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We analyze the number of payoff queries needed to compute approximate equilibria of multi-player games.
We find that query complexity is an effective tool for distinguishing the computational difficulty of alternative
solution concepts, and we develop new techniques for upper- and lower bounding the query complexity. For
binary-choice games, we show logarithmic upper and lower bounds on the query complexity of approximate
correlated equilibrium. For well-supported approximate correlated equilibrium (a restriction where a player’s
behavior must always be approximately optimal, in the worst case over draws from the distribution) we
show a linear lower bound, thus separating the query complexity of well supported approximate correlated
equilibrium from the standard notion of approximate correlated equilibrium.

Finally, we give a query-efficient reduction from the problem of computing an approximate well-supported
Nash equilibrium to the problem of verifying a well supported Nash equilibrium, where the additional query
overhead is proportional to the description length of the game. This gives a polynomial-query algorithm
for computing well supported approximate Nash equilibria (and hence correlated equilibria) in concisely
represented games. We identify a class of games (which includes congestion games) in which the reduction
can be made not only query efficient, but also computationally efficient.
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1. PRELIMINARIES

This article compares the query complexity of alternative game-theoretic solution con-
cepts. Instead of a game G being presented in its entirety as input to an algorithm A,
we assume that A may submit queries consisting of strategy profiles and get told the
resulting payoffs to the players in G. This model is appealing when G has many play-
ers, in which case a naive representation of G would be exponentially large. Assuming
that G belongs to a known class of games G, this gives rise to the question of how
many queries are needed to find a solution, such as exact/approximate Nash/correlated
equilibrium. One can study this question is conjunction with other notions of cost, such
as runtime of the algorithm. An appealing aspect of query complexity is that it allows
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new upper and lower bounds to be obtained, providing a mathematical criterion to
distinguish the difficulty of alternative solution concepts, as discussed in more detail
in the following.

We consider queries that consist of pure-strategy profiles, and in which the answer
to any query is the payoffs that all players receive from that profile. In this work,
we mostly focus on n-player binary-action games, which have 2n pure profiles. In the
context of approximate equilibria, we use ε to denote the bound on a player’s incentive
to deviate, and we make the standard assumption that all payoffs lie in the range
[0, 1]. We are interested in algorithms with query complexity at most polynomial in n,
meaning of course that only a very small fraction of a game’s profiles may be queried.

Notation. We have n players denoted by the numbers {1, 2, . . . , n}. Let Ai be the set
of possible actions, or pure strategies, of player i, and let A = A1 × . . . × An be the
set of pure profiles. In this article, we assume that all players have the same number
m of pure strategies (i.e., |Ai| = m for all i). ui : A −→ [0, 1] denotes player i’s utility
function. Generally, G will denote a class of games, and G denotes a specific game. Gn
denotes n-player binary-choice games, in which m = 2.

1.1. Alternative Definitions of Approximate Equilibrium

We review the notions of exact and approximate correlated equilibrium (CE) and in-
troduce the definition of well-supported approximate CE.A probability distribution ψ
on A is a correlated equilibrium if for every player i, all pure strategies j, k ∈ Ai, we
have (letting (k, a−i) denote the profile a with i’s strategy replaced with k)∑

a∈A:ai= j

ψ(a)[ui(k, a−i) − ui(a)] ≤ 0. (1)

An ε-approximate correlated equilibrium (ε-CE) is a distribution ψ where for every
player i, every function f : Ai −→ Ai, we have∑

a∈A

ψ(a)[ui( f (ai), a−i) − ui(a)] ≤ ε. (2)

The preceding definition is based on swap regret from Blum and Mansour [2007],
although other definitions (e.g., based on internal regret) are possible. An alternative
definition from Hart and Mas-Colell [2000] of correlated ε-equilibrium replaces the
RHS of (1) with ε > 0. The definitions are not quite the same: an ε-CE is a correlated
ε-equilibrium, whereas a correlated ε-equilibrium need only be an mε-CE.

An ε-approximate coarse correlated equilibrium (ε-CCE) is a distribution ψ in which
for all players i, strategies j,∑

a∈A

ψ(a)[ui( j, a−i) − ui(a)] ≤ ε.

In general an ε-CE is an ε-CCE, but the converse does not hold.1 However, in the case
of binary-choice games (the class of games that we mainly consider here), an ε-CE is
an ε-CCE, whereas an ε-CCE is a 2ε-CE, and hence the two notions are basically the
same from the perspective of our interest in asymptotic query complexity in terms of n
and ε.

An ε-well-supported approximate correlated equilibrium (ε-WSCE) imposes the more
demanding requirement that after a player observes his own action, his expected gain

1For example, in the game of rock-paper-scissors, the uniform distribution over the three strategy profiles in
which both players play the same strategy is a CCE but not a CE.
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from switching to any other action is at most ε. It can be precisely defined by saying
that for any player i, strategies j, k ∈ Ai, letting pi

j = Pra∼ψ [ai = j],∑
a∈A:ai= j

ψ(a)ui(k, a−i) −
∑

a∈A:ai= j

ψ(a)ui( j, a−i) ≤ pi
jε,

which is equivalent to E[ui(k, a−i)] − E[ui( j, a−i)] ≤ ε, where the expectations with
respect to ψ are restricted to profiles where i plays j.

It may be helpful to note the following comparison with the earlier definition of
correlated ε-equilibrium. Observe that if

∑
a∈A:ai= j ψ(a) is small (meaning that it is

unlikely that in a random profile, player i plays j), then putting some given ε > 0 into
the RHS of (1) introduces more slackness than would be the case if

∑
a∈A:ai= j ψ(a) were

large. The definition of ε-WSCE corresponds to an attempt to redress this variable
slackness.

OBSERVATION 1. Let G be a game and fix ε > 0. The set of ε-WSCE of G is convex.

PROOF. Let ψ and ψ ′ be two ε-WSCE of G. We show that ψ ′′ = λψ + (1 − λ)ψ ′ is
also an ε-WSCE (for λ ∈ (0, 1)). Suppose that strategy profile s is sampled from ψ ′′
and some player i observes his action a—that is, his marginal observation of s on his
own behavior. If there were some action a′ that would pay i more than ε more (in
expectation), then one (or both) of ψ or ψ ′ would have to have that property.

For completeness, recall that ψ is a Nash equilibrium (NE) if it obeys the further
constraint that ψ is a product distribution of its restriction to the individual players.

Example 1.1. In the directed path graphical game Gn, each player i ∈ {1, 2, . . . , n}
has two actions, 0 and 1. Player 1 gets paid 1 for playing 1 and 0 for playing 0. For
i > 1, player i gets paid 1 for copying player i − 1 and 0 for playing the opposite action.

Observations about Example 1.1. In an exact NE of Gn, all players play 1 with
probability 1. Furthermore it is not hard to see that for ε < 1/2, the only ε-WSCE
requires all players to play 1 with probability 1. In an ε-NE of Gn, for small ε all
players play 1 with high probability. For example, putting ε = 1

100 , it can be proved
by induction on i that player i plays 1 with probability > 9

10 . By contrast, for any
ε > 0, there exist ε-CE where the probability that i plays 1 can decrease toward 0 as
i increases. Specifically, let z ∼ U [0, 1]; if z ∈ [rε, (r + 1)ε], let players {1, . . . , r} play 1
and let the other players play 0. It can be checked that the resulting distribution over
pure-strategy profiles is an ε-approximate CE.

These observations indicate that for some games, there are many approximate CEs
that are ruled out when the “well-supported” requirement is imposed.

1.2. Related Work

Various game-theoretic settings have been studied in which an agent’s type may be ex-
ponentially complex (raising the specter of exponential communication complexity), but
a solution may be found via a feasibly small sequence of queries to an agent about his
type. Some examples are the following. In the setting of combinatorial auctions where
buyers have valuations for bundles (subsets) of a set of items, Conen and Sandholm
[2001] present algorithms that exploit properties of valuation functions to find a good
allocation without querying the functions exhaustively. Blum et al. [2004] study (from
the learning-theory perspective) welfare-optimal allocation of items among buyers ob-
tained via value queries in which the query elicits the value a buyer places on a bundle.
Conitzer [2009] studies rank aggregation in a setting where a voter may be asked which
of two alternatives he prefers; that work makes the point that to find a winner, it is not
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always necessary to learn all voters’ complete rankings (although the query complexity
of finding an aggregate ranking is similar to that of learning all voters’ rankings).

