Young’s
interactive trial and error [18] outlines completely uncoupled strategies that lead
to pure Nash equilibria with high probability when they exist. Regret testing
from Foster and Young [8] and its n-player extension by Germano and Lugosi
in [9] show that there exist completely uncoupled strategies that lead to an ε-
Nash equilibrium with high probability. Randomisation is essential in all of these
approaches, as Hart and Mas-Colell [14] show that it is impossible to achieve
convergence to Nash equilibria for all games if one is restricted to deterministic
uncoupled strategies. This prior work is not concerned with rate of convergence;
by contrast here we obtain efficient bounds on runtime. Convergence in adap-
tive dynamics for exact Nash equilibria is also studied by Hart and Mansour in
[12] where they provide exponential lower bounds via communication complex-
ity results. Babichenko [3] also proves an exponential lower bound on the rate
of convergence of adaptive dynamics to an approximate Nash equilibrium for
general binary games. Specifically, he proves that there is no k-queries dynamic
that converges to an ε-WSNE in 2Ω(n)

k steps with probability of at least 2−Ω(n)
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in all n-player binary games. Both of these results motivate the study of specific
subclasses of these games, such as “large” games.

2 Preliminaries

We consider games with n players where each player has two actions A = {0, 1}.
Let a = (ai, a−i) denote an action profile in which player i plays action ai and
the remaining players play action profile a−i. We also consider mixed strategies,
which are defined by the probability distributions over the action setA. We write
p = (pi, p−i) to denote a mixed-strategy profile where player i plays action 1 with
probability pi and the remaining players play the profile p−i. We will sometimes
abuse notation to use pi to denote i’s mixed strategy, and write pi0 and pi1 to
denote the probabilities that player i plays the action 0 and 1 respectively.

Each player i has a payoff function ui : An → [0, 1] mapping an action profile
to some value in [0, 1]. We will sometimes write ui(p) = Ea∼p [ui(a)] to denote
the expected payoff of player i under mixed strategy p. An action a is player
i’s best response to mixed strategy profile p if a ∈ argmaxj∈{0,1} ui(j, p−i).

We assume our algorithms or the players have no other prior knowledge of
the game but can access payoff information through querying a payoff oracle Q.
For each payoff query specified by an action profile a ∈ An, the query oracle will
return (ui(a))ni=1 the n-dimensional vector of payoffs to each player. Our goal is
to compute an approximate Nash equilibrium with a small number of queries. In
the completely uncoupled setting, a query works as follows: each player i chooses
her own action ai independently of the other players, and learns her own payoff
ui(a) but no other payoffs.

Definition 1 (Regret; (approximate) Nash equilibrium). Let p be a mixed
strategy profile, the regret for player i at p is

reg(p, i) = max
k∈{0,1}

E
a−i∼p−i

[ui(k, a−i)] − E
a∼p

[ui(a)]

A mixed strategy profile p is an ε-approximate Nash equilibrium if for each player
i, the regret satisfies reg(p, i) ≤ ε.

Observation. To find an exact Nash (or even, correlated) equilibrium of a large
game, in the worst case it is necessary to query the game exhaustively, even with
randomised algorithms. This uses a similar negative result for general games due
to [15], and noting that we can obtain a strategically equivalent large game, by
scaling down the payoffs into the interval [0, 1

n ].
We will also use the following useful notion of discrepancy.

Definition 2 (Discrepancy). Letting p be a mixed strategy profile, the dis-
crepancy for player i at p is

disc(p, i) =
∣∣∣∣ E
a−i∼p−i

[ui(0, a−i)] − E
a−i∼p−i

[ui(1, a−i)]
∣∣∣∣
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We will assume the following largeness condition in our games. Informally,
such largeness condition implies that no single player has a large influence on
any other player’s utility function.

Definition 3 (Large Games). A game is large if for any two distinct players
i ̸= j, any two distinct actions aj and a′

j for player j, and any tuple of actions
a−j for everyone else:

|ui(aj , a−j) − ui(a′
j , a−j)| ≤ 1

n
.

One immediate implication of the largeness assumption is the following Lip-
schitz property of the utility functions.

