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Abstract
The Consensus-halving problem is the problem of dividing an object into two portions, such that
each of n agents has equal valuation for the two portions. We study the ε-approximate version,
which allows each agent to have an ε discrepancy on the values of the portions. It was recently
proven in [13] that the problem of computing an ε-approximate Consensus-halving solution (for
n agents and n cuts) is PPA-complete when ε is inverse-exponential. In this paper, we prove
that when ε is constant, the problem is PPAD-hard and the problem remains PPAD-hard when
we allow a constant number of additional cuts. Additionally, we prove that deciding whether a
solution with n− 1 cuts exists for the problem is NP-hard.
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1 Introduction

Suppose that two families wish to split a piece of land into two regions such that every
member of each family believes that the land is equally divided, or suppose that a conference
organizer wants to assign the conference presentations to the morning and the afternoon
sessions, so that every participant thinks that the two sessions are equally interesting. Is it
possible to achieve these objectives? If yes, how can it be done and how efficiently? What if
we aim for “almost equal” instead of “equal”?

These real-life problems can be modeled as the Consensus-halving problem [27]. More
formally, there are n agents and an object to be divided; each agent may have a different
opinion as to which part of the object is more valuable. The problem is to divide the object

1 The author was supported by the ERC Advanced Grant 321171 (ALGAME).
2 The author was supported by the ERC Advanced Grant 321171 (ALGAME).

© Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and Jie Zhang;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aris.filosratsikas@epfl.ch
mailto:sorensf@gmail.com
mailto:paul.goldberg@cs.ox.ac.uk
mailto:jie.zhang@soton.ac.uk
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.24
https://arxiv.org/abs/1609.05136
https://arxiv.org/abs/1609.05136
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


24:2 Hardness Results for Consensus-Halving

into two portions such that each of the n agents believes that the two portions have equal
value, according to her personal opinion. The division may need to cut the object into pieces
and then label each piece appropriately to include it in one of the two portions.

The importance of the Consensus-halving problem - or to be precise, of its approximate
version, where there is an associated precision parameter ε - other than the fact that it models
real-life problems like the ones described above, lies in in the following fact: It is the first
“natural” problem that is complete for the complexity class PPA, where “natural” here means
that its does not contain a circuit explicitly in its definition; this was proven quite recently
by Filos-Ratsikas and Goldberg [13]. PPA is a class of total search problems [19] defined
in [22], and is a superclass of the class PPAD, which precisely captures the complexity of
computing a Nash equilibrium [11, 9]. Therefore, generally speaking, a PPA-hardness result
is stronger than a PPAD-hardness result.

Crucially however, the hardness result in [13] requires the precision parameter to be
inverse-exponential in the number of agents and does not even provably preclude the possibility
of efficient algorithms, if we allow larger discrepancies in the values for the two portions.
In this paper, we prove that this is actually not possible3, by showing that even when the
allowed discrepancy is independent of the number of agents, the problem is PPAD-hard.
Understanding the problem for increasing values of the discrepancy parameter is quite
important in terms of capturing precisely its complexity and resembles closely the series
of results establishing hardness of computing a mixed ε-Nash equilibrium, from ε being
inverse-polynomial in [11, 9] to being constant in [26], as well as several other problems
(see [26]). Additionally, one could imagine that solutions where constant discrepancies are
acceptable are the ones arising in several real-life scenarios, such as splitting land.

1.1 Our results
We are interested in the computational complexity of computing an ε-approximate solution
to the Consensus-halving problem where ε is a constant function of the number of agents, as
well as the complexity of deciding whether given an input instance, n− 1 cuts are sufficient
to achieve an ε-approximate solution. We discuss our main results below.

We prove that the problem of finding an ε-approximate solution to the Consensus-halving
problem for n agents using n cuts is PPAD-hard. Moreover, the problem remains PPAD-
hard even if we allow a constant number of additional cuts. The result is established via
a reduction from the approximate Generalized Circuit problem [9, 11, 26].

We prove that it is NP-hard to decide whether or not an ε-approximate solution to the
Consensus-halving problem for n agents using n − 1 cuts exists. Using the gadgetry
already developed for the PPAD-hardness proof, we establish the result via a reduction
from 3-SAT.

We prove that the problem of finding an ε-approximate solution to the Consensus-halving
problem for n agents using n cuts is in the computational class PPA; we obtain the result
via a reduction to the computational version of Tucker’s Lemma [22, 1].

We remark here that an earlier version of this paper actually predated [13], and some of the
results in [13] are established by referencing the results in the present paper. Specifically:

3 Under usual computational complexity assumptions, here that PPAD-hard problems do not admit
polynomial-time algorithms.
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While the authors of [13] provide a rather elaborate reduction to establish PPA-hardness
of the problem, the inclusion in the class PPA is established with reference to the present
paper. In turn, the inclusion result follows from a formalization of the ideas of the
algorithms by [27] and [24] and Fan’s version of Tucker’s Lemma [12, 31].

In [13], the authors obtain a computational equivalence between the Necklace Splitting
problem [2] and ε-approximate Consensus-halving, for ε being at least inverse-polynomial.
The inverse-polynomial dependence on ε implies that PPA-hardness of the former problem
does not follow from their hardness result, but PPAD-hardness does follow from their
reduction and our main result here.

Due to lack of space, some of the proofs and details are left for the the full version of the
paper. Most emphasis is put on the main PPAD-hardness proof of Section 3, which is
presented in sufficient detail, and the NP-hardness proof of Section 4. The exposition of the
results in Section 5 is limited to higher-level intuition, with full proofs in the full version.