We next discuss the more closely-related work on the search for solutions, such as
Nash/correlated equilibrium of games, via queries to their payoff function. (In the fol-
lowing, we discuss the relationship with earlier work on the topic of the communication
complexity of such solutions.) Hart and Nisan [2013], Babichenko and Barman [2013],
and Babichenko [2013] consider general n-player games, where the payoff function is
of size exponential in n, and they consider what solutions require just polynomially
many queries. This article mainly follows that line of work until Section 3.2, where
we consider games that have concise descriptions (but are otherwise unrestricted).
Fearnley et al. [2013], Fearnley and Savani [2013], and Goldberg and Turchetta
[2014] study various classes of concisely represented games; again, the aim is to find
game-theoretic solutions via few queries to the payoff function. Fearnley et al. [2013]
were the first to study such classes, and their motivation for studying payoff queries
arises from empirical game-theoretic analysis. They give query-efficient algorithms
for approximate NEs of bimatrix games, graphical games, and exact equilibria for a
class of congestion games. In Section 3.3, we obtain an efficient algorithm for approx-
imate equilibria of a slightly more general class of congestion games. Fearnley and
Savani [2014] study bimatrix games and give lower bounds for the query complexity
of approximate well-supported NEs, separately for deterministic and randomized
algorithms. Goldberg and Turchetta [2014] present bounds on the query complexity of
various classes of anonymous games.

Returning to general n-player games, the main focus of recent works is on expo-
nential (in n) lower bounds for solutions of n-player games having a constant number
m of pure strategies per player. For deterministic algorithms, Hart and Nisan [2013]
show that approximate Nash/correlated equilibria need exponentially many queries,
which motivates a focus on randomized algorithms (in this work, all algorithms are
randomized). Hart and Nisan [2013] also show that exact Nash/correlated equilibria
have exponential query complexity even with randomness, which motivates a focus
on approximate solution concepts. The main open question (noted in Hart and Nisan
[2013]) is the query complexity of ε-NE; in this article, we give a positive result2 for
the special case of concisely represented games (Theorem 3.3). Hart and Nisan [2013]
and Babichenko and Barman [2013] note that (with randomization) one can obtain
query-efficient algorithms for approximate CE by simulating regret-based algorithms.
Here, we analyze this query complexity in more detail and use it as a criterion to
distinguish the difficulty of approximate CE from well-supported approximate CE.
Babichenko [2013] shows that ε-well-supported approximate NE needs exponentially
many queries for m = 104 and ε = 10−8; it is an open question whether these constants
can be improved.

ε-WSCE is a refinement of approximate CE that is analogous to well-supported
approximate NE, studied in Kontogiannis and Spirakis [2010], Fearnley et al. [2012],
Goldberg and Pastink [2014], and Babichenko [2013]. In an ε-NE, a player’s payoff
is allowed to be up to ε worse than his best response. The motivation behind the
“well-supported” refinement is that in an ε-NE, it may still be the case that a player
allocates positive probability to some strategy whose payoff is more than ε worse than
his best response. Such behavior is disallowed in a well-supported ε-NE. Under this
more demanding definition of approximate NE, the values of ε known to be achievable
in polynomial time (in the context of bimatrix games) are accordingly higher; ε-NE
can be computed for ε slightly above 1

3 [Tsaknakis and Spirakis 2008], whereas for

2In other words, a query-efficient algorithm, but one that need not be computationally efficient.
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ε-WSNE, the best value known is slightly less than 2
3 [Fearnley et al. 2012]. For

the games studied in this article, we will see that the payoff query complexity of
ε-WSCE is strictly higher than that of ε-CE. The technique of Daskalakis et al. [2009,
Lemma 3.2] (see also Lemma 3.2 in Chen et al. [2009]) for converting approximate
NE into approximate WSNE works for NEs but not for CEs, and so we need new
upper-bounding techniques.

In the context of searching for game-theoretic equilibria, communication complexity
is the issue of how much information needs to be passed between the players, assuming
that each player initially knows only his own payoff function. Very roughly, communi-
cation complexity is an lower bound for query complexity in the sense that interaction
via payoff queries is a restricted form of communication. Hart and Nisan [2013] note
that payoff-query bounded algorithms can be efficiently converted into communication-
bounded algorithms. Communication complexity was analyzed for n-player binary-
choice games by Hart and Mansour [2010] and for bimatrix games in Goldberg and
Pastink [2014]. Lower bounds are easier to obtain in the payoff-query setting. In the
communication-bounded setting, Hart and Mansour [2010] show efficient upper bounds
for ε-CE and exponential lower bounds just for exact (pure or mixed) NEs. The commu-
nication complexity of finding an exact CE is polynomial in the number of players for a
wide class of concisely represented multiplayer games [Papadimitriou and Roughgar-
den 2008]. The approach of Papadimitriou and Roughgarden [2008] uses the ellipsoid
algorithm to compute a mixture of product distributions that constitutes a CE. The
algorithm interacts with the game using mixed-strategy payoff queries and receiving
exact answers. Note that mixed-strategy payoff queries can be approximately simulated
by randomly sampled pure-strategy payoff queries; however, we believe that the algo-
rithm of Papadimitriou and Roughgarden [2008] cannot be straightforwardly adapted
to yield an approximate CE from approximate payoffs to mixed-strategy profiles.

The connection between no-regret algorithms and equilibrium notions, including
CEs, were first noted by Freund and Schapire [1999] and Hart and Mas-Colell [2000].
For an excellent survey of this connection, see Blum and Mansour [2007]. Appendix B.3
of Hart and Mansour [2010] makes the observation that regret-minimization tech-
niques yield simple polynomial upper bounds for the communication complexity of
approximate CE. We note that this straightforward approach also gives a polynomial
upper bound on the number of payoff queries needed to compute approximate CE (but
not well-supported CE). We improve this straightforward polynomial dependence on n
to an O(log n) dependence and give a matching lower bound. To our knowledge, we are
the first to study bounds on computing well-supported CEs, which do not follow from
no-regret guarantees.

1.3. Our Results and Techniques

Section 2 gives bounds on the query complexity of ε-CE in terms of n and ε, whereas
Section 3 gives bounds on the query complexity of ε-WSCE in terms of n and ε. As
functions of the number of players n, the bounds for ε-CE are logarithmic. For ε-WSCE,
we have a linear lower bound, thus showing a separation between the two solution
concepts. The following observation is a useful starting-point.

OBSERVATION 2. For binary-choice games, the uniform distribution is a 1
2 -approximate

NE and thus also an ε-approximate CE for any ε ≥ 1
2 .

In Section 2, we show that for any ε < 1
2 , the query complexity is �(log n), showing

that the constant 1
2 in Observation 2 represents a crisp threshold at which the query

complexity becomes nontrivial.
For (non–well-supported) CEs, our algorithms for query-efficient upper bounds use

the multiplicative weights algorithm, applying it in two alternative ways. To obtain an
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upper bound that works well for the case of many strategies per player (Section 2.1),
a polynomial (in the number of players) query upper bound follows straightforwardly
from an application of multiplicative weights: the standard proof is included in the
Appendix. We note that this also yields an O(mlog m) upper bound for the problem
of computing an approximate NE in a two-player m × m zero-sum game, which is
substantially smaller than the representation size of the game matrix.

The case of many players having just two strategies (Section 2.2) is more subtle: a
straightforward application of multiplicative weights would yield a superlinear query
complexity upper bound (in the number of players n), but as we show, this linear
dependence on n is not necessary: we are instead able to achieve a logarithmic upper
bound. The reason the naive application of multiplicative weights requires a linear
number of queries is because at every round of the algorithm, it is necessary to estimate
the payoff for every action of each of the nplayers. We observe that if we had a guarantee
that at each stage of the algorithm every player was playing a mixed strategy that
placed at least �(ε) probability mass on each action, then it would be possible to
estimate the payoffs of every player simultaneously from a single sample consisting of
≈ log(n)/ε3 randomly chosen value queries. Moreover, we can enforce this condition by
having each player play according to multiplicative weights coupled with a Bregman
projection into an appropriately defined convex polytope. We show that even with this
projection, play still converges to an approximate CE. Using this technique, we obtain
quite an efficient upper bound on the query complexity of computing an ε-CE using
O(log n/ε5) queries. The lower bound of Section 2.3 shows that �(log n) queries are
indeed required for any ε < 1

2 . Theorem 2.4 contrasts the exponential lower bound for
deterministic algorithms [Babichenko and Barman 2013; Hart and Nisan 2013].