Lemma 1. For any player i ∈ [n], and any action j ∈ {0, 1}, the utility
ui(j, p−i) is a ( 1n )-Lipschitz function in the second coordinate p−i w.r.t. the ℓ1
norm, and the mixed strategy profile of all other players.

Estimating payoffs for mixed profiles. We can approximate the expected payoffs
for any mixed strategy profile by repeated calls to the oracle Q. In particular,
for any target accuracy parameter β and confidence parameter δ, consider the
following procedure to implement an oracle Qβ,δ:

– For any input mixed strategy profile p, compute a new mixed strategy profile
p′ = (1 − β

2 )p + (β
2 )1 such that each player i is playing uniform distribution

with probability β
2 and playing distribution pi with probability 1 − β

2 .
– Let N = 64

β3 log (8n/δ), and sample N payoff queries randomly from p, and
call the oracle Q with each query as input to obtain a payoff vector.

– Let ûi,j be the average sampled payoff to player i for playing action j.1 Output
the payoff vector (ûij)i∈[n],j∈{0,1}.

Lemma 2. For any β, δ ∈ (0, 1) and any mixed strategy profile p, the oracle
Qβ,δ with probability at least 1 − δ outputs a payoff vector (ûi)i∈[n],j∈{0,1} that
has an additive error of at most β, that is for each player i, and each action
j ∈ {0, 1},

|ui(j, p−i) − ûi,j | ≤ β.

The lemma follows from Proposition 1 of [10] and the largeness property.

Extension to Stochastic Utilities. We consider a generalisation where the utility
to player i of any pure profile a may consist of a probability distribution Da,i

over [0, 1], and if a is played, i receives a sample from Da,i. The player wants to
maximise her expected utility with respect to sampling from a (possibly mixed)
profile, together with sampling from any Da,i that results from a being chosen.
If we extend the definition of Q to output samples of the Da,i for any queried
profile a, then Qβ,δ can be defined in a similar way as before, and simulated as
above using samples from Q. Our algorithmic results extend to this setting.
1 If the player i never plays an action j in any query, set ûi,j = 0.
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3 Warm-Up: 0.25-Approximate Equilibrium

As a starting point, we will show that without any payoff queries, we could easily
give a 1

2 -approximate Nash equilibrium.

Observation. Consider the following “uniform” mixed strategy profile. Each
player puts 1

2 probability mass on each action: for all i, pi = 1
2 . Such a mixed

strategy profile is a 1
2 -approximate Nash equilibrium.

In this section, we will present two simple and query-efficient algorithms
that allows us to get a better approximation than 1

2 . Both algorithms could
be regarded as a simple refinement of the above “uniform” mixed strategy. For
simplicity of presentation, we will assume that we have access to a mixed strategy
query oracle QM that returns exact expected payoff values for any input mixed
strategy p. Our results continue to hold if we replace QM by Qβ,δ.2

Obtaining ε = 0.272. First, we show that having each player making small
adjustment from the “uniform” strategy can improve ε from 1

2 to around 0.27.
We simply let players with large regret shift more probability weight towards
their best responses. More formally, consider the following algorithm OneStep
with two parameters α,∆ ∈ [0, 1]:
– Let the players play the “uniform” mixed strategy. Call the oracle QM to

obtain the payoff values of ui(0, p−i) and ui(1, p−i) for each player i.
– For each player i, if ui(0, p−i) − ui(1, p−i) > α, then set pi0 = 1

2 + ∆ and
pi1 = 1

2 − ∆; if ui(1, p−i) − ui(0, p−i) > α, set pi1 = 1
2 + ∆ and pi0 = 1

2 − ∆;
otherwise keep playing pi = 1

2 .

Lemma 3. If we set the parameters α = 2 −
√

11/3 and ∆ =
√

11/48 − 1/4
in the instantiation of the algorithm OneStep, then the resulting mixed strategy
profile is an ε-approximate Nash equilibrium with ε ≤ 0.272.

Obtaining ε = 0.25. We now give a slightly more sophisticated algorithm than
the previous one. We will again have the players starting with the “uniform”
mixed strategy, then let players shift more weights toward their best responses,
and finally let some of the players switch back to the uniform strategy if their
best responses change in the adjustment. Formally, the algorithm TwoStep
proceeds as:
– Start with the “uniform” mixed strategy profile, and query the oracle QM for

the payoff values. Let bi be player i’s best response.
– For each player i, set the probability of playing their best response bi to be 3

4 .
Call QM to obtain payoff values for this mixed strategy profile, and let b′

i be
each player i’s best response in the new profile.