1.2 Related work
The Consensus-halving problem was explicitly formalized and studied firstly by Simmons
and Su [27], who proved that a solution with n cuts always exists and constructed a protocol
that finds an approximate solution, which allows for a small discrepancy on the values of the
two portions. Their proofs are based on one of the most applied theorems in topology, the
Borsuk-Ulam Theorem [6] and its combinatorial analogue, known as Tucker’s Lemma [31].
The existence of solutions to the problem was already known since [16, 3, 4] but the algorithm
in [27] is constructive, in the sense that it actually finds such a solution and furthermore, it
does not require the valuations of the players to be additively separable over subintervals,
like some of the previous papers do. Actually, for the case of valuations which are probability
measures, the existence of a solution with n cuts was known since as early as the 1940s
[20] and can also be obtained as an application of the Hobby-Rice Theorem [18] (also see
[2]). Despite proposing an explicit protocol however, the authors in [27] do not answer the
question of “efficiency”, i.e. how fast can a protocol find an (approximate) solution and the
running time of their protocol is worst-case exponential-time.4

To this end, Filos-Ratsikas and Goldberg [13] recently proved that the problem is PPA-
complete, but as we explained in the introduction, the hardness holds only when the precision
parameter is inversely exponential. Even more recently, the authors strengthened their result
to PPA-completeness of the problem for inversely polynomial precision [14]. However, since
our hardness result holds for constant precision, it is not subsumed by neither [13] or [14].

The computational classes PPA (Polynomial Parity Arguments) and PPAD (Polynomial
Parity Arguments on Directed graphs) were introduced by Papadimitriou [22] in an attempt
to capture the precise complexity of several interesting problems of a topological nature such
as computational analogues of Sperner’s Lemma [28] and Brouwer’s and Kakutani’s fixed
point theorems [5], which are all known to be in PPAD [22]. Interestingly, Aisenberg et al.
[1] recently proved that the search problems associated with the Borsuk-Ulam Theorem and
Tucker’s Lemma are PPA-complete; this is the starting point for the reduction in [13], but it
will also be used for our “in-PPA” result, which complements the hardness result of [13].

Our PPAD-hardness reduction goes via the Generalized Circuit problem. Generalized
circuits differ from usual circuits in the sense that they can contain cycles, a fact which
basically induces a continuous function on the gates, and the solution is guaranteed to exist

4 The protocol exhaustively iterates through all the vertices of triangulated geometric object, which, to
achieve a small discrepancy, has to be exponentially large.
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by Brouwer’s fixed point theorem. The ε-approximate Generalized Circuit problem was
implicitly proven to be PPAD-complete for exponentially small ε in [11] and explicitly for
polynomial small ε [9], en route to proving that perhaps the most interesting problem in
PPAD, that of computing a mixed-Nash equilibrium, is also complete for the class. The same
problem was also used in [10] to prove that finding an approximate competitive equilibrium
for the Arrow-Debreu market with linear and non-monotone utilities is PPAD-complete and
in [21] to prove that finding an approximate solution of the Competitive Equilibrium with
Equal Incomes (CEEI) for indivisible items is PPAD-complete. More recently, Rubinstein
[26] showed that computing an ε-approximate solution for the Generalized Circuit problem
is PPAD-complete for a constant ε, which implies that finding an ε-approximate Nash
equilibrium is PPAD-complete for constant ε, in the context of graphical games; we reduce
from that version of the problem. This improvement should also lead to stronger hardness
results in [10] and [21], as well as other problems that rely on the Generalized Circuit problem.

The Consensus-halving problem is a typical fair division problem that studies how to
divide a set of resources between a set of agents who have valuations on the resources,
such that some fairness properties are fulfilled. The fair division literature, which dates
back to the late 1940s [29], has studied a plethora of such problems, with chore-division
[23, 15], rent-partitioning [17, 7, 30] and the perhaps the most well-known one, cake-cutting
[8, 25] being notable examples. Note that Consensus-halving is inherently different from
cake-cutting, since the objective is that all participants are (approximately) equally satisfied
with the solution, and they do not have “ownership” over the resulting pieces.

2 Preliminaries

We represent the object O as a line segment [0, 1]. Each agent in the set of agents N =
{1, . . . , n} has its own valuation over any subset of interval [0, 1]. These valuations are:

non-negative and bounded, i.e. there existsM > 0, such that for any subinterval X ⊆ [0, 1],
it holds that 0 ≤ ui(X) ≤M .
non-atomic, i.e. agents have no value on any single point on the interval.

For simplicity, the reader may assume that the valuations are represented as step functions
(where agents have constant values over distinct intervals), although this is not necessary for
the results to hold.5

A set of k cuts {t1, . . . , tk}, where 0 ≤ t1 ≤ . . . ≤ tk ≤ 1, means that we cut along the
points t1, . . . , tk, such that the object is cut into k+1 pieces Xi = [ti−1, ti] for i = 1, . . . , k+1,
where t0 = 0 and tk+1 = 1. A labelling of an interval Xi means that we assign a label
` ∈ {+,−} to Xi, which corresponds to including Xi in a set of intervals, either O+ or O−.
In case some cuts happen to be on the same point, say tj−1 = tj , then the corresponding
subinterval Xj is a single point on which agents have no value. We will consider cuts on the
same points to be the same cut, e.g. if there is only one such occurrence, we will consider
the number of cuts to be k − 1.