The lower bounds of Theorems 2.8 and 3.1 work by identifying distributions over the
payoff functions of the target game so that Yao’s minimax principle can be applied to
algorithms having lower query complexity. Finally, we apply Theorem 3.1 to show that
small-support approximate CEs are harder (in the query complexity sense) to find than
are larger-support approximate CEs.

Finally, we give query-efficient reductions from the problem of computing an ε-
approximate well-supported NE to the problem of verifying an ε-approximate well-
supported NE (and hence CE), where the query overhead is proportional to the descrip-
tion length of the game. Since verifying equilibria can be done query efficiently, this
gives query-efficient algorithms for computing approximate well-supported equilibria
in concisely represented games. In special classes of games (including some congestion
games) in which the payoff function can be represented as a linear function over poly-
nomially many dimensions, this reduction can be made computationally efficient as
well. The main technique is to use no-regret algorithms as mistake bounded learning
algorithms for the underlying game, which is similar to how no-regret algorithms have
been recently used in data privacy [Roth and Roughgarden 2010; Hardt and Rothblum
2010; Gupta et al. 2012]. We use the algorithms to learn a hypothesis game representa-
tion: at each stage, we compute an equilibrium of the hypothesis game and then make
polynomially many queries to check if our computed equilibrium is an equilibrium of
the real game. If it is, we are done; otherwise, we have forced the learning algorithm
to make a mistake, which we charge to its mistake bound.

2. BOUNDS FOR THE QUERY COMPLEXITY OF ε-CE

We use the multiplicative weights algorithm to get upper bounds on the query complex-
ity of coarse CE. The first one is applied to zero-sum bimatrix games, and the second
one is applied to n-player binary-action games.
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Fig. 1. Using (the naive) application of multiplicative weights to compute an approximate coarse CE.

2.1. Upper Bound for ε-Approximate Coarse Correlated Equilibrium;
Few Players, Many Strategies

As a warmup, we consider a straightforward upper bound on the query complexity of
computing approximate coarse CEs that follows from using no-regret algorithms. In
the special case of two player zero-sum games, Freund and Schapire [1999] showed
that two no-regret algorithms played against each other converge to an approximate
NE. We here observe that this approach yields an upper bound for the query complexity
of these equilibrium concepts. The proof is standard, and we include the algorithm and
the proof in the Appendix for completeness.

Theorem 2.1 identifies useful bounds in the case of m 	 n; in particular, it has an
interesting application to the case of two-player zero-sum games in Corollary 2.2.

THEOREM 2.1. Let G be a game with n players, each with m pure strategies where
m ≥ n; payoffs lie in [0, 1]. With probability 1 − nm− 1

8 , the algorithm APPROX COARSE CE
(Figure 1) finds an ε-approximate coarse CE of G using O( nmlog m

ε2 ) payoff queries.

COROLLARY 2.2. Let G be a m× m zero-sum bimatrix game. It is possible to efficiently
compute (with high probability using a randomized algorithm) an ε-NE of G using
O( mlog m

ε2 ) payoff queries.

This follows from the observation that for zero-sum bimatrix games, an ε-
approximate coarse CE ψ can be converted to a 2ε-NE by taking the product of the
marginal distributions of ψ for each player. This result was recently extended to well-
supported ε-NE [Fearnley and Savani 2014].

2.2. Upper Bound for n Players, Binary Actions

We noted at the end of Section 1.2 that no-regret algorithms can be applied directly
to yield a polynomial upper bound on the query complexity of ε-CE of binary-choice
games (more generally for ε-CCE when players have more than two actions). In this
section, we take a more sophisticated approach to show a logarithmic upper bound. We
will give a matching lower bound to show that this is optimal.

First, we give the intuition for the approach. The naive application of no-regret
algorithms gives a query complexity that is linear in the number of players n because
we must take samples to estimate the payoffs of the two actions for each of the nplayers.
The improved algorithm in this section is based on the following two optimizations:
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Fig. 2. Using multiplicative weights to compute an approximate coarse CE.

(1) If the distribution over game states induced by the mixed strategies of all n play-
ers were such that each player had probability mass at least ε on each of his two
actions, then it would be enough to take O(log(n)/ε3) samples from this joint distri-
bution to simultaneously estimate the payoffs of all n players. We formalize this in
Proposition 2.3.

(2) We can simulate play of the game in such a way so as to force each agent to play
a mixed strategy that puts weight at least ε/4 on each of their two actions. One
way to do this is to have each player play multiplicative weights, coupled with
a Bregman projection into the polytope Kε/4, where Kε/4 is the two-dimensional
probability simplex over distributions p, intersected with the linear inequalities
constraining ||p||∞ ≥ ε/4. The result is that the final empirical average of player
strategies will always place minimum weight ε/4 on any action, and each player
will have no regret to the best mixed strategy in Kε/4 (e.g., see Arora et al. [2012]).
However, because the total variation distance between any probability distribution
and Kε/4 is at most ε/2, this means that no player will have regret greater than ε/2
to any strategy. Hence, the resulting play will be an ε/2-approximate coarse CE,
and therefore an ε-approximate CE.

The algorithm is given in Figure 2. Using standard concentration bounds, we can
establish the following fact, which is proven in the Appendix.

PROPOSITION 2.3. Let s be a mixed-strategy profile of an n-player two-action game
having the property that for any player i and strategy j, i plays j with probability at
least γ . Let si(a) be the expected payoff to i when i plays a and the other players play s−i .
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Bounds for the Query Complexity of Approximate Equilibria 24:9

With probability 1 − δ, we can find, with additive error β ≤ γ /2, all si(a) values using
N payoff queries randomly sampled from s, whenever N ≥ max{ 1

γβ2 log( 8n
δ

), 8
γ

log(4n
δ

)}.
THEOREM 2.4. Let G be a game with n players, each with two actions; payoffs lie in

[0, 1]. For any ε, with probability 1 − 2
n, the algorithm APPROX COARSE CE (2) (Figure 2)

finds an ε-approximate coarse CE of G using Õ( log n
ε5 ) payoff queries.

PROOF. The algorithm APPROX COARSE CE (2) is simulating play of the n-player game
where each player would be using the multiplicative weights update algorithm with
restricted distributions of Arora et al. [2012], where each player is restricted to playing
a distribution in Kε/6—except each player is receiving noisy losses m̂i

j(t) computed from
a sample of actions rather than the true losses mi

j(t). The guarantee of the multiplicative
weights update algorithm with restricted distributions (e.g., see Theorem 2.4 in Arora
et al. [2012]) gives us (where m̂i(t) denotes the loss vector (m̂i

j(t)) j):

1
T

T∑
t=1

m̂i(t) · pi(t) ≤ min
p∈Kε/6

1
T

T∑
t=1

m̂i(t) · p + η + ln 2
ηT

.

We now make several observations. First, note that for every probability distribution
p, there exists a distribution p̂ ∈ Kε/6 such that dT V (p, p̂) ≤ ε/3, where dT V represents
the total variation distance. Therefore, since the losses m̂i(t) ∈ [0, 1], we can deduce

1
T

T∑
t=1

m̂i(t) · pi(t) ≤ min
p

1
T

T∑
t=1

m̂i(t) · p + η + ln 2
ηT

+ ε/3,

which follows from Holder’s inequality.
Similarly, as observed by Kearns et al. [2013], if we have that maxi, j,t |mi

j(t)−m̂i
j(t)| ≤

β, then we can deduce

1
T

T∑
t=1

mi(t) · pi(t) ≤ min
p

1
T

T∑
t=1

mi(t) · p + η + ln 2
ηT

+ ε/3 + 2β.

Proposition 2.3 gave conditions for the observed losses to be within β of true losses.
Applying Proposition 2.3 with β = ε/6 and γ = ε/6, we have that with probability at

least 1 − δ/T , the following value of N is sufficient for observed losses to be within β of
true losses at any iteration:

N ≥ 216
ε3 log

(
8nT

δ

)
. (3)

We therefore have

1
T

T∑
t=1

mi(t) · pi(t) ≤ min
p

1
T

T∑
t=1

mi(t) · p + η + ln 2
ηT

+ 2ε/3.

Plugging in our values for T and η bounds the regret of each player by at most

1
T

T∑
t=1

mi(t) · pi(t) − min
p

1
T

T∑
t=1

mi(t) · p ≤ ε,

which proves the theorem.
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Theorem 2.4 generalizes to mactions at the cost of a factor-m increase in sample com-
plexity. However, we focus on the two-action case, because in this case, an ε-approximate
coarse CE is a 2ε-approximate CE. This yields the following result.

