
Journal of Discrete Algorithms 4 (2006) 567–587

www.elsevier.com/locate/jda

Utilitarian resource assignment ✩

Petra Berenbrink a,∗, Leslie Ann Goldberg b, Paul W. Goldberg b,
Russell Martin b

a School of Computing Science, Simon Fraser University,
8888 University Drive, V5A 1S6, Burnaby B.C., Canada

b Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Available online 22 July 2005

Abstract

This paper studies a resource allocation problem introduced by Koutsoupias and Papadimitriou.
The scenario is modelled as a multiple-player game in which each player selects one of a finite
number of known resources. The cost to the player is the total weight of all players who choose that
resource, multiplied by the “delay” of that resource. Recent papers have studied the Nash equilibria
and social optima of this game in terms of the L∞ cost metric, in which the social cost is taken to
be the maximum cost to any player. We study the L1 variant of this game, in which the social cost is
taken to be the sum of the costs to the individual players, rather than the maximum of these costs. We
give bounds on the size of the coordination ratio, which is the ratio between the social cost incurred
by selfish behavior and the optimal social cost; we also study the algorithmic problem of finding
optimal (lowest-cost) assignments and Nash Equilibria. Additionally, we obtain bounds on the ratio
between alternative Nash equilibria for some special cases of the problem.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Congestion game; Coordination ratio; Nash Equilibrium

1. Introduction

This paper studies the resource allocation problem introduced by Koutsoupias and Pa-
padimitriou [7]. In this problem, we are given a collection of resources such as computer

✩ This work was partially supported by the IST Program of the EU under contract numbers IST-1999-14186
(ALCOM-FT), IST-1999-14036 (RAND-APX), and NSERC Discovery Grand PIN 253645.

* Corresponding author.
1570-8667/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2005.06.009

http://www.elsevier.com/locate/jda
http://dx.doi.org/10.1016/j.jda.2005.06.009

568 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
servers, printers, or communication links, each of which is associated with a “delay”.1 We
are also given a collection of tasks, each of which is associated with a “weight” corre-
sponding to its size. Each task chooses a resource. A given resource is shared between
its tasks in such a way that each of these tasks incurs a cost corresponding to the time
until the resource has completed its work. For example, the task might model a routing
request and the resources might model parallel links of a network. If routing requests are
broken into packets and these are sent in a round-robin fashion, each request will finish at
(approximately) the time that the link finishes its work.

We assume that each task chooses its resource in a selfish manner, minimizing its own
cost. Following [7] we are interested in determining the social cost of this selfish behavior.
Previous work on this problem has measured “social cost” in terms of the L∞ metric—that
is, the longest delay incurred by any task. Our measure of social cost is the L1 metric—that
is, the average delay (over tasks). This is sometimes called the utilitarian interpretation
of social welfare, and is a standard assumption in the multi-agent system literature, for
example [3,11,15]. In many settings, the average delay may be a better measure of the
quality of a solution than the very worst delay. Thus, the L1 metric is quite natural. This
metric was also used in the model of [13] in the setting of infinitely many tasks.

We give bounds on the size of the coordination ratio, which is the ratio between the
social cost incurred by selfish behavior and the optimal social cost [7]; we also study the
algorithmic problem of finding optimal (lowest-cost) assignments. By an assignment we
mean the set of choices of resource that are made by each task. For the case of identi-
cal resources or identical tasks we obtain bounds on the ratio between alternative Nash
equilibria.

Our results show that the L1 metric behaves very different to the L∞ metric. In the case
of the L∞ metric, there always exists an optimal assignment that is also Nash, but the costs
of different Nash assignments can differ a lot. In the case of the L1 metric, the costs of any
optimal assignment and the cost of the minimum-cost Nash assignment can be arbitrarily
far away from each other, but in a lot of cases the costs of different Nash assignments can
differ only by a constant factor.

1.1. The model

Here is the model from [7] (which is introduced in the context of networks, as mentioned
above). We are given a set R of m resources with delays d1 � · · · � dm. We are also given
a set T of n tasks with weights w1, . . . ,wn. We assume that wi � 1 for all i, and we
let W = ∑n

i=1 wi denote the total task load. Each task will select one resource. Thus, an
assignment is a vector A = (A1, . . . ,An) which assigns the ith task to resource Ai ∈ R. (In
the language of game theory, an assignment associates each task with a “pure strategy”.2)
Let A = {1, . . . ,m}n denote the set of all assignments. The load of resource � in assignment

1 The delay is the reciprocal of the quantity commonly called the “speed” or “capacity” in related work. It is
convenient to work in terms of the delay, as defined here, because this simplifies our results.

2 [7] also considers mixed strategies. See Section 1.3.

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 569
A is defined to be

L(�,A) = d�

∑
i∈T : Ai=�

wi.

The load of task i in assignment A is L(Ai,A). Finally, the (social) cost of assignment A

is given by

C(A) =
∑
i∈T

L(Ai,A).

The notion of “selfish behavior” that we study comes from the game-theoretic notion of
a Nash equilibrium. An assignment A is a Nash equilibrium if and only if no task can lower
its own load by changing its choice of resource (keeping the rest of the assignment fixed).
More formally, A is said to be a Nash assignment if, for every task i and every resource �,
we have L(Ai,A) � L(�,A′), where the assignment A′ is derived from A by re-assigning
task i to resource �, and making no other change. We let N (T ,R) denote the set of all
Nash assignments for problem instance (T ,R). When the problem instance is clear from
the context, we refer to this as N . For a given problem instance, we study the coordination
ratio from [7] which is the ratio between the cost of the highest-cost Nash assignment and
the cost of the lowest-cost assignment. That is

maxN∈N C(N)

minA∈A C(A)
.

This ratio measures the extent to which the social cost increases if we use a worst-case
Nash equilibrium rather than an optimal assignment. We also study the ratio between the
lowest cost of a Nash assignment and the lowest cost of an (arbitrary) assignment and also
the ratio between the lowest cost of a Nash assignment and the highest cost of a Nash
assignment.

Note that throughout the paper we study the average cost-per-task. The reader should
not confuse this with the average cost-per-resource. The latter is trivial to optimize (it is
achieved by assigning all tasks to the link with the lowest delay) but it is not natural.

1.2. Results

1.2.1. Section 2: Coordination ratio in terms of task weight range
Theorem 2.5 in Section 2 bounds the coordination ratio in terms of the range over

which the task weights vary. In particular, suppose that all task weights wi lie in the range
[1,wmax]. Then

maxN∈N C(N)

minA∈A C(A)
� 4wmax.

Several of our results focus on the special cases in which the resource delays are identi-
cal (Section 3) or the task weights are identical (Section 4). The results are summarized as
follows.

570 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
1.2.2. Section 3: Resources with identical delays
1. (Lemma 3.2) For every n, there is a problem instance with n tasks with weights in the

range [1, n2] for which

minN∈N C(N)

minA∈A C(A)
� n

5
.