The Consensus-halving problem is to divide the object O into two portions O+ and
O−, such that every agent derives equal valuation from the two portions, i.e., ui(O+) =

5 The inclusion result actually holds for more general functions, while our hardness results (PPAD-hardness
and NP-hardness) hold even for well-behaved functions, such as step functions. We note here that while
an exact solution to Consensus-halving generally requires the valuations to be continuous, this is not
necessary for the existence of an approximate solution; the algorithm of [27] can find such a solution
assuming that valuations are bounded and non-atomic.
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ui(O−),∀i ∈ N . The ε-approximate Consensus-halving problem allows that each agent has
a small discrepancy on the values of the two partitions, i.e., |ui(O+) − ui(O−)| < ε. As
discussed in the Introduction, such a solution always exists [27].

We define the following search problem, called (n, k, ε)-ConHalving.

I Problem 1. (n, k, ε)-ConHalving.
Input: The value density functions (valuation functions) vi : O → R+, i = 1, · · · , n.
Output: A partition (O+, O−) with k cuts such that |ui(O+)− ui(O−)| ≤ ε.

We will also consider the following decision problem, called (n, n− 1, ε)-ConHalving. Note
that for n agents and n− 1 cuts, a solution to the ε-approximate Consensus-halving problem
is not guaranteed to exist.

I Problem 2. (n, n− 1, ε)-ConHalving.
Input: The valensity functions vi : O → R+, i = 1, · · · , n.
Output: Yes, if a partition (O+, O−) with n− 1 cuts such that |ui(O+)− ui(O−)| ≤ ε

for all agents i ∈ N exists, and No otherwise.

TFNP, PPA and PPAD: Most of the problems that we will consider in this paper belong to
the class of total search problems, i.e. search problems for which a solution is guaranteed to
exist, regardless of the input. In particular, we will be interested in problems in the class
TFNP, i.e. total search problems for which a solution is verifiable in polynomial time [19].

An important subclass of TFNP is the class PPAD, defined by Papadimitriou in [22].
PPAD stands for “Polynomial Parity Argument on a Directed graph” and is defined formally
in terms of the problem End-Of-Line [22]. The class PPAD is defined in terms of an
exponentially large digraph G = (V,E) consisting of 2n vertices with indegree and outdegree
at most 1. An edge between vertices v1 and v2 is present in E if and only if the successor
S(v1) of node v1 is v2 and the predecessor P (v2) of node v2 is v1. By construction, the point
0n has indegree 0 and we are looking for a point with outdegree 0, which is guaranteed to
exist. Note that the graph is given implicitly to the input, through a function that given any
vertex v, returns its set of neighbours (predecessor and successor) in polynomial time. PPAD
is a subclass of the class PPA (“Polynomial Parity Argument”) which is defined similarly,
but in terms of an undirected graph in which every vertex has degree at most 2, and given
a vertex of degree 1, we are asked to find another vertex of degree 1; the computational
problem associated with the class is called Leaf [22] and a problem is the class PPA if it is
polynomial-time reducible to Leaf.

The formal definitions of End-Of-Line and Leaf are not required for the results
presented in this version and therefore are left for the full version.

2.1 Generalized Circuits
A generalized circuit S = (V, T ) consists of a set of nodes V and a set of gates T and let
N = |V | and M = |T |. Every gate T ∈ T is a 5-tuple T = (G, vin1 , vin2 , vout, α) where

G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∨, G∧, G¬} is the type of the gate,
vin1 , vin2 ∈ V ∪ {nil} are the first and second input nodes of the gate or nil if not
applicable,
vout ∈ V is the output node, and α ∈ [0, 1] ∪ {nil} is a parameter if applicable,
for any two gates T = (G, vin1 , vin2 , vout, α) and T ′ = (G′, v′in1

, v′in2
, v′out, α

′) in T where
T 6= T ′, they must satisfy vout 6= v′out.

MFCS 2018



24:6 Hardness Results for Consensus-Halving

Table 1 Gate constraint T = (G, vin1 , vin2 , vout, α).

Gate Constraint
(Gζ , nil, nil, vout, α) α− ε ≤ x[vout] ≤ α+ ε

(G×ζ , vin1 , nil, vout, α) α · x[vin1 ]− ε ≤ x[vout] ≤ α · x[vin1 ] + ε

(G=, vin1 , nil, vout, nil) x[vin1 ]− ε ≤ x[vout] ≤ x[vin1 ] + ε

(G+, vin1 , vin2 , vout, nil) x[vout] ∈ [min(x[vin1 ] + x[vin2 ], 1)− ε,min(x[vin1 ] + x[vin2 ], 1) + ε]
(G−, vin1 , vin2 , vout, nil) x[vout] ∈ [max(x[vin1 ]− x[vin2 ], 0)− ε,max(x[vin1 ]− x[vin2 ], 0) + ε]

(G<, vin1 , vin2 , vout, nil) x[vout] =
{

1± ε, if x[vin1 ] < x[vin2 ]− ε;
0± ε, if x[vin1 ] > x[vin2 ] + ε.

(G∨, vin1 , vin2 , vout, nil) x[vout] =
{

1± ε, if x[vin1 ] = 1± ε or x[vin2 ] = 1± ε;
0± ε, if x[vin1 ] = 0± ε and x[vin2 ] = 0± ε.

(G∧, vin1 , vin2 , vout, nil) x[vout] =
{

1± ε, if x[vin1 ] = 1± ε and x[vin2 ] = 1± ε;
0± ε, if x[vin1 ] = 0± ε or x[vin2 ] = 0± ε.