COROLLARY 2.5. For binary-choice games (where each player has two pure strategies),
for any ε, with probability 1 − 1

n, the algorithm APPROX COARSE CE (2) finds an ε-CE
using Õ( log n

ε5 ) payoff queries.

2.3. Lower Bound for n Players, Binary Actions

For positive integer k > 2, we lower bound the number of queries needed to find a
( 1

2 − 1
k )-approximate CE by fixing the number of queries to be Q = �logk(k−1) n� and

applying Yao’s minimax principle. The cost of the output of algorithm A is the smallest
value of ε for which A’s output is an ε-approximate CE. We identify a distribution
over payoff functions of n-player binary-action games such that the expected cost of the
solution output by any algorithm A that uses Q queries (or fewer) is approximately 1

2 .

A distribution over payoff functions. Define the following probability distribution over
payoffs of n-player binary-choice games. Each player i ∈ [n] shall be a “type-0” player
or a “type-1” player, with a player’s type being obtained by flipping a fair coin. Let ti
be the type of player i. After types have been obtained, for each player i, construct i’s
payoff function as follows. For each strategy profile s−i of players other than i, with
probability k−1

k , player i gets paid 1 to play ti and 0 to play 1 − ti. With probability 1
k , i

gets paid 0 to play ti and 1 to play 1 − ti. Hence, for a (expected) fraction k−1
k of profiles

s−i, player i has ti as best response, with 1 − ti as the best response for the remaining
profiles s−i.

Notation. Let A be an algorithm that makes Q pure profile queries for Q = logk(k−1) n.
Let s1, . . . , sQ be the queried profiles, where s j is the j-th query in the sequence made
by A.

An important observation is that, conditional on a choice of player types, all payoff
vectors are generated independently of each other. Consider the process of generating
the payoff function as earlier and then querying it. That process is equivalent to one
where the type vector is initially generated, then the algorithm selects various pure-
strategy profiles to query, and then each time a pure-strategy profile is queried, we
flip the biased coins that produce its payoff vector. This shows a useful limitation on
how the answers to a sequence of queries can indicate what the answer will be to any
subsequent query.

PROPOSITION 2.6. For 0 ≤ j ≤ Q, let p j be the probability distribution over type vectors,
conditioned on the answers to the first j queries (i.e., the players’ payoffs for {s1, . . . , s j}).
Then p j is a product distribution, p j = ×ip

j
i , where p j

i is the probability that player i
has type 1.

PROOF. The claim follows by induction on j. Initially, p0 is the uniform distribution.
Subsequently, the payoffs for each queried profile s j are obtained by making a (biased)
coin flip independently for each player. (After the type vector has been selected, we can
assume that the payoffs for a queried pure profile are generated by making biased coin
flips independently of the results of previous queries.)

In particular, when A queries strategy profile s j , A observes a payoff for each player
i consisting of the result of acoin flip that is

—equal to 1 with probability k−1
k and 0 with probability 1

k if ti = s j
i , and

—equal to 1 with probability 1
k and 0 with probability k−1

k if ti = 1 − s j
i .
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OBSERVATION 3. We say that the payoffs for s j indicate that player i is type t ∈ {0, 1}
if i plays 1 and gets paid t, or i plays 0 and gets paid 1 − t. Let Qi

t be the number of
queries that indicate that player i is type t. It is not hard to check that Pr[ti = 1]/ Pr[ti =
0] = (k − 1)(2Qi

1−Q), where Pr[ti = t] is the probability that i has type t, conditioned on
the data.

Definition 2.7. A outputs a distribution ψ over pure-strategy profiles. Let ψu be ψ
restricted to the unqueried profiles. We will say that A has bias b for player i if on
profiles sampled from ψu, i plays 1 with probability b—that is, Ex∼ψu[xi] = b, where xi
is the action played by i in profile x.

THEOREM 2.8. Let k > 2 be an integer. Let A be a payoff-query algorithm that uses at
most logk(k−1) n queries, where n is the number of players, and outputs distribution ψ .

With probability more than 1
2 , there will exist a player i who would improve his payoff

by 1
2 − 1

k by playing some fixed strategy in {0, 1} relative to the payoff he gets in ψ .

PROOF. Assume that the payoffs for game G are generated by the distribution defined
earlier.

We identify a lower bound on the probability that any individual player i is paid 0 in
every profile in {s1, . . . , sQ} and has a type ti that is in a sense “bad” for ψ .

We start by lower bounding the probability that a given player gets paid 0 on every
query. To this end, suppose that A tries to maximize the probability that each player
gets paid at least 1. This is done by selecting s j that allocates to each player i the action
that is more likely to pay 1 to i, conditioned on the answers to s1, . . . , s j−1. However,
since i’s payoff is obtained by a coin flip that pays i zero with probability either 1

k or
k−1

k , at each query there is probability at least 1
k that i will get paid 0. Hence, with

probability at least 1
k

Q
, i is paid 0 on all queries.

Conditioned on the answers to all Q queries, we have (noting Observation 3) for any
player i that Pr[ti = 1]/ Pr[ti = 0] ≤ (k − 1)Q and similarly Pr[ti = 0]/ Pr[ti = 1] ≤
(k − 1)Q, where Pr[ti = t] is the conditional probability that ti is equal to t. Therefore,
any prediction of a player’s type has probability at least (k − 1)−Q of being incorrect,
regardless of how much that player was paid during the queries.

Consider some player i who gets paid 0 on all Q queried profiles. Let b be the bias
(Definition 2.7) for player i, and let λ be the probability that x ∼ ψ happens to be a
queried profile. Thus, ψ = λψq + (1 − λ)ψu, where ψq is a distribution over queried
profiles and ψu is a distribution over unqueried profiles.

Let p0 (respectively, p1) be the probability that x ∼ ψ is a queried profile where
i plays 0 (respectively, 1). Let p′

0 (respectively, p′
1) be the probability that x ∼ ψ is

an unqueried profile where i plays 0 (respectively, 1). Thus, p0 + p1 + p′
0 + p′

1 = 1;
p0 + p1 = λ; p′

0 = (1 − λ)(1 − b); p′
1 = (1 − λ)b.

Suppose that player i is paid 0 in all queried profiles:

—If ti = 0, then i’s expected payoff under ψ is p′
0

k−1
k + p′

1
1
k .

—If ti = 1, then i’s expected payoff under ψ is p′
1

k−1
k + p′

0
1
k .

Furthermore,

—If ti = 0 and i plays 0 against all profiles generated by ψ , i’s expected payoff is

p1 + (1 − λ)
k − 1

k
= p1 + k − 1

k
(p′

0 + p′
1).
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—If ti = 1 and i plays 1 against all profiles generated by ψ , i’s expected payoff is

p0 + (1 − λ)
k − 1

k
= p0 + k − 1

k
(p′

0 + p′
1).

Suppose that ti = 0. i can improve his expected payoff by p1 + k−1
k (p′

0 + p′
1) − (p′

0
k−1

k +
p′

1
1
k ) by playing 0 always. Suppose that ti = 1. i can improve his expected payoff by

p0 + k−1
k (p′

0 + p′
1) − (p′

1
k−1

k + p′
0

1
k ) by playing 1 always. Thus, there exists a value for ti

such that i’s regret is at least

max
{

p1 + k − 1
k

(p′
0 + p′

1) −
(

p′
0

k − 1
k

+ p′
1

1
k

)
, p0 + k − 1

k
(p′

0 + p′
1) −

(
p′

1
k − 1

k
+ p′

0
1
k

)}
,

which simplifies to

max
{

p1 + k − 2
k

p′
1, p0 + k − 2

k
p′

0

}
.

The sum of these two terms is p0 + p1 + k−2
k (p′

0 + p′
1), and since p0 + p1 + p′

0 + p′
1 = 1,

the sum of the terms is at least k−2
k , so at least one of the terms is at least k−2

2k , and
hence the maximum of them is at least k−2

2k .
For a player i to have regret at least k−2

2k , it is sufficient for the following two events
to occur: player i is paid 0 on all queried profiles, and player i turns out to have
type ti that leads to larger regret than the alternative type 1 − ti. The first of these
events occurs with probability at least 1

k
Q
, and (given the first) the second occurs

with probability at least ( 1
k−1 )Q. Therefore, for any player i, with probability at least

( 1
k(k−1) )

Q, i has regret at least k−2
2k . Thus, for n ≥ (k(k − 1))Q (i.e., Q ≤ logk(k−1) n), a bad

player exists with probability more than 1
2 . This uses the fact that for any two separate

players, the events that both conditions hold for the two players are independent.