Note that this is the ratio of the best Nash cost to the optimal cost of an assignment,
hence it gives a lower bound on the coordination ratio that is proportional to

√
wmax,

where wmax is the ratio of largest to smallest task weights. This lower bound should be
contrasted with Theorem 2.5 which gives an upper bound that is proportional to wmax.
These two results show that it is variability of task weights, as opposed to resource
delays, that may lead to a big coordination ratio.

2. (Theorem 3.3) Nash assignments satisfy the following relation:

maxN∈N C(N)

minN∈N C(N)
� 3.

3. (Lemma 3.4) For every ε > 0, there is an instance satisfying

maxN∈N C(N)

minN∈N C(N)
� 5

3
(1 − ε).

The size of the problem instance depends upon ε.

1.2.3. Section 4: Tasks with identical weights
Theorem 2.5 gives an upper bound of 4 for the coordination ratio in the case of identical

weights. We also have the following results.

1. (Lemma 4.6) For any ε > 0 there is a problem instance for which

minN∈N C(N)

minA∈A C(A)
� 4

3
− ε.

2. (Theorem 4.7) The lowest-cost and highest-cost Nash assignments satisfy:

maxN∈N C(N)

minN∈N C(N)
� 4

3

which is an exact result; we show that 4/3 is obtainable for some instance.
3. (Theorems 4.2 and 4.5) We give algorithms for finding a lowest-cost assignment and a

lowest-cost Nash assignment. These algorithms run in time O(mn).

1.2.4. Section 5: Finding social optima using dynamic programming
In Section 5 we show how dynamic programming can be used to find optimal assign-

ments under the L1 metric, in either the identical-tasks case, or the identical-resources
case. The algorithms extend to the case where either the task sizes or the delays may take
a limited set of values. This extension is used to give approximation schemes for the cases
where instead of a limit on the number of distinct values, we have a limit on the ratio of
largest to smallest values.

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 571
1.3. Alternative models and related work

There are two collections of work related to our paper. The first uses a similar model,
but a different cost function. The second uses a similar cost function, but a different model.

The model that we study was introduced by Koutsoupias and Papadimitriou [7], who
initiated the study of coordination ratios. They worked in the more general setting of mixed
strategies. In a mixed strategy, instead of choosing a resource Ai , task i chooses a vector
(pi,1, . . . , pi,m) in which pi,j denotes the probability with which task i will use resource j .
A collection of mixed strategies (one strategy for each task) is a Nash equilibrium if no
task can reduce its expected cost by modifying its own probability vector. Unlike us, Kout-
soupias and Papadimitriou measure social cost in terms of the L∞ metric. Thus, the cost
of a collection of strategies is the (expected) maximum load of a resource (maximized
over all resources). Their coordination ratio is the ratio between the maximum cost (max-
imized over all Nash equilibria) divided by the cost of the optimal solution. Koutsoupias
and Papadimitriou give bounds on the coordination ratio. These bounds are improved by
Mavronicolas and Spirakis [10], and by Czumaj and Vöcking [1] who gave an asymptot-
ically tight bound. Fotakis et al. [6] consider the same model. They study the following
algorithmic problems: constructing a Nash equilibrium, constructing the worst Nash equi-
librium, and computing the cost of a given Nash equilibrium. For our purposes, we note
that the existence of at least one pure Nash assignment (as defined in Section 1.1) was
also proven in [6]. Czumaj et al. [2] give further results for the model of [7] using the
L∞ metric for a wide class of so-called simple cost functions. They call a cost function
simple if it depends only on the injected load of the resources. They also show that for
some families of simple monotone cost functions, these results can be carried over to the
L1 metric. These are qualitative results relating the boundedness of the coordination ratio
in terms of boundedness of the bicriteria ratio. The bicriteria ratio describes by how many
times the number of injected tasks must be decreased so that the worst case cost in a Nash
equilibrium cannot exceed the optimal cost for the original tasks. In contrast, here we are
studying quantitative bounds on the coordination ratio for a special case of non-simple cost
functions.

In [5] Gairing et al. study the combinatorial structure and computational complexity of
extreme Nash equilibria, i.e., equilibria that maximize or minimize the objective function.
Their results provide substantial evidence for the Fully Mixed Nash Equilibrium Conjec-
ture, which states that the worst case Nash equilibrium is the fully mixed Nash equilibrium
where each user chooses each link with positive probability. They also develop some algo-
rithms for Nashification, which is the problem of transforming an arbitrary pure strategy
profile into a pure Nash equilibrium without increasing the social cost. In [4] Feldmann et
al. give a polynomial time algorithm for Nashification and a polynomial time approxima-
tion scheme (PTAS) for computing a Nash equilibrium with minimum social cost. In [9]
Lücking et al. continue to study the Fully Mixed Nash Equilibrium Conjecture and report
substantial progress towards identifying the validity. Note that all these publications use
the L∞ metric to measure the social cost.

Roughgarden and Tardos [13] study coordination ratios in the setting of traffic routing.
A problem instance specifies the rate of traffic between each pair of nodes in an arbitrary
network. Each agent controls a small fraction of the overall traffic. Like us, Roughgarden

572 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
and Tardos use an L1 cost-measure. That is, the cost of a routing is the sum of the costs
of the agents. The model of Roughgarden and Tardos is in one sense much more general
than our model (from [7]) which corresponds to a two-node network with many parallel
links. However, most work in the model of [13] relies on the simplifying assumption that
each agent can split its traffic arbitrarily amongst different paths in the network. In our
model, this assumption would correspond to allowing a task to split itself between the
resources, dividing its weight into arbitrary proportions—a simplification which would
make our problems trivial. In particular, this simplification forces all Nash assignments to
have the same L1 cost, which is not true in the unsplittable model that we study. In fact, in
[13] it is demonstrated that if agents are not allowed to split their traffic arbitrarily but each
chooses a single path on which to route their own traffic, then the cost of a Nash assignment
can be arbitrarily larger than an optimal (lowest-cost) assignment. This is in contrast to
their elegant coordination ratio [13] for the variant that they study. Even in our model, the
splittable-task variant is useful as a proof device. In Section 2, we use the splittable-task
setting to derive a lower bound on the cost of Nash assignments in our model. For other
interesting results in the model of Roughgarden and Tardos, see [13] and [14].

Finally, we should contrast this work with [8] which (in the model from [7]) studies
“quadratic social cost”, a sum of individual costs weighted by the task weights. That mea-
sure of social cost is the same as ours in the case where all task weights are equal, but in
general leads to very different results for social optima and coordination ratio, even in the
special case of identical resources.

2. Coordination ratio in terms of task weight range

Suppose that the weights lie in the range [1,wmax]. The purpose of this section is to
prove Theorem 2.5, which shows that the coordination ratio is at most 4wmax.

Definition 2.1. A fractional assignment AF for an instance (T ,R) is a collection of real
numbers ht (�) for t ∈ T , � ∈ R, such that 0 � ht (�) � 1 and

∑
�∈R ht (�) = 1 for all t ∈ T .