(G¬, vin1 , nil, vout, nil) x[vout] =
{

1± ε, if x[vin1 ] = 0± ε;
0± ε, if x[vin1 ] = 1± ε.

Note that generalized circuits extend the standard boolean or arithmetic circuits in the sense
that generalized circuits allow cycles in the directed graph defined by the nodes and gates.
We define the search problem ε-Gcircuit [9, 26].

I Problem 3. ε-Gcircuit
Input: A generalized circuit S = (V, T ).
Output: A vector x ∈ [0, 1]N of values for the nodes, satisfying the conditions from Table

1.

Note that a solution to ε-Gcircuit always exists [9] and hence the problem is well-defined.
Also, notice that for the logic gates G∨, G∧ and G¬, if the input conditions are not fulfilled,
the output is unconstrained, and for the multiplication gate, it holds that α ∈ (0, 1]. ε-
Gcircuit was proven to be PPAD-complete implicitly or explicitly in [11, 9] for inversely
polynomial error ε and in [26] for constant ε. We state the latter theorem here as a lemma:

I Lemma 1 ([26]). There exists a constant ε > 0 such that ε-Gcircuit is PPAD-complete.

3 Consensus-Halving with n+ k cuts is is PPAD-hard

In this section, we will first prove that finding an approximate partition for Consensus-halving
using n cuts is PPAD-hard, even if the allowed discrepancy between the two portions is a
constant. We describe the reduction from ε-Gcircuit that we will be using for the PPAD-
hardness proof. Given an instance S = (V, T ) of ε-Gcircuit, we will construct an instance
of (n, n, ε′)-ConHalving with n = 2N agents, in which each node vi ∈ V of the circuit will
correspond to two agents vari and copyi and where ε′ will be defined later. As a matter
of convenience in the reduction, we will assume that for every gate (G, vin1 , vin2 , vout, α)
in T , vin1 , vin2 and vout are distinct. This does not affect the hardness of the problem as
any ε-generalized circuit can be converted to this form by use of at most 2N additional
equality-gates and nodes, and also since an (ε/2)-approximate solution to the converted
problem can clearly be converted to a solution in the original circuit.

For ease of notation, we consider a Consensus-halving instance on the interval [0, 6N ].
Let di := 6(i− 1).
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v1 v2 v3

+ ¬

var1

copy1

var2

copy2

var3

copy3

v−1 v+
1 v−2 v+

2 v−3 v+
3

Figure 1 An instance of ε-Gcircuitwith the corresponding construction for (n, ε′)-ConHalving.

The two agents vari and copyi that we construct for every node vi have valuations

vari =
{
borderi(t) +Gτ (t), if vi is the output of τ
borderi(t), otherwise

copyi =


4, t ∈ [di + 3, di + 4] ∪ [di + 5, di + 6]
1, t ∈ [di + 1, di + 2] ∪ [di + 4, di + 5]
0, otherwise

where borderi =
{

4, if t ∈ [di, di + 1] ∪ [di + 2, di + 3]
0, otherwise

Since each node is the output of at most one gate, vari is well-defined. Note that apart
from the valuation defined by the function Gτ , agents vari and copyi only have valuations
on the sub-interval [di, di+1], i.e., the agents associated with node v1 only have valuations
on [0, 6], the agents associated with v2 only on have valuations on [6, 12] and so on. Let
v−i := [di + 1, di + 2] and the right and left endpoints respectively be v−i,` and v−i,r, (and
analogously for v+

i := [di + 3, di + 4], v+
i,` and v

+
i,r). Now, we are ready to define the functions

Gτ according to Table 2. Notice that because of the assumption that the two input nodes
and the output node are distinct, the graphs of the functions are as in Table 2. Figure 1
demonstrates an example of a Consensus-halving instance corresponding to a small circuit.

I Lemma 2. Given the construction of a (n, n, ε′)-ConHalving instance above, for ε′ <
min{ε/11, 1/40}, a partition with n cuts corresponds to a solution to ε-Gcircuit.

Proof. First observe that since all of the agents vari and copyi are constructed to have at
least 3/4 of their valuation on [di, di+3] and [di+3, di+6] respectively, there must be at least
one cut in each one of those intervals in any ε′-approximate solution to Consensus-halving
(with ε′ < 1/4) and therefore any ε′-approximate solution to Consensus-halving with 2N
cuts must have exactly one cut in each interval. Furthermore, since the constructed instance
consists of 2N agents, by [27], such a partition with 2N cuts is guaranteed to exist.

Now consider such a solution C to (n, n, ε′)-ConHalving with 2N cuts. For each agent
vari (and associated gate Gτ , if any), since her valuation in v−i is at least the same as
her valuation outside the interval [di, di + 3], the cut from C in [di, di + 3] must be in
[di + 1 − ε′, di + 2 + ε′], since C is a solution to (n, n, ε′)-ConHalving. We will assume
without loss of generality that the leftmost piece of the partition C is in O−. Notice then

MFCS 2018
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Table 2 Agent preferences from gate τ = (G, vin1 , vin2 , vout, α). For the gate G×ζ , the figure
depicts the case when α+ ε < 1.