3. BOUNDS FOR THE QUERY COMPLEXITY OF ε-WSCE

In Section 3.1, we present a lower bound that is linear in n. We then present an upper
bound in Section 3.2 that applies to the class of concisely representable games and
finds an ε-WSNE. In Section 3.3, we show that this upper bound takes the form of a
generic reduction from the problem of computing ε-WSNE to the problem of verifying
ε-WSNE and can be implemented computationally efficiently in certain games.

3.1. Lower Bound

To obtain a lower bound that applies to randomized algorithms, in a similar way to
Theorem 2.8 we define an adversarial distribution over games in Gn and argue that
given a deterministic algorithm A that uses o(n) queries, A is likely to fail to find an
ε-WSCE.

A distribution over payoff functions. Let Dn be the following distribution over Gn.
For each player i, and each bit vector b of length i − 1, let bi,b ∈ {0, 1} be obtained by
flipping a fair coin. If players 1, . . . , i − 1 play b, then i is paid bi,b ∈ {0, 1} to play 0 and
1−bi,b ∈ {0, 1} to play 1. Note that every game generated by D has a unique (pure) NE.

THEOREM 3.1. For ε < 1, the payoff query complexity of computing ε-WSCE of Gn (i.e.,
n-player two-action games with payoffs in [0, 1]) is �(n).

PROOF. For any game G in the support of Dn, observe that G has a unique (pure) NE
N . N is found by considering each player i in ascending order, and noting that each

ACM Transactions on Economics and Computation, Vol. 4, No. 4, Article 24, Publication date: August 2016.



Bounds for the Query Complexity of Approximate Equilibria 24:13

player is incentivized to select one of his actions based on the behavior of 1, . . . , i − 1,
and i’s payoffs are not a function of the behavior of i + 1, . . . , n. Moreover, N can be
seen to be the unique ε-WSCE of G.

For G ∼ Dn, let s1, . . . , s j be a sequence of query profiles for G and consider the
conditional distribution D′ on Gn that results from the answers to those queries. We
claim that D′ has the following property. Let mj be the length of the longest prefix of
players that all get paid 1 in some query in sequence s1, . . . , s j ,

mj = arg max
m

{∃q ∈ 1 . . . j : sq pays 1 to 1, . . . , m}.

Let s be the queried profile that pays 1 to players 1, . . . , mj and 0 to player mj + 1.
Consider D′ restricted to strategy profiles where players 1, . . . , mj play as in s, and
player mj + 1 plays the opposite strategy to the one he plays in s. We claim that the
resulting distribution on payoff functions for players mj + 2, . . . , n consists of Dn−(mj+1)

(renumbering the players 1, . . . , n − (mj + 1) referred to in Dn−(mj+1), to mj + 2, . . . , n).
The claim can be proved by induction on j. Define mj in terms of j as previously,

suppose that D′ has the claimed property, and consider query s j+1, and consider the
resulting value mj+1. If mj+1 = mj , then query s j+1 provides no additional information
on the payoffs to players m + 2, . . . , n, conditioned on players 1, . . . , m + 1 playing as
per the restriction of D′. Alternatively, if mj+1 > mj , then the payoffs of s j+1 shows how
players 1, . . . , mj+1 + 1 should play in N but yields no further information about the
remaining players. The claim follows.

Define the progress of query s j+1 to be equal to mj+1 − mj , the increase in the length
of the prefix of players whose behavior in N is identified due to s j+1. Then the expected
progress of each query is less than 1 + ∑

r≥0 r/2r+1 = 2. (A query can make progress by
flipping the choice of the first player who is paid 0, and further progress may be made
if subsequent players in the prefix are also paid 1. But a query will be incorrect with
probability 1

2 for each subsequent player.) Meanwhile, the total progress of all queries
required to find an ε-WSCE is n.

Babichenko et al. [2013, 2014] have recently studied the topic of computing approxi-
mate Nash/correlated equilibria that are simple in the sense of being probability distri-
butions having small support (e.g., logarithmic in the number of players or strategies).
For approximate CEs, the main open question is whether n-player two-action games
have ε-CEs whose support depends only on ε but not n. We conclude this section by not-
ing that Theorem 3.1 can be used to show (Corollary 3.2) that finding a small-support
ε-CE may sometimes require more queries than an unrestricted one. Without loss of
generality, we can view approximate CEs as uniform distributions over (multi)sets of
action profiles S: note that multiplicative weights explicitly finds CEs of this form, and
any CE can be put in this form with arbitrarily small loss in the approximation factor
by sampling. We note that multiplicative weights finds a CE with a support size |S|
that depends on n: |S| ≥ log(n)/ε2. We show that no algorithm with polylogarithmic
query complexity can find an approximate CE with support size O(1/ε) (independent
of n). Of course, such a separation is vacuous in games in which there are no ε-CEs
with support O(1/ε), but in any game that has a pure-strategy (ε)-NE, there is always
a small support CE—in particular, one with support just 1.

COROLLARY 3.2. The query complexity of computing ε-CE with support size |S| ≤ 1/ε
is �(n): strictly greater than the query complexity of computing ε-CE with support size
|S| > log(n)/ε2 for any constant ε.
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Fig. 3. Query-efficient algorithm for ε-WSNE.

PROOF. If ψ is an ε-CE that is supported over |S| strategy profiles a, then ψ is also a
|S|.ε-WSCE. This is because the probability p of any action a with ai = j with positive
probability in ψ must be at least 1/|S|.

Since Theorem 3.1 gives an �(n) lower bound for computing �(1)-WSCE, this in
particular also implies an �(n) lower bound for computing a CE with support O(1/ε).
This is in contrast to the O(log(n)/ε5) upper bound of Theorem 2.4 for computing CE
with larger support (in particular, support log(n)/ε2).

3.2. Upper Bound

We give an upper bound on the query complexity of ε-WSNE (and hence ε-WSCE)
that is polynomial in the number of players n and strategies m, together with the
description length of the target game. We leave the query complexity of ε-WSCE for
unrestricted n-player games (i.e., those that have no polynomial length description)
open. Recall that for unrestricted games, the query complexity of ε-WSNE is exponen-
tial in n [Babichenko 2013] for constant ε and m. The class of games used by Babichenko
[2013] is based on random walks on the n-dimensional hypercube; notice that to write
down a description of a generic member of this class would require a string of length
exponential in n. Thus, any polynomial query algorithm for ε-WSCE for general games
would have to (unlike our algorithm) avoid also computing ε-WSNE. Note that in con-
trast, the algorithms APPROX COARSE CE and APPROX COARSE CE (2) do not require games
to come from a concisely represented class.

Our upper bound applies just to the query complexity, and it remains an open problem
whether a computationally efficient approach exists in general. It yields a positive
result for a special case of the question of query complexity of ε-NE using randomized
algorithms [Hart and Nisan 2013].

The algorithm APPROX WSNE of Figure 3 can be viewed as a query-efficient reduction
from the problem of computing an ε-CE to the problem of verifying one using the follow-
ing “halving algorithm” approach. The “concisely representable” constraint means that
the number of n-player games is upper bounded by an exponential function of n. We
maintain a “version space,” the set of all games that are consistent with queries that
have been made so far. If we can find a query that is inconsistent with some constant
fraction of the games in the version space, then we reduce the size of the version space
by a constant fraction, and hence only polynomially many such queries are sufficient
to identify the target game. In each iteration of the algorithm, we construct a proposed
solution N (a probability distribution over strategy profiles), and we sample from it.
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We query the payoffs associated with each sample. With high probability, if N is not
a valid ε-WSNE, it will generate a sample that is inconsistent with at least half the
elements of the version space.

THEOREM 3.3. Let Gn be a class of n-player, m-strategy games whose elements can
be represented using bit strings of length at most p(n). With probability at least 1

2 , the
algorithm APPROX WSNE (Figure 3) identifies an ε-WSNE using O(nmp(n)(log p(n))/ε)
payoff queries.

PROOF. We prove that at each iteration, with high probability, either a profile is
queried that is inconsistent with at least half of the elements of V , or the algorithm
halts and outputs an ε-WSNE of the target game. Hence, the number of iterations is
at most p(n).

We consider two cases. Let G(x) denote the payoff vector for game G on profile x. Let
G∗ be the target game.

Case 1: For all i, j, Prx∼N i
j
[G∗(x) �= G′(x)] < ε

4 .
It follows from the condition of case 1 that for any i, j, the payoff that i gets for j in

response to N in game G∗, is within ε
4 of the payoff that i gets for j in response to N in

game G′.
Since N is an ε

2 -WSNE of G′, if i plays j with positive probability in N , then the
payoff i gets for j in game G′ in response to N is at most ε

2 less than the payoff i gets
for any j ′ in game G′ in response to N .