If AF is a fractional assignment, the load of resource � is defined as L(�,AF) =
d�

∑
i∈T wihi(�). The cost of task i is defined as Ci(A

F) = ∑
�∈R hi(�)L(�,AF) and the

cost of AF is defined as C(AF) = ∑
i∈T Ci(A

F).
An integral assignment is a fractional assignment where all the quantities ht (�) are

equal to 0 or 1. Note that we reserve the notation A (or A(T ,R) to denote the sets of tasks
and resources) strictly for integral assignments.

Define the throughput of resource set R to be D = ∑
�∈R

1
d�

.

We use Definition 2.1 to provide a lower bound on the cost of any integral assignment
for a given instance (T ,R). We start by giving a lower bound on the cost of a fractional
assignment. The following lemma is essentially the same as Lemma 2.5 of [13].

Lemma 2.2. If all tasks have weight 1, then the optimal fractional assignment AF,opt gives
each resource a load of n/D and therefore any task t has Ct(A

F,opt) = n/D.

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 573
Proof. Let x� = ∑
i∈T hi(�). From Definition 2.1, the load of resource � is x�d�. We have:

(1)
∑
�∈R

x� = n.

Similar,

C(AF) =
∑
i∈T

Ci(A
F) =

∑
i∈T

∑
�∈R

hi(�)L(�,AF) =
∑
i∈T

∑
�∈R

hi(�)d�

∑
j∈T

hj (�)

where we have used wi = 1 in the expression for L(�,AF). Thus,

C(AF) =
∑
i∈T

∑
�∈R

hi(�)x�d� =
∑
�∈R

∑
i∈T

hi(�)x�d� =
∑
�∈R

x�d�

∑
i∈T

hi(�) =
∑
�∈R

x2
� d�.

Eq. (1) gives a linear constraint on the x� values, and we have expressed C(AF) in
terms of the x� values. To minimise C(AF) subject to (1) we use the well-known method
of Lagrange multipliers (see [12]). This means that the gradient of C(AF) and that of the
function

∑
�∈R x� must have the same direction:

∃Λ ∈ R such that ∇(
C(AF)

) = Λ∇
(∑

�∈R

x�

)
,

i.e., (2d1x1,2d2x2, . . . ,2dmxm) = (Λ,Λ, . . . ,Λ).

Hence, at the optimum we see that x� = Λ
2d�

for all �. Using (1), we then find that

x� = n
Dd�

, and L(�,AF,opt) = x�d� = n/D for all � ∈ R. Finally, for any task i

Ci(A
F,opt) =

∑
�∈R

hi(�)L(�,AF,opt) =
∑
�∈R

hi(�)
n

D
= n

D

∑
�∈R

hi(�) = n

D
. �

The above result provides a useful lower bound on the cost of any integral assignment
A. We make one refinement for the lower bound: note that if m > n, then any Nash or
optimal assignment will only use the resources having smallest delay.3 Hence an instance
(T ,R) with m > n can be modified by removing the m− n resources with largest delay. In
what follows, we shall therefore make the assumption that n � m. We next proceed to give
a bound on the coordination ratio for tasks having weights in the range [1,wmax]. We first
give a definition and an observation that will be useful to us.

Definition 2.3. Given a set R of m resources and a set of n � m tasks, we say resource � is
fast provided that d� � 2n/D, otherwise � is slow.

Given a set of tasks T , let T ∗ denote a set of tasks such that |T ∗| = |T | and each task
t ∈ T ∗ has unit weight. We first make an observation about the slow and fast resources for
the optimal fractional assignment AF,opt(T ∗,R).

3 If the number of resources is allowed to be large by comparison with the number of tasks, then the optimal
fractional assignment can be made artificially much lower than any integral assignment, by including a large
number of resources with very large delays, thereby inflating the value of D.

574 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
Observation 2.4. For any sets T ,R, in the optimal fractional assignment for the instance
(T ∗,R) we have

∑
�∈R;� fast

∑
i∈T ∗

hi(�) � n/2.

Proof. Let AF,opt denote an optimal fractional assignment. First note that
∑
�∈R

∑
i∈T ∗

hi(�) = n.

Using Lemma 2.2 (and the definition of a “slow resource”) we find that in AF,opt(T ∗,R)

each slow resource � satisfies
∑

i∈T ∗ hi(�) � 1/2. Since we assume n � m, at most n

resources are slow, so that
∑

�∈R;� slow
∑

i∈T ∗ hi(�) � n/2. The result follows from

∑
�∈R;� fast

∑
i∈T ∗

hi(�) =
∑
�∈R

∑
i∈T ∗

hi(�) −
∑

�∈R;� slow

∑
i∈T ∗

hi(�). �

Here is our bound on the coordination ratio for tasks having weights in the range
[1,wmax].

Theorem 2.5. Suppose (T ,R) is a problem instance with n tasks having weights in the
range [1,wmax] and m resources. Then

max
N∈N

C(N) � 4wmax min
A∈A

C(A).

Proof. Following our comments preceding Definition 2.3 we again assume that n � m. Let
AF (T ,R) denote the set of all fractional assignments for the instance (T ,R). As before,
we let T ∗ denote the set of unit-weight tasks, where |T ∗| = |T |. We first note that

(2)min
A∈A(T ,R)

C(A) � min
AF ∈AF (T ,R)

C(AF) � min
AF ∈AF (T ∗,R)

C(AF) = n2

D
.

The last equality is an application of Lemma 2.2 to the instance (T ∗,R). We show that in
any integral Nash assignment N , all tasks i satisfy the inequality L(Ni,N) � 4wmax(n/D).
This would then imply that

max
N∈N

C(N) = max
N∈N

∑
i∈T

L(Ni,N) � 4wmax

(
n2

D

)
.

This, together with (2), gives us the result.
Let N denote a Nash assignment. Suppose that under this assignment some resource j

satisfies

L(j,N) > 4wmax

(
n

D

)
.

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 575
We prove that N is not Nash, by finding an assignment N ′ (obtained from N) by transfer-
ring one task from resource j to some j ′ such that

L(j ′,N ′) � 4wmax

(
n

D

)
.

We start by proving there exists a fast resource j ′ such that L(j ′,N) � 2wmax(n/D). To
prove this, suppose for a contradiction that all fast resources � satisfy

(3)L(�,N) > 2wmax

(
n

D

)
.

Let AF,opt denote an optimal fractional assignment for the instance (T ∗,R). We recall
from Lemma 2.2 that L(�,AF,opt) = n/D for all resources �. Thus, if a fast resource �

satisfies (3), we must have L(�,N)/d� > 2wmaxL(�,AF,opt)/d�. This means that

(4)
∑

i∈T ;Ni=�

wi > 2wmax

∑
i∈T ∗

hi(�)

where hi(�) are the values for the optimal fractional assignment AF,opt. However, from
Observation 2.4 we know that in AF,opt

∑
�∈R;� fast

∑
i∈T ∗

hi(�) � n

2

which, with Eq. (4) implies∑
�∈R;� fast

∑
i∈T : Ni=�

wi

n

2
(2wmax) = nwmax.