Gτ (t) Picture

Gζ
{

1 if t ∈ [v−
out,`

+ α− 1
2 , v

−
out,`

+ α + 1
2 ]

0 otherwise
v−out

α + 1
2

G×ζ

{
1 if t ∈ v+

in

1/α if t ∈ [v−
out,`

, v−
out,`

+ min(α + ε, 1)]
0 otherwise

α + ε

1/α

v+
in v−out

G¬


1 if t ∈ v−

in

1/2ε if t ∈ [v−
out,`

, v−
out,`

+ ε]
1/2ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v−in1 v−out

ε ε

1
2ε

G+


1 if t ∈ v+

in1
∪ v+

in2
1 if t ∈ [v−

out,`
, v−
out,r − ε]

1/ε + 1 if t ∈ [v−
out,r − ε, v

−
out,r]

0 otherwise v+
in1 v+

in2 v−out

ε

1
ε

G−


1 if t ∈ v+

in1
∪ v−

in2
1 if t ∈ [v−

out,`
+ ε, v−

out,r]
1/ε + 1 if t ∈ [v−

out,`
, v−
out,`

+ ε]
0 otherwise

v+
in1 v−in2 v−out

ε

1
ε

G<


1 if t ∈ v+

in1
∪ v−

in2
1/ε if t ∈ [v−

out,`
, v−
out,`

+ ε]
1/ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v+
in1 v−in2 v−out

ε ε

1
ε

G∨


1 if t ∈ v+

in1
∪ v+

in2
0.5/ε if t ∈ [v−

out,`
, v−
out,`

+ ε]
1.5/ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v+
in1 v+

in2 v−out

ε

0.5
ε

ε

1.5
ε

G∧


1 if t ∈ v+

in1
∪ v+

in2
1.5/ε if t ∈ [v−

out,`
, v−
out,`

+ ε]
0.5/ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v+
in1 v+

in2 v−out

ε

1.5
ε

ε

0.5
ε

that for each node vi, the piece on the left-hand side of the cut in v−i is always in O− and
the piece on the left-hand side of the cut in v+

i is always in O+. Let the location of the cut
be di + 1 + t−i where t−i ∈ [−ε′, 1 + ε′]. Analogously, the same argument holds for agent copyi
and the interval [di + 3− ε′, di + 4 + ε′], and define t+i ∈ [−ε′, 1 + ε′] similarly.

Now consider the agent copyi and the cut at location di + 1 + t−i . If t−i ∈ [0, 1], then
since agent copyi has valuation 1 on interval v−i , t

−
i of her valuation will be on a piece in

O− and 1 − t−i of her valuation will be on a piece in O+. Then, since C is a solution to
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(n, n, ε′)-ConHalving, the cut in di+3+t+i must be placed so that |t−i −t
+
i | ≤ ε′/2; similarly

for the cases where t−i /∈ [0, 1]. In other words, copyi ensures that the cut at di + 1 + t−i is
“copied” ε′-approximately.

We will interpret the solution C as a solution to ε-Gcircuit in the following way. For
each node vi and each associated cut at di + 1 + t−i let

xi :=


0 , t−i < 0
t−i , t−i ∈ [0, 1]
1 , t−i > 1

(1)

and notice
|t+i − xi| ≤ 2ε′ , |t−i − xi| ≤ 2ε′ (2)

To complete the proof, we just need to argue that these variables satisfy the constraints of
the gates of the circuit. Due to lack of space, we will only argue the correctness of some of
the gates here; the arguments for the remaining gates follow a similar spirit and are presented
in detail in the full version.

Constant gate τ = (Gζ, nil, nil, vout, α). The valuation of agent varout for the intervals
[di, di + 1 +α] and [di + 1 +α, di + 3] is the same and since the height of the agent’s value
density function is at least 1 in [di, di + 3],6 it holds that t−out ∈ [α− ε′, α+ ε′]. Then, by
Equation 2, it holds that xout ∈ [α− 3ε′, α+ 3ε′], so for ε′ < ε/3 the gate constraint is
satisfied.

Multiplication-by-scalar gate τ = (G×ζ, vin, nil, vout, α). Notice that for any given cut
t+in and 1−α ≥ ε, it holds that t−out ∈ [αt+in + ε/2− ε′, αt+in + ε/2 + ε′] as the height of Gτ
in v−out is at least 1. Similarly, for the case 1− α < ε and any given cut t+in, it holds that
t−out ∈ [αt+in+(1−α)/2−ε′, αt+in+(1−α)/2+ε′] as the height of Gτ in v−out is at least 1. In
particular, since 1−α < ε, it also holds that t−out ∈ [αt+in+ ε/2− ε′, αt+in+ ε/2 + ε′] for this
case as well. Then, by Equation 2, it holds that xout ∈ [αt+in + ε/2− 3ε′, αt+in + ε/2 + 3ε′]
and since α ≤ 1 it also holds that xout ∈ [αxin + ε/2 − 5ε′, αxin + ε/2 + 5ε′], again by
Equation 2. Then the gate constraint is satisfied whenever ε′ < ε/10.

Addition gateτ = (G+, vin1 , vin2 , vout, nil). If for the cuts t+in1
and t+in2

it holds that
t+in1

+ t+in2
< 1− ε+ 4ε′ then t−out ∈ [t+in1

+ t+in2
− 5ε′, t+in1

+ t+in2
+ 5ε′] as the height of Gτ

in v−out is at least 1. This then implies that xout ∈ [x+
in1

+ x+
in2
− 11ε′, x+

in1
+ x+

in2
+ 11ε′],

by Inequality 2. On the other hand, when t+in1
+ t+in2

≥ 1− ε+ 4ε′, then by Definition 1,
it holds that xin1 + xin2 ∈ [1− ε, 1] and clearly t−out ∈ [1− ε, 1 + ε′] which by Definition 1
implies that xout ∈ [1− ε, 1]. The gate constraints are satisfied for ε′ < ε/11 for each of
the cases.