It follows that if i plays j with positive probability in N , then the payoff that i gets
for j in N in game G∗ is at most ε less than the payoff that i get for any j ′ in N in
game G∗. Hence, N is an ε-WSNE of G∗, so N constitutes an acceptable output. There
is also a small probability that some x is found for which G∗(x) �= G′(x). By construction
of G′, the payoffs resulting from the query of x are inconsistent with at least half of the
elements of V .

Case 2: For some i, j, Prx∼N i
j
[G∗(x) �= G′(x)] ≥ ε

4 .
In this case, it is not hard to check that |Si

j | is large enough that with probability
more than 1 − 1

2p(n) , Si
j contains a pure profile x whose payoffs under G∗ differ from the

payoffs under G′. By construction of G′, the query of x is inconsistent with at least half
of the elements of V .

Since there are at most p(n) iterations, the overall failure probability (an iteration
where Case 2 arises and the sample does not contain x for which G∗(x) �= G′(x)) is at
most 1

2 . The number of queries at each iteration is nm( 4
ε
) log(2p(n)).

3.3. A Class of Efficient Algorithms

In this section, we build on the ideas behind our query-efficient algorithm for finding
ε-WSNE and instantiate an efficient version of it for classes of games that have payoff
functions with concise linear representations. The motivating scenario here is that we
have convenient black-box access to a game’s payoff function: as discussed in Fearnley
et al. [2013], such a function may arise as a software program P simulating some
game of interest, and we do not understand the details of P. However, we suspect that
the function computed by P can in fact be expressed as a linear function of certain
unknown features. For example, P may represent a congestion game of a kind that we
analyze in the following. Consider how our algorithm APPROX WSNE worked:

(1) We had a mechanism to generate some hypothesis game G′ given a collection of
play profiles x queried so far.
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(2) We compute a WSNE N of G′ and query the unknown game G∗ to check if N is an
ε-WSNE of G∗. If yes, we output N . If no, we update our hypothesis G′ with the
new queries we have made and repeat.

The algorithm works because every time we compute a distribution N that is a WSNE
of G′ but not of G∗, we find a profile x that has payoff differing between G∗ and G′ by
at least ε/2: in other words, a query that witnesses that our algorithm for predicting
a hypothesis G′ made a significant mistake. Moreover, we have a polynomial upper
bound on how many mistakes our prediction algorithm can make. The running time
of the algorithm is dominated by two computations: generating the hypothesis G′ and
computing the WSNE of G′. In our general reduction from the previous section, both
are computationally expensive.

This framework suggests a more general approach. We can instantiate it with any
mistake bounded learning algorithm for player payoff functions. First, let us define the
mistake bounded model of learning for real valued functions.

Definition 3.4. A sequence of labeled examples is a collection of pairs (xi, yi) where
xi ∈ R

d is the example and yi ∈ R is the label.

A mistake bounded learning algorithm takes as input an arbitrary sequence of la-
beled examples (x1, y1), . . . , (xt, yt) generated adaptively. Its goal is to predict the label
of each example before seeing any subsequent example. Formally, a mistake bounded
learning algorithm produces a guess ŷi about the label of example i as a function of
xi and of all previously seen labeled examples: ŷi = g(x1, y1, . . . , xi−1, yi−1, xi) for some
arbitrary function g. (Crucially, g cannot depend on either the true label yi or on any
future example (x j, y j) for j > i.) Given a prediction ŷi of label yi, we say that the
learning algorithm made an ε-mistake if |yi − ŷi| ≥ ε.

It is of course not possible to accurately predict labels unless we assume some func-
tional relationship between the examples xi and their labels yi.

Definition 3.5. A set of labeled examples (x1, y1), . . . , (xt, yt) is consistent with a
function class C if there exists some function f ∈ C such that yi = f (xi) for all i.

A function f : R
d → R is linear if there exists a vector y := y f ∈ R

d such that
f (x) = 〈y f , x〉 for all x ∈ R

d. We say that a linear function f has �1 norm B, written
|| f ||1 ≤ B if ||y f ||1 ≤ B. Let LB = { f : R

d → R : ∃y : f (x) = 〈y, x〉 ∧ ||y||1 ≤ B} denote the
set of linear functions with norm bounded by B.

We say that there exists a mistake bounded learner for a class of functions C, with
mistake bound m(ε, C) if for any fixed ε, on any sequence of examples consistent with
C, the learning algorithm makes at most m(ε, C) ε-mistakes.

In this section, we will make use of the following fact (which follows from application
of standard techniques and is proven in the Appendix for completeness).

COROLLARY 3.6. There is an algorithm called MWMBOUND that is a mistake bounded
learning algorithm for the set of d-dimensional linear functions with �1 norm bounded
by B (denoted LB) with mistake bound

m(ε, LB) ≤ 4B2 log d
ε2 .

This corollary is useful whenever the payoff function for each player can be repre-
sented as some known linear function of the action profile.

Definition 3.7. An n-player game is efficiently linearizable in d dimensions with
norm B if there exists a linear function f : R

d → R defined by f (x) = 〈y f , x〉 such that
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(1) y f ∈ R
d satisfies ||y f ||1 ≤ B.

(2) There is a polynomial-time computable function φ : [n] × A → R
d such that ui(a) =

f (φ(i, a)) for all a ∈ A and i ∈ [n].
(3) For every a ∈ A and i ∈ [n], ||φ(i, a)||∞ ≤ 1.

Note that although we have defined φ in terms of pure action profiles, it naturally
extends to mixed action profiles: given a distribution s over action profiles a, we can
define φ(i, s) := Ea∼s[φ(i, a)] to be the expected value of φ when an action profile a is
drawn from s. Since f is linear, this leads to a correct representation of the expected
payoff of a.

Whenever we have a game that is efficiently linearizable in polynomially many
dimensions, we can use MWMBOUND to learn the function f as part of a query-efficient
algorithm for computing an ε-WSNE. Moreover, whenever an ε-WSNE can be efficiently
computed for every hypothesis linearization of the game, the entire algorithm will be
computationally efficient.

Specifically, suppose that we have a learning algorithm A that for any sequence
of payoff-query/answer pairs (a1, y1), . . . , (at, yt) produces a set of hypothesis utility
functions u1, . . . , un that map play profiles a to payoff values ui(a), one for each player.
(In other words, the payoff functions represent a hypothesis game G′.) Say that the
algorithm A makes a mistake with respect to a game G if it errs on its prediction
ui(x) of the payoff of some queried profile a and player i by more than ε/2. Suppose
furthermore that for any game G in a restricted class, it is guaranteed that Acan never
make more than m mistakes. We then have an algorithm for computing ε-WSNE using
only m · Q queries, where Q is the number of queries needed to check if a distribution
N is an ε-WSNE. Moreover, if algorithm A is efficient, and WSNE can be computed
efficiently for every hypothesis game G′ generated in this manner, then the reduction
is computationally efficient.

In Lemma 3.8, we identify conditions under which MWMBOUND can be used to obtain
new query bounds for certain classes of games. The approach is motivated by the algo-
rithm APPROX WSNE, in which at each step t, a game Gt is constructed, an equilibrium
N t is obtained for Gt, and if N t does not solve the target game, we find an informative
strategy profile obtained by querying responses to N t.

LEMMA 3.8. Suppose that a target game G∗ belongs to a class G of games where

(1) Any G ∈ G is efficiently linearizable with norm B, and
(2) Given any strategy profile, Q queries are sufficient to find an ε-better response for

some player, assuming one exists.

Then for target game G∗, an ε-WSNE of G∗ can be found using O(Q · B2 log(d)/ε2)
queries. Furthermore, if ε-WSNE can be computed efficiently, we also have that the
search is efficient.

PROOF. Consider the algorithm APPROX NE OF EL GAMES (Figure 4). Let f ∗ denote
the linear function corresponding to the efficient linearization of G∗. To find an ε-NE,
it is sufficient to find a game whose payoff function is given by f ′ that approximates
f ∗ in the sense that | f ′(φ(i, a)) − f ∗((φ(i, a))| ≤ ε for all i ∈ [n] and a ∈ A. To do this,
it is sufficient that | f ′(x) − f ∗(x)| ≤ ε for all x ∈ [0, 1]d. This reduces the problem to
approximately learning a linear function.