This is a contradiction since the left-hand side of this inequality (which is at most the sum
of weights in the instance (T ,R)) is at most nwmax. Since we have a contradiction, we
instead conclude there exists a fast resource j ′ where

L(j ′,N) � 2wmax

(
n

D

)
.

We now show how to construct N ′ from N , thereby proving that N was not a Nash
assignment, a contradiction. Recall since j ′ is a fast resource, dj ′ � 2n/D. We consider
two cases for j ′. Let k = L(j ′,N)/dj ′ . If k � wmax, then moving one task from resource
j to resource j ′ (to get the new assignment N ′), we find that

L(j ′,N ′) � dj ′(k + wmax) � 2

(
n

D

)
(wmax + wmax) � 4wmax

(
n

D

)
.

If instead k > wmax, then moving one task from j to j ′ to get N ′, we find

L(j ′,N ′) � dj ′(k + wmax) � dj ′ · 2k = 2L(j ′,N) � 4wmax

(
n

D

)
.

In either case, we have shown that N is not a Nash assignment because we can move
one task (currently having a load greater than 4wmax(n/D)) from resource j to resource
j ′ where it has a lower load. Thus, we conclude that if N is a Nash assignment, then
L(j,N) � 4wmax(n/D) for all resources j , as desired to prove the theorem. �

576 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
3. Resources with identical delay

In this section, we restrict our attention to problem instances with identical delays, i.e.,
d1 = d2 = · · · = dm. For our cost function we see that if all of the delays are identical, we
can factor this term from the cost. Therefore, without loss of generality, we can assume
that for all i, di = 1.

Notation. Recall that W = ∑
t∈T wi denotes the total weight of tasks. Let Lavg be the

average load on a resource, that is, Lavg = 1
m

∑
�∈R L(�,A) = W/m. Note in the case of

identical (unit) delays, Lavg is the same constant value for all assignments associated with
a given problem instance (T ,R).

The following observation will be used in the proof of Theorem 3.3.

Observation 3.1. Suppose N ∈N . Every task i with wi > Lavg has its own resource (which
is not shared) in N .

Proof. Suppose to the contrary that task i shares a resource with task j . The load of task
j is at least wj + wi . There must be some resource whose load is at most the average load
Lavg, and task j would prefer to move to this resource, obtaining a new load of at most
wj + Lavg. �

The next lemma shows that in the case of identical resources, the ratio between the cost
of the minimum (and, hence, any) Nash assignment and the lowest cost of any assignment
can be arbitrarily large. In fact, our example needs just two resources to obtain this result.

Lemma 3.2. For every n > 2, there is an instance having identical resources, and n tasks
with weights in the range [1, n2] for which the following holds:

min
N∈N

C(N) � n

5
min
A∈A

C(A).

Proof. For our problem instance we take m = 2, d1 = d2 = 1, w1 = w2 = n2, and w3 =
· · · = wn = 1.

Any assignment in which tasks 1 and 2 use the same resource is in A−N because one
of these tasks could move to decrease its own load. Thus, any N ∈N will have tasks 1 and
2 on different resources, which implies C(N) � n3. On the other hand, minA∈A C(A) �
C(A∗), where A∗ is the assignment which assigns tasks 1 and 2 to resource 1 and the other
tasks to resource 2. C(A∗) = 4n2 + (n − 2)(n − 2) � 5n2. Putting these facts together, for
every N ∈N ,

C(N) � n

5
min
A∈A

C(A). �
Remark. The example from the lemma has wmax = n2 and wmin = 1, showing that in this

case C(N) �
√

wmax minA∈A C(A). Thus, the bound of Theorem 2.5 needs to be some
5

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 577
function of wmax. The example in Section 5.3 of [13] gives an observation similar to
Lemma 3.2 for the general-flow setting. The example is a four-node problem instance with
two agents. The latency functions may be chosen so that there is a Nash equilibrium which
is arbitrarily worse than the social optimum.

Lemma 3.2 shows that the cost of the best assignment and the cost of the best Nash
assignment can be arbitrarily far apart. On the other hand, we can show that the costs of
different Nash assignments are close to one another.

Theorem 3.3. For every instance with identical resources we have

max
N∈N

C(N) � 3 min
N∈N

C(N).

Proof. We first reduce the case in which T contains a task with wi > Lavg to the case in
which T does not contain such a task. Let (T ′,R′) be a problem instance derived from
(T ,R) by removing a task i with wi > Lavg and removing one resource. Then by Obser-
vation 3.1,

max
N∈N (T ,R)

C(N) = wi + max
N∈N (T ′,R′)

C(N).

Similarly,

min
N∈N (T ,R)

C(N) = wi + min
N∈N (T ′,R′)

C(N).

Thus, to prove the theorem, we only need to show

max
N∈N (T ,R)

C(N) � 3 min
N∈N (T ,R)

C(N)

for problem instances (T ,R) in which every task has wi � Lavg. Let (T ,R) be such an
instance. Consider task i having weight wi . In a Nash assignment A, the load of task i

satisfies

(5)L(Ai,A) � max{wi,Lavg/2}
since all resources must have load at least Lavg/2. (If a resource has load less than Lavg/2
then there must be a resource with load strictly larger than Lavg with at least 2 tasks on
it, because of our assumption that wt � Lavg for all tasks t . Then one of the tasks on
this heavily loaded resource would move to the other less loaded one.) Since A is a Nash
assignment, the load of task i satisfies

(6)L(Ai,A) � Lavg + wi.

The ratio of the upper bound from (6) and the lower bound from (5) is at most 3, attained
when wi = Lavg/2. Hence the ratio between total costs (which is the ratio between sums
of individual task costs) is upper bounded by 3. �

The following lemma should be compared to Theorem 3.3.

578 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
Lemma 3.4. For every ε > 0, there is an instance with identical resources such that

min
N∈N

C(N) � 3

5
(1 + ε) max

N∈N
C(N).

(The weights and number of tasks in this constructed instance are allowed to depend
upon ε.)

Proof. The number of tasks n is equal to 6M + 13 where M = 	2/ε
. T will denote a set
of tasks consisting of 6 tasks of weight 3M , 6 tasks of weight 6M , and 6M + 1 tasks of
weight 1. In this case R consists of 6 resources. Let N(1) be the following Nash assignment:

Resource Tasks/Resource Cost/Resource

1 6M + 1 tasks, each of weight 1 6M + 1
2,3,4 2 tasks, each of weight 6M 12M

5,6 3 tasks, each of weight 3M 9M

Then C(N(1)) = (6M + 1) · (6M + 1) + 6 · 12M + 6 · 9M = 36M2 + 138M + 1. Let N(2)

be the following Nash assignment:

Resource Tasks/Resource Cost/Resource

1,2,3,4,5 1 task of weight 6M; 1 task of weight 3M; M tasks of weight 1 10M

6 1 task of weight 6M; 1 task of weight 3M; M + 1 tasks of weight 1 10M + 1

In this case we have C(N(2)) � n · 10M = (6M + 13)10M .

minN∈N C(N)

maxN∈N C(N)
� C(N(1))

C(N(2))
� 36M2 + 138M + 1

10M(6M + 13)

� 3

5

(
1 + 11

6M + 13

)
� 3

5

(
1 + 11

12
ε

+ 13

)
� 3

5
(1 + ε) �

4. Tasks with identical weights

In this section, we turn our attention to instances in which the weights of the tasks are
identical, but the delays may be diverse. Section 4.1 is algorithmic in nature. There, we
present an algorithm that constructs a lowest-cost assignment and an algorithm for finding
a Nash assignment with lowest possible cost. In Section 4.2, we compare the cost of Nash
assignments to the cost of the best-possible assignment and we compare the cost of the
best Nash assignment to the cost of the worst. The comparisons use structural observations
arising from the algorithms in Section 4.1.