Less-than-equal gate τ = (G<, vin1 , vin2 , vout, nil). We will consider three cases, de-
pending on the positions of the cuts t+in1

and t−in2
. First, when |t+in1

− t−in2
| < ε− 4ε′, by

Inequality 2 it holds that |xin1 − xin2 | < ε and the output of the gate is unconstrained.
When t+in1

− t−in2
≥ ε− 4ε′ then by Inequality 2 it holds that xin1 ≥ xin2 + ε. Additionally,

since the height of Gτ in [v−out,r − ε, v−out,r] is at least 1, it holds that t−out ∈ [1− ε, 1 + ε′],
which by Definition 1 implies that x−out ∈ [1 − ε, 1] and the gate constraint is satisfied.
The argument for the case when t−in2

> t+in1
− 2ε′ is completely symmetrical.

Logic OR gate τ = (G∨, vin1 , vin2 , vout, nil). We will consider three cases depending
on the position of the cuts t+in1

and t+in2
. First, when t+in1

+ t+in2
< 0.4 it holds that

6 Notice that the constant gate is the only gate where borderi and Gτ overlap.
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t−out ∈ [−ε′, ε] and hence by Definition 1, it holds that xout ∈ [0, ε]. Furthermore, by
Inequality 2 it holds that xin1 + xin2 < 0.4 + 4ε′ and for ε′ < 1/40, it also holds that
xin1 , xin2 < 0.5 and the gate constraint is satisfied. Next, when t+in1

+ t+in2
∈ [0.4, 0.8]

then by Inequality 2, it holds that xin1 , xin2 ∈ [0.4− ε′, 0.8 + 4ε′] and in particular, when
ε′ < 1/40 then it also holds that xin1 + xin2 ∈ [0.3, 0.9] and the output of the gate in
unconstrained. Finally when t+in1

+ t+in2
> 0.8, it holds that t−out ∈ [1− ε, 1 + ε′] and hence

by Definition 1, we have that xout ∈ [1 − ε, 1]. Furthermore, by Inequality 2 we have
that xin1 + xin2 > 0.8 + 4ε′ which is greater than 0.9 when ε′ < 1/40 which implies that
at least one of the two inputs is greater than ε. In particular, the gate’s output lies in
[1− ε, ε] when the inputs are smaller than ε or greater than 1− ε and at least one of them
is greater than 1− ε. This shows that the gate constraint is satisfied.

Given the discussion above, by setting ε′ < min{ε/11, 1/40}7, the gate constraints are
satisfied, and the vector (xi) obtained from C is a solution to ε-Gcircuit. J

Now from Lemma 2, we obtain the following result.

I Theorem 3. There exists a constant ε′ > 0 such that (n, n, ε′)-ConHalving is PPAD-hard.

Proof. Recall that in the proof of Lemma 2, ε′ was constrained to be at most min{1/40, ε/11}
and in particular by Lemma 1, there exists a constant ε′ that would make the reduction work.
Recall however that we “expanded” the instance of (n, ε′)-ConHalving from the interval
[a, b] to [0, 6N ] for convenience, which implies that after rescaling the instance to a constant
interval [a, b], the allowed error ε′ goes down to O(1/n). To get a constant error ε′, we simply
multiply all valuations by N . J

Theorem 3 implies that although a solution with n cuts is generally desirable, it might
be hard to compute, even for a relatively simple class of valuations like those used in the
reduction. In fact, we can extend our results to the more general case of finding a partition
with n+ k cuts where k is a constant.

I Theorem 4. Let k be any constant. Then there exists a constant ε′ such that (n, n+ k, ε′)-
ConHalving is PPAD-hard.

Proof. Let S = (V, T ) be an instance of ε-Gcircuit with N nodes, consisting of smaller
identical sub-circuits Si = (Vi, Ti), for i = 1, 2, . . . , k + 1, with with N/(k + 1) nodes each
such that for all i, j ∈ [k + 1] such that i 6= j, it holds that Vi ∩ Vj = ∅. and Ti ∩ Tj = ∅. In
other words, the circuit S consists of k + 1 copies of a smaller circuit Si that do not have
any common nodes or gates. Furthermore, for convenience, assume without loss of generality
that for two nodes l and m such that ul ∈ Vi and um ∈ Vj , with i < j, it holds that l < m.
In other words, the labeling of the nodes is such that nodes in circuits with smaller indices
have smaller indices.

Let H be the instance of (n, n, ε′)-ConHalving corresponding to the circuit S following
the reduction described in the beginning of the section and recall that n = 2N in the
construction. Note that according to the convention adopted above for the labeling of
the nodes, for i < j, the agents corresponding to Vi lie in the interval [`i, ri], whereas the
agents corresponding to Vj lie in the interval [`j , rj ] and ri ≤ `j . In other words, agents
corresponding to sub-circuits with smaller indices are placed before agents with higher indices,
and there is no overlap between agents corresponding to different sub-circuits.