– For each player i, if bi ̸= b′
i, then resume playing pi0 = pi1 = 1

2 . Otherwise
maintain the same mixed strategy from the previous step.

Lemma 4. The mixed strategy profile output by TwoStep is an ε-approximate
Nash equilibrium with ε ≤ 0.25.
2 In particular, if we use Qβ,δ for our query access, we will get (ε+O(β))-approximate
equilibrium, with ε = 0.272, 0.25 with probability at least 1 − δ.
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4 1
8
-Approximate Equilibrium via Uncoupled Dynamics

In this section, we present our main algorithm that achieves approximate equi-
libria with ε ≈ 1

8 in a completely uncoupled setting. In order to arrive at this
we first model game dynamics as an uncoupled continuous-time dynamical sys-
tem where a player’s strategy profile updates depend only on her own mixed
strategy and payoffs. Afterwards we present a discrete-time approximation to
these continuous dynamics to arrive at a query-based algorithm for computing
( 18 + α)-Nash equilibrium with logarithmic query complexity in the number of
players. Finally, as mentioned in Sect. 2, we recall that these algorithms carry
over to games with stochastic utilities, where we can show that our algorithm
uses an essentially optimal number of queries.

Throughout the section, we will rely on the following notion of a strategy-
payoff state, capturing the information available to a player at any moment of
time.

Definition 4 (Strategy-payoff state). For any player i, the strategy-payoff
state for player i is defined as the ordered triple si = (vi1, vi0, pi) ∈ [0, 1]3, where
vi1 and vi0 are the player’s utilities for playing pure actions 1 and 0 respec-
tively, and pi denotes the player’s probability of playing action 1. Furthermore,
we denote the player’s discrepancy by Di = |vi1 − vi0| and we let p∗

i denote the
probability mass on the best response, that is if vi1 ≥ vi0, p∗

i = pi, otherwise
p∗
i = 1 − pi.

4.1 Continuous-Time Dynamics

First, we will model game dynamics in continuous time, and assume that a
player’s strategy-payoff state (and thus all variables it contains) is a differentiable
time-valued function. When we specify these values at a specific time t, we
will write si(t) = (vi1(t), vi0(t), pi(t)). Furthermore, for any time-differentiable
function g, we denote its time derivative by ġ = d

dtg. We will consider continuous
game dynamics formally defined as follows.

Definition 5 (Continuous game dynamic). A continuous game dynamic
consists of an update function f that specifies a player’s strategy update at
time t. Furthermore, f depends only on si(t) and ṡi(t). In other words, ṗi(t) =
f(si(t), ṡi(t)) for all t.

Observation. We note that in this framework, a specific player’s updates do not
depend on other players’ strategy-payoff states nor their history of play. This will
eventually lead us to uncoupled Nash equilibria computation in Sect. 4.2.

A central object of interest in our continuous dynamic is a linear sub-space
P ⊂ [0, 1]3 such that all strategy-payoff states in it incur a bounded regret.
Formally, we will define P via its normal vector n = (− 1

2 ,
1
2 , 1) so that P =

{si| si · n = 1
2}. Equivalently, we could also write P = {si | p∗

i = 1
2 (1 + Di)}.

(See Fig. 1 for a visualisation.) With this observation, it is straightforward to see
that any player with strategy-payoff state in P has regret at most 1

8 .
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pi = Pr[play 1]
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•

Fig. 1. Visualisation of P; on the red line, vi0 = vi1 so the player is indifferent and
mixes with equal probabilities; at the red points the player has payoffs of 0 and 1, and
makes a pure best response. (Color figure online)

Lemma 5. Suppose that the player’s strategy-payoff state satisfies si ∈ P, then
her regret is at most 1

8 .

Proof. This follows from the fact that a player’s regret can be expressed as
Di(1 − p∗

i ) and the fact that all points on P also satisfy p∗
i = 1

2 (1 + Di). In
particular, the maximal regret of 1

8 is achieved when Di = 1
2 and p∗

i = 3
4 .