Definitions. Without loss of generality, we assume that each task has unit weight. Recall
that d1 � d2 � · · · � dm. In this section, we use alternative notation to represent an assign-
ment. In particular, an assignment will be denoted as n̄ = 〈n1, . . . , nm〉, where n� is the
number of tasks assigned to resource �. Thus L(�, n̄) = n�d� and C(n̄) = ∑

�(n
2
�d�). Note

that an assignment n̄ is a Nash assignment if and only if nidi � (nj + 1)dj for all i, j .

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 579
4.1. Algorithmic results

We start with a structural observation about lowest-cost assignments.

Lemma 4.1. Suppose that n̄ is a lowest-cost assignment for problem instance (T ,R). Let
(T ′,R) be the problem instance derived from (T ,R) by adding one task. Let k be any
resource that minimizes the quantity (2nk + 1)dk . Let ψ̄ be the assignment for (T ′,R)

which agrees with n̄ except that ψk = nk + 1. Then ψ̄ is a lowest-cost assignment for
(T ′,R).

Proof. We first argue that the problem instance (T ′,R) has a lowest-cost assignment ν̄

with νk � ψk . To see this, suppose that σ̄ is a lowest-cost assignment for (T ′,R) with
σk < ψk . Let j be a resource with σj > ψj . Let ν̄ be the assignment for (T ′,R) that agrees
with σ̄ except that νk = σk + 1 and νj = σj − 1. Then

C(ν̄) = C(σ̄) + (
(σk + 1)2 − σ 2

k

)
dk + (

(σj − 1)2 − σ 2
j

)
dj

= C(σ̄) + (2σk + 1)dk − (2σj − 1)dj

(7)� C(σ̄) + (2nk + 1)dk − (2σj − 1)dj

(8)� C(σ̄) + (2nj + 1)dj − (2σj − 1)dj

(9)� C(σ̄) + (2nj + 1)dj − (2nj + 1)dj

= C(σ̄),

where (7) follows from the upper bound on σk , (8) comes from the choice of k, and (9)
comes from the choice of j . So by iterating the above argument, we can take ν̄ to be a
lowest-cost assignment for (T ′,R) satisfying νk � ψk .

Suppose now that C(ν̄) < C(ψ̄). Let ȳ be the assignment for (T ,R) that agrees with ν

on resources � = k and has yk = νk − 1. Then

C(ψ̄) = C(n̄) + (
ψ2

k − n2
k

)
dk � C(ȳ) + (

ψ2
k − n2

k

)
dk

= C(ȳ) + (2nk + 1)dk � C(ȳ) + (2νk − 1)dk

= C(ȳ) + (
ν2
k − (νk − 1)2)dk = C(ν̄),

where the first inequality follows from the optimality of n̄, giving a contradiction to our as-
sumption on the costs of ν̄ and ψ̄ . Therefore ψ̄ is a lowest-cost assignment for (T ′,R). �

Theorem 4.2 follows directly from Lemma 4.1.

Theorem 4.2. Let (T ,R) be a problem instance with n � 1 tasks and m resources. Al-
gorithm FindOpt (see Fig. 1) constructs a lowest-cost assignment for (T ,R) in O(nm)

time.

If n = �(m) then the algorithm can be sped up to O(n logm) by using, for example,
a heap to store the queue of resources. A similar improvement can be made to algorithm
FindOptNash, which follows. The following lemmas give information about the structure
of Nash assignments.

580 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
FindOpt(T,R)

1. Set ni = 0 for i = 1, . . . ,m.
2. For τ = 1, . . . , n

(a) Choose a resource k so as to minimize (2nk + 1)dk .
(b) Increment nk .

3. Return n̄, which is a lowest-cost assignment for (T ,R).

Fig. 1. An algorithm for constructing a lowest-cost assignment for a problem instance (T ,R) with n � 1 tasks
and m resources.

FindOptNash(T,R)

1. Set ni = 0 for i = 1, . . . ,m.
2. For τ = 1, . . . , n

(a) Let K be the set of resources k that minimize (nk + 1)dk .
(b) Choose k ∈ K so as to minimize nk .
(c) Increment nk .

3. Return n̄, which is a lowest-cost assignment in N (T ,R).

Fig. 2. An algorithm for constructing a lowest-cost Nash assignment for a problem instance (T ,R) with n � 1
tasks and m resources.

Lemma 4.3. If ν̄ ∈ N (T ,R) and ρ̄ ∈ N (T ,R) then, for any j ∈ R, |νj − ρj | � 1.

Proof. Suppose ρ� > ν�. Let k be a resource such that ρk < νk . Then since ρ̄ and ν̄ are
Nash assignments, ρ�d� � (ρk + 1)dk � νkdk � (ν� + 1)d�, so ρ� � ν� + 1. �
Lemma 4.4. Suppose n̄ ∈N (T ,R). If ni > nj then di � dj .

Proof. Suppose to the contrary that ni > nj and di > dj . Then (nj + 1)dj < nidi , so n̄ is
not a Nash assignment. �
Theorem 4.5. Let (T ,R) be a problem instance with n � 1 tasks and m resources. Algo-
rithm FindOptNash (see Fig. 2) constructs a lowest-cost assignment in N (T ,R) in O(nm)

time.

Proof. First note that the algorithm maintains the invariant that the assignment for tasks
1, . . . , j on resources in R is a Nash assignment. This follows from the fact that k is
chosen so as to minimize (nk + 1)dk . We prove by induction on n that the constructed
assignment has lowest cost amongst Nash assignments. The base case is n = 1. For the in-
ductive step, let n̄ be the (optimal) Nash assignment for a problem instance (T ,R) with
n tasks constructed by the algorithm. Derive (T ′,R) from (T ,R) by adding one task.
Let ν̄ be the assignment constructed by FindOptNash(T’,R). Let i be the resource such
that νi = ni + 1. Suppose for contradiction that ρ̄ ∈ N (T ′,R) satisfies C(ρ̄) < C(ν̄). By
Lemma 4.3, there are three cases.

