
FRUGALITY IN SET-SYSTEM AUCTIONS

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Antony McCabe

August 2012

Contents

Notations vi

Preface viii

Abstract ix

Acknowledgements x

1 Introduction 1

1.1 History . 1

1.1.1 Auction Mechanisms . 3

1.1.2 Example of a Vickrey Auction . 3

Truthfulness of Vickrey Auction 4

Notation . 4

1.2 Procurement Auctions . 5

1.2.1 Set-System Auctions . 6

1.3 Truthful Strategies . 7

1.3.1 The Vickrey-Clarke-Groves (VCG) Mechanism 7

1.3.2 VCG Example . 8

1.4 Frugality . 9

1.4.1 Frugality Definitions . 11

1.4.2 Benchmarks . 12

1.4.3 Feasible Bid Vectors and Nash Equilibrium 13

1.5 Special Cases of Set-Systems . 14

1.5.1 Path Auctions . 14

1.5.2 Commodity Auctions . 14

1.6 Thesis Outline . 15

1.6.1 Chapter 2 . 15

1.6.2 Chapter 3 . 15

1.6.3 Chapter 4 . 15

1.6.4 Chapter 5 . 16

1.6.5 Chapter 6 . 17

1.6.6 Chapter 7 . 17

2 Frugality in General Set-System Auctions 18

2.1 Introduction . 18

i

2.2 Frugality of VCG . 19

2.3 Frugality of Approximation Algorithms 20

2.3.1 Considering the Minimal Winning Sets 21

3 The Single-Commodity Auction 23

3.1 Overview . 23

3.2 Definitions . 24

3.3 The {1, 2} Single-Commodity Auction . 24

3.3.1 Auction Definition . 24

3.3.2 The αM Mechanism . 25

3.3.3 Computing NTUmin for the {1,2} Single-Commodity Auction . . 26

Preliminaries . 27

Describing the NTUmin bids. 27

Computing the NTUmin bid values 35

Simplifying lower bounds for NTUmin 37

3.4 The αM mechanism . 39

3.4.1 Frugality results for the αM mechanism 39

3.4.2 A lower bound on frugality with the αM mechanism 46

Calculation of a lower bound . 48

3.5 The Unrestricted Integer Single-Commodity Auction 50

3.5.1 A lower bound on frugality for all Scaling Mechanisms 50

Preliminaries . 51

Proof of lower bound . 51

4 Shortest Path with k-sets 59

4.1 Overview . 59

4.2 Problem Definitions and Examples . 60

4.2.1 Problem Definitions . 61

4.2.2 Example . 63

4.3 Hardness results . 63

4.3.1 SHORTEST PATH WITH 3-SETS 64

4.3.2 SHORTEST PATH WITH 2-SETS 65

4.4 Auction Design . 70

4.4.1 Using VCG . 70

4.4.2 Mechanism MP . 70

4.4.3 Frugality Results for MP . 71

Lower bounds for MP . 73

4.4.4 Inapproximability Results . 74

5 Benchmarks and First-Price Auctions 76

5.1 Overview . 76

5.2 Hypergraph Representation of Constraints 78

5.3 Descending Price Auction . 81

5.4 Uniformly Descending Price Auction . 85

5.5 Ascending Price Auction . 87

5.6 Ascending from Zero Auction . 89

5.7 Uniformly Ascending Auctions . 90

ii

5.8 Path Auctions . 95

5.9 Ordered Maximal Bidding . 98

5.9.1 Definitions . 99

5.9.2 Examples . 100

Random Orderings . 101

Bounds for Values Achievable with Ordered Bidding 102

5.9.3 Restricted Setting . 107

Single-Commodity Auctions . 111

5.9.4 Results for |S| ≤ 4 . 115

5.9.5 Upper Bound for Restricted Settings 120

5.9.6 Hardness and Approximation Results 122

6 Benchmarks for Forward Auctions 128

6.1 Overview . 128

6.2 Definitions . 128

6.3 Comparison with Combinatorial Auctions 129

6.3.1 Definitions . 129

6.3.2 Comparison of Set-System Auctions and Combinatorial Auctions . 130

6.4 Benchmarks . 131

6.4.1 Optimal Solution as a Benchmark 131

6.4.2 Considering F1NTUmax as a Benchmark 132

Randomized Mechanisms . 133

Non-Optimal choices of winning set 134

6.4.3 Considering F2NTUmax as a Benchmark 135

6.4.4 Considering FNTUmax as a Benchmark 135

6.4.5 Benchmarks for Unit Demand Auctions 136

6.4.6 Considering Alternatives to FNTUmax 137