Next, we want to show there exists a dynamic that allows all players to even-
tually reach P and remain on it over time. We notice that for a specific player, v̇i1,
v̇i0 and subsequently Ḋi measure the cumulative effect of other players shifting
their strategies. However, if we limit how much any individual player can change
their mixed strategy over time by imposing |ṗi| ≤ 1 for all i, Lemma 1 guarantees
|v̇ij | ≤ 1 for j = 0, 1 and consequently |Ḋi| ≤ 2. With these quantities bounded,
we can consider an adversarial framework where we construct game dynamics
by solely assuming that |ṗi(t)| ≤ 1, |v̇ij(t)| ≤ 1 for j = 0, 1 and |Ḋi(t)| ≤ 2 for
all times t ≥ 0.

Now assume an adversary controls v̇i0, v̇i1 and hence Ḋi, one can show that
if a player sets ṗi(t) = 1

2 (v̇i1(t)− v̇i0(t)), then she could stay on P whenever she
reaches the subspace.

Lemma 6. If si(0) ∈ P, and ṗi(t) = 1
2 (v̇i1(t) − v̇i0(t)), then si(t) ∈ P ∀ t ≥ 0.
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Theorem 1. Under the initial conditions pi(0) = 1
2 for all i, the following

continuous dynamic, Uncoupled Continuous Nash (UCN), has all play-
ers reach P in at most 1

2 time units. Furthermore, upon reaching P a player
never leaves.

ṗi(t) = f(si(t), ṡi(t)) =

⎧
⎪⎨

⎪⎩

1 if si /∈ P and vi1 ≥ vi0
−1 if si /∈ P and vi1 < vi0

1
2 (v̇i1(t) − v̇i0(t)) if si ∈ P

Proof. From Lemma 6 it is clear that once a player reaches P they never leave
the plane. It remains to show that it takes at most 1/2 time steps to reach P.

Since pi(0) = p∗
i (0) =

1
2 , it follows that if si(0) /∈ P then p∗

i (0) <
1
2 (1+Di(0)).

On the other hand, if we assume that ṗ∗
i (t) = 1 for t ∈ [0, 1

2 ], and that player
preferences do not change, then it follows that p∗

i (
1
2 ) = 1 and p∗

i (
1
2 ) ≥ 1

2 (1 +
Di( 12 )), where equality holds only if Di( 12 ) = 1. By continuity of p∗

i (t) and Di(t)
it follows that for some k ≤ 1

2 , si(k) ∈ P. It is simple to see that the same holds
in the case where preferences change.

4.2 Discrete Time-Step Approximation

The continuous-time dynamics of the previous section hinge on obtaining
expected payoffs in mixed strategy profiles, thus we will approximate expected
payoffs via Qβ,δ. Our algorithm will have each player adjusting their mixed
strategy over rounds, and each round query Qβ,δ to obtain the payoff values.

Since we are considering discrete approximations to UCN, the dynamics
will no longer guarantee that strategy-payoff states stay on the plane P. For this
reason we define the following region around P:

Definition 6. Let Pλ = {si | si · n ∈ [12 − λ, 1
2 + λ]}, with normal vector

n = (− 1
2 ,

1
2 , 1). Equivalently, P = {si | p∗

i = 1
2 (1 +Di) + c, c ∈ [−λ,λ]}.

Just as in the proof of Lemma 5, we can use the fact that a player’s regret is
Di(1 − p∗

i ) to bound regret on Pλ.

Lemma 7. The worst case regret of any strategy-payoff state in Pλ is 1
8 (1+2λ)2.

This is attained on the boundary: ∂Pλ = {si | si · n = 1
2 ± λ}

Corollary 1. For a fixed α > 0, if λ =
√
1+8α−1

2 , then Pλ attains a maximal
regret of 1

8 + α.

We present an algorithm in the completely uncoupled setting, UN(α, η),
that for any parameters α, η ∈ (0, 1] computes a ( 18 + α)-Nash equilibrium with
probability at least 1 − η.

Since pi(t) ∈ [0, 1] is the mixed strategy of the i-th player at round t we let
p(t) = (pi(t))ni=1 be the resulting mixed strategy profile of all players at round
t. Furthermore, we use the mixed strategy oracle Qβ,δ from Lemma 2 that for
a given mixed strategy profile p returns the vector of expected payoffs for all
players with an additive error of β and a correctness probability of 1 − δ.