We utilize MWMBOUND to learn f ∗ in the mistake bounded model. At each step t, we
define the game Gt to be the game whose linearization is given by the current MWM-
BOUND hypothesis ht: f ′(x) = 〈x, ht〉. Since this game is fully specified, we can compute
an ε/2-WSNE N t of Gt. By hypothesis, we can verify whether N t is indeed an ε-WSNE
of the true game G∗ by making at most Q queries to G∗. At any stage t, if N t is an
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Fig. 4. Query-efficient algorithm to find ε-NE of efficiently linearizable games.

ε-WSNE, we are done. Otherwise, since N t is an ε/2-WSNE of Gt, there must be some
player i and some action profile a that results in player i playing a unilateral deviation
from N t such that either | f ′(φ(i, a)) − f ∗(φ(i, a))| ≥ ε or | f ′(φ(i,N t)) − f ∗(φ(i,N t))| ≥ ε.
This is an example on which MWMBOUND makes an ε/2-mistake. Since at each round
our algorithm gives each of these labeled examples to MWMBOUND, and by Corol-
lary 3.6, MWMBOUND can make at most O(B2 log(d)/ε2)ε/2-mistakes. This provides an
upper bound on the number of rounds that the algorithm can run. Since it makes at
most Q queries in each round, the theorem follows.

We give an example of a class of games to which the preceding lemma can be usefully
applied. These are network congestion games of the kind studied in Fearnley et al.
[2013], where the costs of edges are unknown, increasing functions of the number of
players using them, so that these costs need to be learned to compute an equilibrium.
In the case of n players sharing a directed acyclic graph with m edges, Fearnley et al.
[2013] show how an exact equilibrium can be found using mn queries. For approximate
NE, we next give a query bound dependent only on ε and the number of facilities.

Definition 3.9. An n-player congestion game is defined by m facilities F. Each player
has an action set Ai ⊆ 2F consisting of subsets of facilities. Given an action profile a,
let w(a) ∈ {0, 1, . . . , n}m denote the histogram of usage of each facility at action profile
a (i.e., w(a) j = |{i : j ∈ ai}|). Each facility j has a cost function � j : {0, 1, . . . , n} → [0, 1]
mapping the usage of that facility to a nonnegative cost. Given an action profile a,
the cost of agent i is the sum of the costs of the facilities that he is using: ci(a) =∑

j∈ai
� j(w(a) j). We write � j(0) = 0 for all facilities j.

We observe that n-player congestion games with m facilities is efficiently linearizable
with norm m in n · m dimensions. Define y ∈ R

n·m as follows: for 1 ≤ i ≤ n, 1 ≤ j ≤ m,
yi, j = � j(i) − � j(i − 1). For each player i and action profile a, define φ(i, a) ∈ R

n×m as
follows: for j ∈ ai, let φ(i, a)k, j = 1 if w(a) j ≥ k and φ(i, a)k, j = 0 otherwise. For j �∈ ai,

let φ(i, a)k, j = 0 for all 0 ≤ k ≤ n. Note that for all i: ci(a) = 〈y, φ(i, a)〉, ||y||1 ≤ m,
and ||φ(i, a)||∞ = 1 as required for an efficiently linearizable game. Hence, we have the
following theorem.
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THEOREM 3.10. Consider n-player congestion games over m facilities, where we think
of m as being a constant. Assume that each facility j has an increasing cost function
� j that takes values in [0, 1]. The number of queries needed to find ε-WSNE is at most
O(22m · m2 · log(m · n)/ε2).

PROOF. As we saw earlier, such games are efficiently linearizable with norm m in n·m
dimensions. We can therefore invoke Lemma 3.8. With regard to the value of Q, given a
specific pure profile x, to find an ε-better response for some player if it exists, it suffices
to query the cost of every action and deviation in A1 ∪ . . . ∪ An. Since each Ai ⊆ 2F ,
there are at most 22m such pairs and hence Q ≤ 22m such queries that need to be made.
Finally, efficient computation of ε-NE of these games can be done using ε-best response
dynamics—this requires making only O(n · m/ε) calls to a best-response oracle for each
player, and best responses can be computed in time 2m using a brute force search (or
using a shortest path algorithm if the game is a network routing game).

4. CONCLUSIONS AND FURTHER WORK

Query complexity provides a useful criterion for distinguishing the relative difficulty
of alternative solution concepts in game theory. Here, we have used this criterion to
formally separate the complexity of finding approximate CEs and finding approximate
well-supported CEs. We have extended the analytical toolkit for query complexity
and have proven a polynomial upper bound for computing well-supported NEs (Theo-
rem 3.3) that contrasts with exponential lower bounds in recent work, provided that
the game in question has a concise representation. We applied this idea in Section 3.3 to
get a robust and generic method for efficiently finding ε-well-supported NEs of certain
congestion games.

Our work leaves open the intriguing question of whether finding well-supported CEs
is easier (from a query complexity standpoint) than finding well-supported NEs. Is
there a polynomial upper bound for well-supported CEs for arbitrary (nonconcisely rep-
resented) games? Are there efficient game dynamics that converge to such equilibria?

APPENDIXES

A. PROOFS OF RESULTS FROM SECTION 2

THEOREM 2.1. Let G be a game with n players, each with m pure strategies where
m ≥ n; payoffs lie in [0, 1]. With probability 1 − nm− 1

8 , the algorithm APPROX COARSE CE
(Figure 1) finds an ε-approximate coarse correlated equilibrium of G using O( nmlog m

ε2 )
payoff queries.

PROOF. APPROX COARSE CE applies, for each player, the multiplicative weights algo-
rithm as presented in Arora et al. [2012]. For iteration t = 1, . . . , T , wi

j(t) denotes the
weight of player i’s action j at step t; initially, wi

j(1) = 1 for all i, j. pi(t) denotes the
probability distribution over i’s pure strategies in which the probability of a strategy is
proportional to its weight. At iteration t, each player i observes a cost vector mi(t) (each
strategy j ∈ [m] has a cost (negated payoff) mi

j(t) ∈ [−1, 0]) and weights are updated
according to the rule wi

j(t + 1) = wi
j(t)(1 − ηmi

j(t)), where η ≤ 1
2 is the learning rate

parameter.
The performance guarantee of multiplicative weights, as given in Theorem 2.1 of

Arora et al. [2012], is that after T rounds, for any strategy j of player i, we have
T∑

t=1

mi(t) . pi(t) ≤
T∑

t=1

mi
j(t) + η

T∑
t=1

|mi
j(t)| + ln m

η
. (4)
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Dividing by T and noting that |mi
j(t)| ≤ 1, we have

1
T

T∑
t=1

mi(t) . pi(t) ≤ 1
T

T∑
t=1

mi
j(t) + η + ln m

T η
. (5)

Thus, the expected cost incurred using the pi(t) distributions (the LHS) is upper
bounded by the cost that would be incurred by using any fixed strategy j (the first term
of the RHS) plus the remaining terms of the RHS.

APPROX COARSE CE obtains the costs mi(t) by sampling, for each player i, a single
pure strategy from pi(t). This gives us a pure-strategy profile s(t). nm payoff queries
are used at Step 3 to obtain the payoffs (or costs) of all responses to s(t). These values
are used for each player to update his weights. Finally, the output of the algorithm is
the uniform distribution over the elements of multiset {s(t) : 1 ≤ t ≤ T }. We show
that with high probability, the payoffs under this distribution approximate the payoffs
of

∑T
t=1 mi(t) . pi(t).

Let ci be the average cost per iteration for player i using APPROX COARSE CE, and thus
ci = 1

T

∑T
t=1 mi(t) . p̂i(t), where p̂i(t) is a unit vector with a 1 at the entry corresponding

to si(t) (defined in Step 2), sampled from p(t). Note that

E[ci] = 1
T

T∑
t=1

mi(t) . pi(t), (6)

where expectation is over random choice of si(t) ∼ pi(t) at Step 2. Azuma’s inequality
tells us that if {Xt : t = 0, 1, 2, . . .} is a martingale and |Xt − Xt−1| < ct, then for all
positive integers N and all positive reals d,

Pr[XN − X0 ≥ d] ≤ exp

(
−d2

2
∑N

t=1 c2
t

)
. (7)

Here we let Xt be the cost that player i pays at iteration t minus its expected value;
Xt = mi(t) . p̂i(t)−mi(t) . pi(t). Thus, E[Xt] = 0, and since Xt ∈ [−1, 1], we can use ct = 2
for all t.

We upper bound ci by using (7) to show that ci is (usually) not too much higher than
its expected value given in (6), which itself has the upper bound of (5). We can write

Pr[ci − E[ci] > β] = Pr[XN − X0 > Nβ] ≤ exp
(

−1
8

Nβ2
)

.