7 Conclusion and Discussion 139

7.1 Conclusion . 139

7.1.1 Discussion and Summary of Main Results 139

Bibliography 143

iii

Illustrations

List of Figures

4.1 Example of M3C . 63

4.2 Figure 4.1 as SHORTEST PATH WITH 3-SETS 63

4.3 Construction for V ′i to V ′i+1 . 66

4.4 Example of SHORTEST PATH WITH 3-SETS 66

4.5 Figure 4.4 as SHORTEST PATH WITH 2-SETS 66

4.6 Construction of Example for Lower Bound of MP 74

5.1 Hypergraph Representation of Constraints for Table 5.1 81

5.2 Uniformly Ascending Price Auction for Shortest Path Auction 96

5.3 A Shortest Path Auction Where the Uniformly Ascending from Zero Price

is Below NTUmin . 97

5.4 A Shortest Path Auction where the Uniformly Ascending from Zero Price is

Above NTUmax . 98

5.5 Hypergraph Representation of constraints for Table 5.11 103

5.6 Hypergraph Representation of Constraints for Table 5.12 105

5.7 Hypergraph Representation of Constraints for Table 5.13 107

5.8 Graph Representation of Constraints in Table 5.14 108

5.9 Graph Representation of Constraints in Table 5.15 111

List of Tables

1.1 Mary’s Vickrey Auction . 5

1.2 Mary’s VCG Auction . 9

1.3 Mary’s VCG Auction with NTUmin, NTUmax 13

3.1 Instance I with VCG (α = 1) . 26

3.2 Instance I with α = Q . 47

3.3 Instance I ′ with α = Q . 48

3.4 Instance I ′ with α = 1 (equivalent to VCG) 48

3.5 Instance I with αM . 50

3.6 Instance I ′ with αM . 50

3.7 Instance I1 . 52

3.8 Instance I2 . 53

3.9 Instance Ij . 54

3.10 Instance Ik . 56

5.1 Showing Constraint Sets for a Set-System . 80

5.2 Descending Price Auction Reaches 0 . 83

iv

5.3 Descending Price Auction as low as TUmin/2 86

5.4 Uniformly Ascending Bid b↑ Equals NTUmax 92

5.5 Uniformly Ascending Bid b↑ equals NTUmin 93

5.6 Example 5.4 Multiplied by constant k . 94

5.7 Example 5.6 substituting A1 with A′1, . . . , A
′
k 95

5.8 Ordered Maximal Bid Auction for 9 items giving differing results 100

5.9 Ordered Maximal Bid Auction, choosing randomly 102

5.10 Ordered Maximal Bid Auction may not find NTUmax 102

5.11 Ordered Maximal Bid Auction may not find NTUmin when |S| = 5 103

5.12 Ordered Maximal Bid Auction May Not Find NTUmin 104

5.13 Ordered Maximal Bid Auction May Be Much Higher than NTUmin 106

5.14 Ordered Maximal Bid Auction may not equal NTUmin in restricted setting . 108

5.15 OMBmin approaches 2 NTUmin . 110

5.16 OMBmin approaches 2 NTUmin for Single-Commodity Auctions 112

5.17 Ordered Maximal Bid Auction, Lowest Cardinality First 113

5.18 Ordered Maximal Bid Auction, Highest Cardinality First 114

5.19 Ordered Maximal Bid Auction, Lowest Quantity First 115

List of Algorithms

1 Algorithm to calculate NTUmin bids . 36

2 Approximation Algorithm for SPk . 71

3 A Class of Descending Price Auctions . 82

4 A Uniformly Descending Price Auction . 86

5 A Class of Ascending Price Auctions . 87

6 A Class of Ascending from Zero Auctions 89

7 A Uniformly Ascending Price Auction . 91

List of Problems

1 SHORTEST PATH WITH k-SETS . 61

2 EXACT COVER BY 3-SETS . 61

3 MINIMUM SET COVER . 62

4 MINIMUM k-SET COVER . 62

5 MINIMUM INDEPENDENT DOMINATING SET 123

6 MINIMUM WEIGHT EDGE COVER . 126

v

Notations

The following notations and abbreviations are found throughout this thesis:

Z The set of integers.

Z+ The set of strictly positive integers.

E The set of participating agents (E = {1, . . . , n}).

n The number of participating agents (n = |E|).

F The collection of feasible sets.