7 We can in fact assume some ε ≤ 11/40, as the smaller the ε, the harder the problem is, since we are
interested in establishing hardness for some constant ε.
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Now suppose that we have a solution to (n, n+ k, ε′)-ConHalving. Since there is no
overlap between valuations corresponding to different sub-circuits, an approximate solution
with n+k cuts for the instance H implies that there exists some interval [`i, ri] corresponding
to the set of nodes Vi of sub-circuit Si, such that at least n/(k+1) cuts lie in [`i, ri], otherwise
the total number of cuts on H would be at least n+ k + 1. Since there are exactly n/(k + 1)
agents with valuations on [`i, ri], this would imply an approximate solution for n′ agents
with n′ cuts and the problem reduces to (n, n, ε′)-ConHalving. J

4 Consensus-Halving with n− 1 cuts is NP-hard

We have proved that the problem of finding an approximate solution with n players and n
cuts is PPAD-complete. For n players and n− 1 cuts however, we no longer have a guarantee
that a solution exists. We prove that deciding whether this is the case or not is NP-hard.

I Theorem 5. There exists a constant ε′ > 0 such that (n, n−1, ε′)-ConHalving is NP-hard.

Proof. We will first describe the construction that we will use in the reduction. For
consistency with the previous section, we will denote the error of the Consensus-halving
problem by ε′ and the error of the (implict) generalized circuits by functions of ε. Let Rε(S)
be the construction for the reduction of Section 3, that encodes an ε-generalized circuit S
into an (n, n − 1, ε′)-ConHalving instance when ε′ < ε/11. We will reduce from 3-SAT,
which is known to be NP-complete.

Let φ be any 3-SAT formula with m clauses, k ≤ 3m variables x1, . . . , xk, and let ε > 0
be given. For convenience of notation, let δ = ε/11. We will (implicitly) create a generalized
circuit S with the following building blocks:

k input nodes x1, . . . , xk corresponding to the variables x1, . . . , xk.

k sub-circuits Bool(xi) for i = 1, 2, . . . , k that input the real value xi ∈ [0, 1] and output
a boolean value xbooli ∈ [0, 4δ] ∪ [1− 4δ, 1] (see the lower stage of Figure 2). The allowed
error for these circuits will be δ. The implementation of the circuit in terms of the gates
of the generalized circuit can be seen in Algorithm 1. Note that the sub-circuit containing
all the Bool(xi) sub-circuits has at most 4k nodes as each Bool(xi) sub-circuit could be
implemented with one constant gate, one subtraction gate, one addition gate and one
equality gate; the latter is to maintain the convention that all inputs to each gate are
distinct.

A sub-circuit Φ(xbool1 , . . . , xboolk ) that implements the formula φ, inputing the boolean
variables xbooli and outputting a value xout corresponding to the value of the assignment
plus the error introduced by the approximate gates. The allowed error for this circuit will
be 4δ. A pictorial representation of such a circuit can be seen in Figure 2; note that the
circuits Bool(xi) are also shown in the picture. This circuit has at most k + 3m nodes.
First, there might be k possible negation gates to negate the input variables. Secondly,
for each clause, in order to implement an OR gate of fan-in 3, we need 2 OR gates of
fan-in 2, for a total of 2m gates for all clauses. Finally, in order to simulate the AND
gate with fan-in m, we need m AND gates of fan-in 2. Overall, since k ≤ 3m, we need at
most 6m nodes to implement this sub-circuit, using elements of the generalized circuit.

A sub-circuit Rebool(x1, . . . , xk, xout) that inputs the variables xi, for i = 1, 2, . . . , k and
the variable xout and computes the function

min(xout,max(x1, 1− x1), . . . ,max(xk, 1− xk)).
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Algorithm 1 Computing bool(x).
a← x− 1/4
bool← a+ a

Algorithm 2 Computing min(x, y) and max(x, y).
a← x− y ; b← y − x ; c← a+ b

d← c/2 ; `← (x/2) + (y/2)
min← `− d ; max← `+ d

The function can be computed using the gates of the generalized circuit as shown in
Algorithm 2. Let xboolout be the output of that sub-circuit with allowed error 4δ. Note that
this circuit has at most 16k nodes. Each min and max operation requires 8 nodes and we
need to do 2k such computations overall; k for the k max operations and k to implement
the min operation of fan-in k with min operations of fan-in 2. Again, since k ≤ 3m, this
sub-circuit requires at most 48m nodes in total.

Following the notation introduced above, let Rδ(Bool), R4δ(Φ) and R4δ(Rebool) denote
the valuations of the agents in the instance of Consensus-halving corresponding to those
sub-circuits, according to the reduction described in Section 3. In other words, based on the
circuit described above, we create an instance H of Consensus-halving where we have:

2k agents (as each node corresponds to two agents, vari and copyi) that correspond to
the input variables x1, . . . , xk, who are not the output of any gate
at most 2(4k + k + 3m+ 16k) nodes corresponding to the internal nodes and the output
node of the circuit.
an additional agent with valuation

un =


1, if t ∈ [b− 18mε′ − 1, b− 18mε′]
1, if t ∈ [b, b+ 1]
0, otherwise

where [a, b] is the interval where the value of xboolout is “read” in the instance of Consensus-
halving, i.e. the interval where the cut tboolout − will be placed in the Consensus-halving
solution.

Recall Definition 1 from Section 3 and note that as far as agent n is concerned, any cut
tboolout − such that 1− 18mε ≤ xboolout ≤ 1 is a Consensus-halving solution.

We will now argue about the correctness of the reduction. Let n be the number of agents and
notice that there are n− 1 agents that correspond to the nodes of the circuit and a single
agent constraining the value of xboolout . Notice that since the allowed error for the sub-circuit
Rebool(x1, . . . , xk, xout) is 4δ, the total additive error of the agents of R4δ(Rebool) will be
at most 4δ · 48m ≤ 18mε′.