With N = T , we get the following bound for ci:

Pr

[
ci >

1
T

T∑
t=1

mi
j(t) + η + ln m

T η
+ β

]
< exp

(
−1

8
β2T

)
.

Putting T = ln m
min{ηβ,β2} , we have

Pr

[
ci >

1
T

T∑
t=1

mi
j(t) + η + β + β

]
< exp

(
−1

8
ln m

)
.

ACM Transactions on Economics and Computation, Vol. 4, No. 4, Article 24, Publication date: August 2016.



Bounds for the Query Complexity of Approximate Equilibria 24:21

The RHS is upper bounded by m− 1
8 ; by a union bound, with probability at least 1−nm− 1

8 ,
the costs of every player i obey

ci ≤ 1
T

T∑
t=1

m(t)
j + η + β + β.

Thus, to get an ε-approximate coarse CE, we need η and β to satisfy η + β + β < ε.
Using η = β = ε/3, we get T = O( ln m

ε2 ) as required (noting that nm queries are used at
each iteration).

In the following result, we use a standard bound on the probability that a sum X of
N independent random variables taking values in [0, 1] is less than its expectation μ
by some factor:

Pr[X ≤ (1 − ε)μ] ≤ exp
(

−ε2

2
μ

)
. (8)

Putting ε = 1
2 we get:

Pr[X ≤ μ/2] ≤ exp
(

−1
8

μ

)
. (9)

We will also use Hoeffding’s inequality, in the context of estimating an expected value
from samples, where values are known to lie in [0, 1]. Let μ be the expected payoff, and
let μ̂ be the empirical payoff based on N samples:

Pr[|μ − μ̂| ≥ β] ≤ 2 exp(−2β2 N). (10)

PROPOSITION 2.3. Let s be a mixed-strategy profile of an n-player two-action game,
having the property that for any player i and strategy j, i plays j with probability at
least γ . Let si(a) be the expected payoff to i when i plays a and the other players play s−i.

With probability 1−δ, we can find, with additive error β ≤ γ /2, all si(a) values, using
N payoff queries randomly sampled from s, whenever

N ≥ max
{

1
γβ2 log

(
8n
δ

)
,

8
γ

log
(

4n
δ

)}
.

PROOF. N payoff queries are obtained by sampling repeatedly from s. N is chosen to
be large enough to ensure that for each player i ∈ [n], each a ∈ {0, 1}, with probability
1 − δ/4n, we make at least N′ queries in which i plays a. In turn, N′ is large enough to
ensure that with probability 1 − δ/4n, the average payoff that player i gets for action a
is within β of the true expected payoff si(a). Using (10), it is sufficient for N′ to satisfy
2 exp(−2β2 N′) ≤ δ/4n, equivalently:

N′ ≥ 1
2β2 log

(
8n
δ

)
.

Fix i ∈ [n], a ∈ {0, 1}. Let X = ∑N
j=1 Xj, where Xj = 1 if player i plays a and 0 if i

plays 1 − a. We want X ≥ N′ with probability 1 − δ
4n.

We know that E[Xj] ≥ γ , so E[X] ≥ Nγ . Choose N large enough such that E[X] ≥ 2N′
(so we can use (9) to get a lower bound on the probability that we get N′ observations
of i playing si); it suffices to use

N ≥ 2N′/γ.
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We also want from (9) that exp(− 1
8 Nγ ) ≤ δ

4n, equivalently,

N ≥ 8
γ

log
(

4n
δ

)
.

Taken in conjunction with N ≥ 2N′/γ, we have

N ≥ max
{

2N′

γ
,

8
γ

log
(

4n
δ

)}
.

Plugging in the expression that we obtained for N′, we get the expression for N in
the statement.

B. USING MULTIPLICATIVE WEIGHTS TO LEARN LINEAR FUNCTIONS

Here we show how the multiplicative weights learning algorithm can be used as a
mistake bounded learning algorithm to learn a linear function f over a d-dimensional
space, which we refer to as MWMBOUND. The analysis follows from the standard regret
bound of multiplicative weights (e.g., see Arora et al. [2012]).

First, we formally define the mistake bounded model of learning for linear functions
f : R

d → R over a d-dimensional real valued domain.

Definition B.1. A sequence of labeled examples is a collection of pairs (xi, yi), where
xi ∈ R

d is the example and yi ∈ R is the label.

The mistake bounded learning algorithm takes as input an arbitrary sequence of
labeled examples (x1, y1), . . . , (xt, yt) generated adaptively. Its goal is to predict the label
of each example before seeing any subsequent example. Formally, a mistake bounded
learning algorithm produces a guess ŷi about the label of example i as a function of
xi and of all previously seen labeled examples: ŷi = g(x1, y1, . . . , xi−1, yi−1, xi) for some
arbitrary function g. (Crucially, g cannot depend on either the true label yi or on any
future example (x j, y j) for j > i.) Given a prediction ŷi of label yi, we say that the
learning algorithm made an ε-mistake if |yi − ŷi| ≥ ε.

It is of course not possible to accurately predict labels unless we assume some func-
tional relationship between the examples xi and their labels yi.

Definition B.2. A set of labeled examples (x1, y1), . . . , (xt, yt) is consistent with a
function class C if there exists some function f ∈ C such that yi = f (xi) for all i.

A function f : R
d → R is linear if there exists a vector y := y f ∈ R

d such that
f (x) = 〈y f , x〉 for all x ∈ R

d. We say that a linear function f has �1 norm B, written
|| f ||1 ≤ B if ||y f ||1 ≤ B. Let LB = { f : R

d → R : ∃y : f (x) = 〈y, x〉 ∧ ||y||1 ≤ B} denote the
set of linear functions with norm bounded by B.

We say that there exists a mistake bounded learner for a class of functions C, with
mistake bound m(ε, C), if for any fixed ε, on any sequence of examples consistent with
C, the learning algorithm makes at most m(ε, C) ε-mistakes.

In the following, we show that L1, the set of linear functions with �1-norm 1, is
efficiently mistake bound learnable. A scaling argument generalizes this to LB for any
finite B.

For now, let us assume that the coefficients of f are nonnegative and have L1 norm
1. (If this is not the case, we can simply reduce to this case by (a) doubling the feature
space to introduce “negative” versions of each of the variables and (b) rescaling the
function to have L1 norm 1, then scaling back afterward.) Let us also assume that for
every example x, ||x||∞ ≤ 1. (This can also be achieved by rescaling.)
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Fig. 5. Mistake bounded algorithm for learning linear functions.

THEOREM B.3. MWMBOUND is a mistake bounded learning algorithm for the set of all
unit �1 bounded linear functions L1 with mistake bound

m(ε, L1) ≤ 4 log d
ε2 .

PROOF. The algorithm is simply an invocation of the multiplicative weights update
rule with an update only on those days in which the algorithm makes an ε-mistake. It
invokes the multiplicative weights update rule with the following loss functions: when
the predicted value ŷt is too large, it uses the loss vector Lt = xt, and when the predicted
value ŷt is too small, it uses the loss vector Lt = −xt. The analysis is based on the fact
that the multiplicative weights update rule guarantees the following for any point y∗
in the simplex [Arora et al. 2012]:

T∑
t=1

〈ht, Lt〉 −
T∑

t=1

〈y∗, Lt〉 ≤ 2
√

log(d)T .

Combining the summations on the LHS, we can rewrite this as

T∑
t=1

(〈yt, Lt〉 − 〈y∗, Lt〉) ≤ 2
√

log(d)T ,

We now note two things. First, because the labeled examples are consistent with L1,
there exists some y∗ in the simplex such that for all t, yt = 〈y∗, xt〉. Second, note that we
have chosen our loss functions so that the LHS > εT . Thus, we have εT ≤ 2

√
log(d)T ,

and solving, we must have

T ≤ 4 log(d)/ε2.

We note that it is easy to extend this algorithm to learning linear functions with
�1 norm B > 1. If initially our vector y∗ has �1 norm B, then we can scale down all
examples to have �1 norm 1 and learn ŷ∗ = 1/By∗ so that we are in the unit vector case.
In this case, if we want error ε with respect to the true vector y∗, we must require error
ε/B for the scaled-down version ŷ∗. Thus, we obtain the following corollary.
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COROLLARY B.4. MWMBOUND is a mistake bounded learning algorithm for the set LB
of all linear functions with �1 norm bounded by B with mistake bound

m(ε, LB) ≤ 4B2 log d
ε2 .
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