The following lemma is used to prove the correctness of UN(α, η):
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Lemma 8. Suppose that w ∈ R3 with ∥w∥∞ ≤ λ and let function h(x) = x · n,
wheren is the normal vector ofP. Then h(x+w)−h(x) ∈ [−2λ, 2λ]. Furthermore,
if w3 = 0, then h(x+ w) − h(x) ∈ [−λ,λ].

Proof. The statement follows from the following expression:

h(x+ w) − h(x) = w · n =
1
2
(w2 − w1) + w3

We now give a formal description for UN(α, η):

1. Set λ =
√
1+8α−1

2 , ∆ = λ
4 , and N = ⌈ 2

∆⌉
2. For each player i, let pi(0) = 1

2 and v̂ij(−1) =
(
Q(∆, η

N )(p(0))
)

i,j
for j = 0, 1

3. During t ≤ N rounds, for each player i, calculate v̂ij(t) =
(
Q(∆, η

N )(p(t))
)

i,j

and let ∆v̂ij(t) = v̂ij(t) − v̂ij(t − 1) for j = 0, 1.
4. if ŝi(t) = (v̂i1(t), v̂i0(t), pi(t)) /∈ Pλ/4, then p∗

i (t + 1) = p∗
i (t) + ∆, otherwise

p∗
i (t+ 1) = p∗

i (t) +
1
2 (∆v̂i1(t) − ∆v̂i0(t))

5. return p(t)

Theorem 2. With probability 1−η, UN(α, η) correctly returns a (18+α) approx-
imate Nash equilibrium by using O( 1

α4 log
(

n
αη

)
) queries.

Proof. By Lemma 2 and union bound, we can guarantee that with probability
at least 1−η all sample approximations to mixed payoff queries have an additive
error of at most ∆ = λ

4 . We will condition on this accuracy guarantee in the
remainder of our argument. Now we can show that for each player there will be
some round k ≤ N , such that at the beginning of the round their strategy-payoff
state lies in Pλ/2. Furthermore, at the beginning of all subsequent rounds t ≥ k,
it will also be the case that their strategy-payoff state lies in Pλ/2.

The reason any player generally reaches Pλ/2 follows from the fact that in
the worst case, after increasing p∗ by ∆ for N rounds, p∗ = 1, in which case a
player is certainly in Pλ/2. Furthermore, Lemma 8 guarantees that each time p∗

is increased by ∆, the value of ŝi · n changes by at most λ
2 which is why ŝi are

always steered towards Pλ/4. Due to inherent noise in sampling, players may at
times find that ŝi slightly exit Pλ/4 but since additive errors are at most λ

4 . We
are still guaranteed that true si lie in Pλ/2.

The second half of step 4 forces a player to remain in Pλ/2 at the beginning
of any subsequent round t ≥ k. The argumentation for this is identical to that
of Lemma 6 in the continuous case.

Finally, the reason that individual probability movements are restricted to
∆ = λ

4 is that at the end of the final round, players will move their probabilities
and will not be able to respond to subsequent changes in their strategy-payoff
states. From the second part of Lemma 8, we can see that in the worst case
this can cause a strategy-payoff state to move from the boundary of Pλ/2 to the
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boundary of P 3λ
4 ⊂ Pλ. However, λ is chosen in such a way so that the worst-

case regret within Pλ is at most 1
8+α, therefore it follows that UN(α, η) returns

a 1
8 + α approximate Nash equilibrium. Furthermore, the number of queries is

(N + 1)
(
1024
λ3

log
(
8nN

η

))
=

(
1
λ
+ 1

) (
1024
λ3

log
(
8n
λη

))
.

It is not difficult to see that 1
λ = O( 1

α ) which implies that the number of queries
made is O

(
1

α4 log
(

n
αη

))
in the limit.

4.3 Logarithmic Lower Bound

As mentioned in the preliminaries section, all of our previous results extend to
stochastic utilities. In particular, if we assume that G is a game with stochastic
utilities where expected payoffs are large with parameter 1

n , then we can apply
UN(α, η) with O(log(n)) queries to obtain a mixed strategy profile where no
player has more than 1

8 + α incentive to deviate. Most importantly, for k > 2,
we can use the same methods as [10] to lower bound the query complexity of
computing a mixed strategy profile where no player has more than (12 − 1

k )
incentive to deviate.