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 581
Case 1: ρi = νi = ni + 1. Since C(ρ̄) < C(ν̄) there are resources j and � in R such that
ρj = νj − 1 and ρ� = ν� + 1 and

(10)ρ2
j dj + ρ2

� d� < ν2
j dj + ν2

� d� = n2
j dj + n2

�d�.

Let ψ̄ be the assignment constructed by the algorithm just before the nj th task is assigned
to resource j . Then

(11)(ψ� + 1)d� � (n� + 1)d� = ρ�d� � (ρj + 1)dj = njdj = (ψj + 1)dj ,

where the second inequality follows from the fact that ρ̄ is a Nash assignment. Because
the algorithm chose resource j rather than resource �, all of the inequalities in Eq. (11) are
equalities so

(12)njdj = (n� + 1)d�.

Furthermore, by step 2b of the algorithm, ψj � ψ� so nj − 1 = ψj � ψ� � n� which,
together with Eq. (12) implies

(13)dj � d�.

Finally, the following calculation contradicts Eq. (10):

ρ2
j dj + ρ2

� d� = (nj − 1)2dj + (n� + 1)2d�

= n2
j dj + n2

�d� + (2n� + 1)d� − (2nj − 1)dj

= n2
j dj + n2

�d� + 2(n� + 1)d� − (2nj − 1)dj − d�

= n2
j dj + n2

�d� + 2njdj − (2nj − 1)dj − d�

� n2
j dj + n2

�d�.

The final equality follows from (12) and the inequality follows from (13).
Case 2: ρi = νi − 1 = ni . We will construct an assignment σ̄ ∈ N (T ′,R) with C(σ̄) �

C(ρ̄) and σi = νi . Case 1 then applies to σ̄ . Let j be a resource with ρj > νj , so by
Lemma 4.3 ρj = νj + 1. Since ν̄ is a Nash assignment,

(14)(ni + 1)di = νidi � (νj + 1)dj = (nj + 1)dj .

Since ρ̄ is a Nash assignment,

(15)(nj + 1)dj = ρjdj � (ρi + 1)di = νidi = (ni + 1)di .

Inequalities (14) and (15) together imply

(16)(ni + 1)di = (nj + 1)dj

and

(17)(ρi + 1)di = ρjdj .

Since the algorithm chose to assign the last task in (T ′,R) to resource i rather to resource
j (in step 2b), we have ni � nj . Lemma 4.4 and Eq. (16) imply that di � dj .

Let σ̄ be the assignment that agrees with ρ̄ except σi = ρi +1 and σj = ρj −1. Eq. (17)
implies the following facts since ρ̄ is a Nash assignment:

582 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
1. for � /∈ {i, j}, (ρi + 1)di = ρjdj � (ρ� + 1)d�,
2. for � /∈ {i, j}, ρjdj = (ρi + 1)di � ρ�d�.

The first of these implies that σidi � (σ� + 1)d� and the second implies that (σj + 1)dj �
σ�d� for all �. Thus, σ is a Nash assignment. The argument that C(σ̄) � C(ρ̄) is exactly
the same as the end of case 1.

C(σ̄) − C(ρ̄) = (
σ 2

i − ρ2
i

)
di + (

σ 2
j − ρ2

j

)
dj

= (2ρi + 1)di − (2ρj − 1)dj

= 2ρjdj − di − (2ρj − 1)dj

= −di + dj

� 0,

where the second-to-last equality uses Eq. (17).
Case 3: ρi = νi + 1 = ni + 2. As in case 2, we construct an assignment σ̄ ∈ N (T ′,R)

with C(σ̄) � C(ρ̄) and σi = νi . The argument is similar to case 2, but is included for
completeness. Let j be a resource with ρj < νj , so by Lemma 4.3 ρj = νj − 1. Since ν̄ is
a Nash assignment,

(18)njdj = νjdj � (νi + 1)di = (ni + 2)di .

Since ρ̄ is a Nash assignment,

(19)(ni + 2)di = ρidi � (ρj + 1)dj = njdj .

Inequalities (18) and (19) together imply

(20)(ni + 2)di = ρidi = (ρj + 1)dj = njdj .

Let σ̄ be the assignment that agrees with ρ̄ except σi = ρi −1 and σj = ρj +1. Eq. (20)
implies the following facts since ρ̄ is a Nash assignment.

1. for � /∈ {i, j}, (ρj + 1)dj = ρidi � (ρ� + 1)d�,
2. for � /∈ {i, j}, ρidi = (ρj + 1)dj � ρ�d�.

The first of these implies that σjdj � (σ� + 1)d� and the second implies that (σi + 1)di �
σ�d�. Thus, σ is a Nash assignment. Finally,

C(σ̄) − C(ρ̄) = (
σ 2

i − ρ2
i

)
di + (

σ 2
j − ρ2

j

)
dj

= (
(ni + 1)2 − (ni + 2)2)di + (

n2
j − (nj − 1)2)dj

= (2nj − 1)dj − (2ni + 3)di

= njdj + (nj − 1)dj − (ni + 2)di − (ni + 1)di

= (nj − 1)dj − (ni + 1)di

� njdj − (ni + 1)di

� 0,

since n̄ is a Nash assignment. Note that we use Eq. (20) in the last equality.

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 583
From the three cases together we see that the algorithm FindOptNash indeed finds an
optimal Nash assignment. �
4.2. Comparison of optimal and Nash costs

Our first result shows that even for identical tasks the minimum cost of a Nash assign-
ment can be larger then the optimal cost.

Lemma 4.6. With identical task weights, for all ε > 0 there is an instance for which

min
N∈N

C(N) �
(

4

3
− ε

)
min
A∈A

C(A).

Proof. Consider the instance with m = 2, d1 = 1/2, d2 = (1 + ε), n = 2, w1 = 1 and
w2 = 1. There are three assignments. The assignment n̄ = 〈2,0〉 has L(1, n̄) = 1 and
C(n̄) = 2. This assignment is a Nash assignment, because moving one of the tasks to re-
source 2 would give it a new load of 1+ ε. The assignment ρ̄ = 〈1,1〉 has L(1, ρ̄) = (1/2),
L(2, ρ̄) = 1 + ε and C(ρ̄) = 1.5 + ε. This assignment is not a Nash assignment, because
the task on resource 2 could move to resource 1 for a new load of 1. Finally, the assignment
ψ̄ = 〈0,2〉 has L(2, ψ̄) = 2(1 + ε). It is not a Nash assignment, because either task could
move to resource 1 for a new load of 1/2. Thus, n̄ is the only member of N and

C(n̄) �
(

2

1.5 + ε

)
min
A∈A

C(A) �
(

4

3
− ε

)
min
A∈A

C(A). �
In the example from the proof of Lemma 4.6 there is only one Nash assignment, and

its cost is almost 4/3 times the cost of the best assignment. If we do the same construction
with ε = 0, we obtain an instance with two different Nash equilibria that differ in cost from
each other by a factor 4/3. The following theorem shows that 4/3 is in fact the largest
ratio obtainable between alternative Nash equilibria for any problem instance where task
weights are identical.