First, assume that there exists a a solution to ε′-approximate Consensus-halving with
n−1 cuts. By the correctness of the construction of Section 3 and the fact that ε′ < ε/11 = δ,
the solution encodes a valid assignment to the variables of the generalized circuit S. Due
to the valuation of agent n, the output of C must satisfy xboolout ≥ 1− 18mε′ − ε′, otherwise
the corresponding cut tboolout − could not be a part of a valid solution. Since the total additive
error for the circuit Rebool(x1, . . . , xk, xout) is at most 18mε′, if we choose ε′ < 1/90m, it
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Bool Bool Bool

¬
∨

∨ ∨

∧

x1 x2 x3

xout

Figure 2 A generalized circuit corresponding to a 3-SAT formula φ, where the first clause is
(x1 ∨ x2 ∨ x3). The nodes of the circuit between different layers are omitted. The layer at the output
layer that “restores” the boolean values is also not shown, therefore xout is the outcome of the
emulated formula φ.

holds that xboolout ≥ 4/5− ε′, which implies that xout ≥ 3/4, by the function implemented by
the circuit Rebool(x1, . . . , xk, xout). For the same reason, for each i = 1, . . . , k it holds that
xi ∈ [0, 1/4] ∪ [3/4, 1], and hence the output of Bool(xi) will lie in [0, 4δ] ∪ [1− 4δ, 1], which
means that the inputs xbool1 , . . . , xboolk to the gates of the sub-circuit Φ(xbool1 , . . . , xboolk ) will
be treated correctly as boolean values by the gates of the circuit (since the allowed error of
the sub-circuit is 4δ). Since the circuit Φ(xbool1 , . . . , xboolk ) computes the boolean operations
correctly and xout ≥ 3/4, the formula φ is satisfiable.

For the other direction, assume that φ is satisfiable and let x̃ = (x̃1, . . . , x̃k) be a satisfying
assignment. First we set the values of the variables x1, . . . , xk to 0 or 1 according to x̃ and
then we propagate the values up the circuit S using the exact operation of the gates, which
by our construction can be encoded to an instance of exact Consensus-halving for the (n− 1)
agents corresponding to the nodes of S, i.e. the first n− 1 will be exactly satisfied with the
partition resulting from the encoded satisfying assignment. For the n-th agent, again, since
the total additive error is bounded by 18mε′, the agent will be satisfied with the solution. J

5 Consensus-Halving with n cuts is in PPA

In this section, we prove that (n, n, ε)-ConHalving is in PPA. As we discussed in the
introduction, this result of ours was referenced in [13] to complement the PPA-hardness
reduction of the inverse-exponential precision version and obtain PPA-completeness.

I Theorem 6. (n, n, ε)-ConHalving is in PPA.

For establishing this result, we construct a reduction from (n, n, ε)-ConHalving to the
PPA-complete problem Leaf which goes via (n, T )-Tucker the computational version of
Tucker’s Lemma.

More precisely, to prove that (n, n, ε)-ConHalving is in PPA, we follow the main idea
of the algorithm provided in [27] for obtaining a Consensus-halving solution: the coordinates
of any vertex x in the unit cross polytope Cn naturally correspond to a partition that uses
n cuts on the [0, 1] interval. This is because the coordinates of any vertex x ∈ Cn satisfy
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∑n+1
i=1 |xi| = 1, and a partition with n cuts on [0, 1] can be interpreted as partitioning the

interval into n+ 1 pieces such that the length of each piece is equal to |xi|, i = 1, . . . , n+ 1.
Furthermore, if the sign of the i-th coordinate xi is “+”, piece |xi| is assigned to portion
O+; otherwise it is assigned to portion O−. We note that the use of the [0, 1] interval is for
convenience and without loss of generality; for any choice of the interval we could use a a
sphere of a different radius.

Given a sub-division of this sphere into small simplices (i.e. a triangulation) T of mesh size
τ , we label each point of the triangulation by the label of the agent that is most dissatisfied
by the corresponding set of cuts (and the sign indicates the direction of the discrepancy).
This labelling satisfies the boundary conditions of Tucker’s lemma and solutions to (n, T )-
Tucker correspond to solutions of (n, n, ε)-ConHalving. In simple words, we show that the
algorithm of [27] solves the computational version of Consensus-halving, using an algorithm
for the computational version of Tucker as a subroutine.

The “in PPA” result is then established by the fact that Tucker is in PPA, i.e. it reduces
to Leaf in polynomial time; this was already known from [22], where the problem is defined
with respect to a subdivision of a hypercube. Technically, the algorithm of [27] that we use
in our reduction requires the problem to be defined on the triangulation of a cross polytope,
so one would have to prove that this version of the problem is in PPA as well. While this
was already sketched in [22], we also prove it here via explaining how a constructive proof of
Fan’s combinatorial lemma [12] proposed by Prescott and Su [24] can be converted into a
reduction to Leaf. The details along with all the necessary definitions are included in the
full version.

6 Conclusion and Future Work

Our work takes an extra step in the direction of capturing the exact complexity of the
Consensus-halving problem for all precision parameters. While, as we mentioned in the
introduction, the techniques developed in [13] were successfully extended to obtain PPA-
hardness of the problem for an inverse-polynomial precision parameter [14], it seems unlikely
that they could be applicable when the precision is constant. In that sense, our main result
is not implied by [13, 14], neither can it be subsumed by modifications to those reductions,
even those involving highly non-trivial alterations. In other words, it seems that a PPA-
completeness result for constant precision would require techniques fundamentally different
from those used in [13, 14], and one can not even exclude the possibility of the problem being
complete for PPAD instead.
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