Theorem 3. If k > 2, the query complexity of computing a mixed strategy profile
where no player has more than (12 − 1

k ) incentive to deviate for stochastic utility
games is Ω(logk(k−1)(n)). Alongside Theorem 2 this implies the query complexity
of computing mixed strategy profiles where no player has more than 1

8 incentive
to deviate in stochastic utility games is Θ(log(n)).

5 Achieving ε < 1
8
with Communication

We return to continuous dynamics to show that we can obtain a worst-case
regret of slightly less than 1

8 by using limited communication between players,
thus breaking the uncoupled setting we have been studying until now.

First of all, let us suppose that initially pi(0) = 1
2 for each player i and that

UCN is run for 1
2 time units so that strategy-payoff states for each player lie

on P = {si | p∗
i = 1

2 (1 + Di)}. We recall from Lemma 5 that the worst case
regret of 1

8 on this plane is achieved when p∗
i = 3

4 and Di = 1
2 . We say a player

is bad if they achieve a regret of at least 0.12, which on P corresponds to having
p∗
i ∈ [0.7, 0.8]. Similarly, all other players are good. We denote θ ∈ [0, 1] as the

proportion of players that are bad. Furthermore, as the following lemma shows,
we can in a certain sense assume that θ ≤ 1

2 .

Lemma 9. If θ > 1
2 , then for a period of 0.15 time units, we can allow each bad

player to shift to their best response with unit speed, and have all good players
update according to UCN to stay on P. After this movement, at most 1 − θ
players are bad.
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Proof. If i is a bad player, in the worst case scenario, Ḋi = 2, which keeps their
strategy-payoff state, si, on P. At the end of 0.15 time units however, p∗

i > 0.85,
hence they will no longer be bad. On the other hand, good players stay on P,
so at worst, all of them become bad.

Observation. After this movement, players who were bad are the only play-
ers possibly away from P and they have a discrepancy that is greater than 0.1.
Furthermore, all players who become bad lie on P.
We can now outline a continuous-time dynamic that utilises Lemma 9 to obtain
a (18 − 1

220 ) maximal regret.

1. Have all players begin with pi(0) = 1
2

2. Run UCN for 1
2 time units.

3. Measure, θ, the proportion of bad players. If θ > 1
2 apply the dynamics of

Lemma 9.
4. Let all bad players use ṗ∗

i = 1 for ∆ = 1
220 time units.

Theorem 4. If all players follow the aforementioned dynamic, no single player
will have a regret greater than 1

8 − 1
220 .

Proof. Technical details of this proof can be found in the full paper, but in
essence one shows that if ∆ is a small enough time interval (less than 0.1 to
be exact), then all bad players will unilaterally decrease their regret by at least
0.1∆ and good players won’t increase their regret by more than ∆. The time
step ∆ = 1

220 is thus chosen optimally.

As a final note, we see that this process requires one round of communication
in being able to perform the operations in Lemma 9, that is we need to know if
θ > 1

2 or not to balance player profiles so that there are at most the same number
of bad players to good players. Furthermore, in exactly the same fashion as
UN(α, η), we can discretise the above process to obtain a query-based algorithm
that obtains a regret of 1

8 − 1
220 + α < 1

8 for arbitrary α.

6 Conclusion and Further Research

We have assumed a largeness parameter of γ = 1
n , but in the full paper we extend

our techniques to γ = c
n for constant c. We can obtain approximate equilibria

approaching ε = c
8 for c ≤ 2 and ε = 1

2 − 1
2c for c > 2. In the full paper, we also

extend our techniques to games where players have k strategies.
An obvious question raised by our results is the possible improvement in the

additive approximation obtainable since pure approximate equilibria are known
to exist for these games. A slightly weaker objective than this would be the
search for well-supported approximate equilibria. It would also be interesting to
investigate lower bounds in the completely uncoupled setting. Finally, since our
algorithms are randomised, it would be interesting to see what can be achieved
using deterministic algorithms.
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