Theorem 4.7. Suppose the tasks weights are identical. For the ratio between the lowest-
cost Nash assignment and the highest-cost Nash assignments we have

max
N∈N

C(N) � 4

3
min
N∈N

C(N).

Proof. Suppose that n̄ and ρ̄ are distinct assignments in N (T ,R). Suppose that � is a
resource for which n� > ρ�. By Lemma 4.3, n� = ρ� + 1. Also, there is a resource �′ for
which n�′ < ρ�′ . Again, by Lemma 4.3, n�′ + 1 = ρ�′ . We will show that

(21)ρ2
� d� + ρ2

�′d�′ � 4

3

(
n2

�d� + n2
�′d�′

)
,

which proves the theorem since the resources on which n̄ and ρ̄ differ can be partitioned
into pairs such as the pair �, �′. Now

(22)ρ2d� + ρ2′d�′ = (n� − 1)2d� + (n�′ + 1)2d�′ .
� �

584 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
Since n̄ is a Nash assignment, d�n� � d�′(n�′ + 1) = d�′ρ�′ and since ρ̄ is a Nash assign-
ment, d�′ρ�′ � d�(ρ� + 1) = d�n� so d�n� = d�′ρ�′ . Now if n�′ = 0 then the right-hand side
of (22) is

(n� − 1)2d� + (n�′ + 1)d�′ = (n� − 1)2d� + ρ�′d�′ = (n� − 1)2d� + n�d� � n2
�d�,

so (21) holds. So suppose that n�′ � 1. Note that, for any A � 1, the right-hand side of (22)
is at most

A

(
(n� − 1)n�d� + n�′ + 1

A
(n�′ + 1)d�′

)
.

We will choose A = (n2
�′ + 2n�′ + 1)/(n2

�′ + n�′ + 1) so (n�′ + 1)/A = 1 + n2
�′/(n�′ + 1).

Plugging this in, we get that the right-hand side of (22) is at most

A
(
(n� − 1)n�d� + (n�′ + 1)d�′ + n2

�′d�′
)

= A
(
(n� − 1)n�d� + n�d� + n2

�′d�′
) = A

(
n2

�d� + n2
�′d�′

)
.

Eq. (21) follows from the observation that A � 4/3 for every n�′ � 1. �

5. Finding optima with dynamic programming

In [6], the authors present a polynomial time greedy algorithm for computing a Nash
assignment for the L∞ cost function. The algorithm works as follows. It considers each
of the tasks in the order of non-increasing weights and assigns them to the resource that
minimized their delay.

In this last section we give dynamic programming algorithms that find minimum-cost
assignments for the various special cases that we have studied. These algorithms extend
from the identical tasks (respectively, identical resources) case to the case where there are
O(1) distinct values that may be taken by the task weights (respectively, resource delays).
The algorithms extend to give approximation schemes for the case where there is a O(1)

bound on the ratio between the largest and smallest task weights (respectively, largest to
smallest delays), as studied in Theorem 2.5.

Lemma 5.1. There exists an optimal assignment in which the set R of resources can be
ordered in such a way that if i ∈ R precedes j ∈ R, then all tasks assigned to i have weight
less than or equal to all tasks assigned to j .

Proof. Suppose that we have an assignment A where the resources cannot be ordered
in this way. Then there exist two resources i and j , with two tasks assigned to i having
weights w and w′, and a task assigned to j with weight w′′, such that w < w′′ < w′. Let
ni and nj be the numbers of tasks assigned to i and j respectively, and let di and dj be
their delays. Let Wi = L(i,A)/di and Wj = L(j,A)/dj . The total cost of tasks assigned
to i and j is Winidi + Wjnjdj .

In the following we consider three cases. If nidi > njdj then we may exchange the
tasks with weights w′′ and w′ to reduce the social cost C(A) (the operation reduces Wi by

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 585
w′ − w′′ and increases Wj by w′ − w′′). If nidi < njdj then we may exchange the tasks
with weights w and w′′ to reduce C(A). In both cases A is suboptimal.

If nidi = njdj we may make either exchange since they both leave the social cost un-
changed. In the following we build up the order iteratively and assume that all occurrences
of case 1 and case 2 are already eliminated. Suppose we have any optimal assignment and
that some subset of the resources have been placed in order, say R1 � R2 � · · · � Rc. Con-
sider adding another of the resources to the order that we are constructing. Perhaps the
new resource, R, is greater than the ordered resources R1,�,Ra−1 but it cannot be placed
either below or above resource Ra . This is because Ra has tasks w and w′ and resource R

has task w′′ with w < w′′ < w′ as above. Since the assignment is optimal, we are in the
case nidi = njdj from above, and we can exchange w′′ with w′. This leaves the order of
the original subset, R1, . . . ,Rc, unchanged. We continue this process until R has bigger
tasks, and then we can continue adding it to the order. �
Theorem 5.2. Suppose that m resources have unit delay. Then an optimal assignment of n

tasks with arbitrary weights to those resources may be found in time O(n2m).

Proof. We may order the task weights so that w1 � w2 � · · · � wn. Let Cj,k be the cost of
an optimal assignment of tasks with weights w1, . . . ,wj to resources r1, . . . , rk . We want
to compute the quantity Cn,m.

Lemma 5.1 guarantees an optimal assignment of the tasks to a set of resources that will
assign the � lowest-weight tasks to some resource, for some value of �. Cj,k may be found
by, for each � ∈ {1,2, . . . , j}, assign tasks with weights wj+1−�, . . . ,wj to resource rk .

Cj,k = min
�∈{0,1,2,...,j}

(
Cj−�,k−1 + � · (wj+1−� + · · · + wj)

)
.

Cn,m can be found using a dynamic programming table of size O(nm) each of whose
entries is computed in time O(n). �

The above dynamic program extends to the case where delays may belong to a set of
O(1) elements {d1, . . . , dα} where α is a constant. Let m� be the number of resources with
delay d�, so that m = m1 + · · · + mα .

Let Cj,k1,k2,...,kα be the cost of an optimal assignment of tasks with weights w1, . . . ,wj

to a set of resources containing k� resources with delay d�, for � = 1,2, . . . , α. Lemma 5.1
guarantees an optimal assignment that will (for some � and �′) assign the � lowest weight
tasks to some resource with delay d�′ , provided k�′ > 0.

Cj,k1,k2,...,kα

= min
�∈{0,1,2,...,j};

�′∈{1,2,...,α} with k�′>0

(
Cj−�,k1,k2,...,k�′−1,...,kα + � · d�′ · (wj+1−� + · · · + wj)

)
.

The dynamic programming table has size O(nmα) and each entry is computed in time
O(n).

The following theorem generalises the algorithm FindOpt to the case where there is an
O(1) bound on the number of distinct values taken by task weights.

586 P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587
Theorem 5.3. Let weights w1, . . . ,wn take values in {w′
1, . . . ,w

′
α}. Let n� be the number

of tasks with weight w′
�, so that n = n1 + · · · + nα . Given delays d1 � d2 � · · · � dm, we

may find an optimal assignment in time O(mn2α).

Proof. Let Ck,j1,...,jα be the cost of an optimal assignment to resources with delays
d1, . . . , dk of a set of tasks containing j� tasks of weight w′

�, for � = 1,2, . . . , α. For x ∈ N,
let [x] denote the set {0,1,2, . . . , x}.

Ck,j1,j2,...,jα = min
j ′

1∈[j1];
j ′

2∈[j2];...;j ′
α∈[jα]

(
Ck−1,j1−j ′

1,...,jα−j ′
α

+ (j ′
1 + · · · + j ′

α) · dk · (w′
1 · j ′

1 + · · · + w′
α · j ′

α)
)
.

There are O(mnα) entries in the dynamic programming table, and each entry is computed
in time O(nα). �

The above algorithm can be used to obtain an approximation scheme for the case where
there is a bound on the ratio of maximum to minimum weights, as studied in Theorem 2.5.
Assume the weights are indexed in non-ascending order, w1 � w2 � · · · � wn and the ratio
w1/wn is upper-bounded by some pre-set limit α.

Let ε � 1 be the desired accuracy. Choose k such that (w1/wn)
1/k � 1 + ε. Take each

weight and round it up to the nearest value of wn · (w1/wn)
t/k where t is as small as

possible in {0, . . . , k}. The new weights take k + 1 distinct values. An optimal assignment
for the new weights has cost at most 1 + ε times the cost of an optimal assignment for
the old weights, since each weight has increased by at most a factor 1 + ε. In this special
case of fixed ratio of largest to smallest task weight, k depends only on ε, and the resulting
algorithm has run time O(mn2k) where k = O(ε−1 ln(w1/wn)).

The dynamic programming algorithm of Theorem 5.2 can be used in exactly the same
way to obtain an approximation scheme subject to a fixed limit on the ratio of largest to
smallest delay. The details are omitted.

6. Conclusions

This paper studies a very general resource allocation problem. We are given a collection
of resources each of which is associated with a “delay” and a collection of tasks, each
given with a weight. We assume that each task chooses its resource in a selfish manner,
minimizing its own cost, and we are interested in determining the social cost of this selfish
behavior. Previous work on this problem has measured “social cost” in terms of the L∞
metric—that is, the longest delay incurred by any task. Our measure of social cost is the
L1 metric—that is, the average delay (over tasks).

We give bounds on the size of the coordination ratio; we also study the algorithmic
problem of finding optimal (lowest-cost) assignments. For the case of identical resources
or identical tasks we obtain bounds on the ratio between alternative Nash equilibria.

Our results show that the L1 metric behaves very differently to the L∞ metric. In the
case of the L∞ metric, there always exists an optimal assignment that is also Nash, but

P. Berenbrink et al. / Journal of Discrete Algorithms 4 (2006) 567–587 587
the costs of different Nash assignments can differ a lot. In the case of the L1 metric, the
costs of any optimal assignment and the cost of the minimum-cost Nash assignment can
be arbitrarily far away from each other, but in a lot of cases the costs of different Nash
assignments can differ only by a constant factor.

References

[1] A. Czumaj, B. Vöcking, Tight bounds for worst-case equilibria, in: Proc. 13th Annual Symposium on Dis-
crete Algorithms, SIAM, Philadelphia, PA, 2002, pp. 413–420.

[2] A. Czumaj, P. Krysta, B. Vöcking, Selfish traffic allocation for server farms, in: Proc. 34th Annual Sympo-
sium on Theory of Computing (STOC), Montreal, Canada, 2002, pp. 287–296.

[3] U. Endriss, N. Maudet, F. Sadri, F. Toni, On optimal outcomes of negotiations over resources, in: Proc.
2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Melbourne,
Australia, 2003, pp. 177–184.

[4] R. Feldmann, M. Gairing, T. Lücking, B. Monien, M. Rode, Nashification and the coordination ratio for a
selfish routing game, in: Proc. 30th International Colloquium on Automata, Languages and Programming
(ICALP), Eindhoven, Netherlands, 2003, pp. 514–526.

[5] M. Gairing, T. Lücking, M. Mavronicolas, B. Monien, P. Spirakis, Extreme Nash equilibria, in: Proc. 8th
Italian Conference on Theoretical Computer Science (ICTCS), in: Lecture Notes in Comput. Sci., vol. 2841,
Springer, Berlin, 2003, pp. 1–20.

[6] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, P. Spirakis, The structure and complexity of
Nash equilibria for a selfish routing game, in: Proc. 29th International Colloquium on Automata, Languages,
and Programming (ICALP), Malaga, Spain, 2002, pp. 123–134.

[7] E. Koutsoupias, C.H. Papadimitriou, Worst-case equilibria, in: Proc. 16th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), Trier, Germany, 1999, pp. 404–413.

[8] T. Lücking, M. Mavronicolas, B. Monien, M. Rode, A new model for selfish routing, in: Proc. of the 21st In-
ternational Symposium on Theoretical Aspects of Computer Science (STACS), in: Lecture Notes in Comput.
Sci., vol. 2996, Springer, Berlin, 2004, pp. 547–558.

[9] T. Lücking, M. Mavronicolas, B. Monien, M. Rode, P. Spirakis, I. Vrto, Which is the worst-case Nash
equilibrium?, in: Proc. 28th International Symposium on Mathematical Foundations of Computer Science
(MFCS), in: Lecture Notes in Comput. Sci., vol. 2747, Springer, Berlin, 2003, pp. 551–561.

[10] M. Mavronicolas, P. Spirakis, The price of selfish routing, in: Proc. 33rd Annual Symposium on Theory of
Computing (STOC), Crete, Greece, 2001, pp. 510–519.

[11] P. McBurney, S. Parsons, M. Wooldridge, Desiderata for argumentation protocols, in: Proc. 1st International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Bologna, Italy, 2002, pp.
402–409.

[12] A. Mizrahi, M. Sullivan, Calculus and Analytic Geometry, second ed., Wadsworth, Belmont, CA, 1986.
[13] T. Roughgarden, É. Tardos, How bad is selfish routing?, J. ACM 49 (2) (2002) 236–259.
[14] T. Roughgarden, Many papers studying the cost of selfish routing in the flow-model are available at Tim

Roughgarden’s web page http://www.cs.cornell.edu/timr/ (which also has information and summaries).
[15] T.W. Sandholm, Contract types for satisficing task allocation: I theoretical results, in: AAAI Spring Sympo-

sium: Satisficing Models, 1998.

http://www.cs.cornell.edu/timr/

	Utilitarian resource assignment
	Introduction
	The model
	Results
	Section 2: Coordination ratio in terms of task weight range
	Section 3: Resources with identical delays
	Section 4: Tasks with identical weights
	Section 5: Finding social optima using dynamic programming

	Alternative models and related work

	Coordination ratio in terms of task weight range
	Resources with identical delay
	Tasks with identical weights
	Algorithmic results
	Comparison of optimal and Nash costs

	Finding optima with dynamic programming
	Conclusions
	References