S The lowest cost feasible set.

SM The feasible set chosen by mechanism M.

m The number of agents in the feasible set (e.g. m = |S|).

b A bid vector (b = (b1, . . . , bm)).

be The bid of agent e.

bα A specific bid vector (bα = (bα1 , . . . , b
α
m)).

bαe The bid of agent e in bid vector bα.

bV The sum of bids of agents in set V (
∑

e∈V be).

cV The sum of costs of agents in set V (
∑

e∈V ce).

bαV The sum of bids, in vector bα, of agents in set V (
∑

e∈V b
α
e).

pMV The sum of payments by M to agents in set V (
∑

e∈V p
M
e).

pM The sum of payments by M to agents in the set SM(
∑

e∈SM pMe).

c A cost vector (c = (c1, . . . , cn)).

ce The cost of agent e.

pM The payment vector of mechanism M, (p = (p1, . . . , pm)).

pMe The payment to agent e by the mechanism M.

NTUmin Non-Transferable Utility minimum.

bmin An NTUmin bid vector

NTUmax Non-Transferable Utility maximum.

TUmin Transferable Utility minimum.

vi

TUmax Transferable Utility maximum.

OMBmin Ordered Maximal Bidding minimum.

OMBmax Ordered Maximal Bidding maximum.

σS An ordering of the set S.

σ An ordering of the lexicographically first, lowest cost feasible set, S.

bσ A maximal ordered bid vector for ordering σ.

σγ A specific ordering of the lexicographically first, lowest cost feasible set, S.

bγ A maximal ordered bid vector for ordering γ.

b⇑,f An iteratively rising bid vector for selection function f .

b⇓,f An iteratively rising bid vector for selection function f .

b↑ A uniformly rising bid vector.

b↓ A uniformly falling bid vector.

Q A quantity to purchase in a single-commodity auction.

q A quantity vector (q = (q1, . . . , qn)).

vii

Preface

This thesis is primarily my own work. The sources of other materials are identifed.

Chapter 1 contains introductory materials describing the setting, and is drawn from

various authors. From Chapter 2 onwards, of particular importance are the definitions

and notation that have been used in previous literature describing set-system auctions

and frugality. These come from the paper by Elkind, Goldberg and Goldberg in 2007

[11], which derives much of the notation and definitions from Karlin, Kempe and Tamir

in 2005 [24]. The structure for various examples are derived from examples given in [11];

in particular extensions of the ‘diamond’ graph appearing in both papers.

viii

Abstract

We study the topic Frugality in Set System auctions; examining the payments that are

given by truthful mechanisms when buying selections of items at auction.

Firstly, we examine a simple single-commodity auction, where the auctioneer wishes

to buy some given quantity of identical items. We show methods of quickly computing

a winning set, as well as the benchmark NTUmin. We then show, for certain special

cases, a mechanism that improves on the frugality of VCG, and is within a constant

factor of optimal for mechanisms in its class. We then consider the general case, and see

a relatively large lower-bound for a class of similar mechanisms.

We propose a new type of auction, based on finding the shortest-path in a graph with

‘bundles’ of edges. We show that finding an optimal solution to this problem is NP-hard,

for any bundle-size (k) of 2 or more, showing that there is no polynomial time algorithm

that can compute an exact solution, subject to the commonly-held assumption that

P! =NP. However, we give a simple k approximation and use this to design a truthful

mechanism and give its frugality ratio.

We consider the benchmarks that have been used in the literature as first-price

auctions, and examine a range of other possibilities that should aim to meet the same

‘fairness’ criteria. We show that not all of the proposals will meet these criteria, and give

the ranges of values possible for these other benchmarks. We also give information on

their computational complexity, including a new result showing approximation hardness

for a new benchmark as well as an existing one used in the literature.

We then briefly examine the meaning of the benchmarks we used for frugality if they

are rewritten for use in the more traditional ‘forward’ auctions (that is, selling items by

auction).

ix

Acknowledgements

I would like to thank my supervisors Paul Goldberg and Leslie Ann Goldberg for sug-

gesting this line of research and the support I have received throughout my PhD studies.

It is only Leslie’s intervention that resulted in my starting a PhD, or even knowing what

it was.

I would also like to thank all the members of the University of Liverpool Computer

Science Department, including the excellent technical and support staff for making this

a pleasant place to work. I am indebted to the department, and the EPSRC, for the

funding that made this possible. I have had many excellent colleagues in my office and

building over this time, who have all been helpful, interesting and supportive.

Particular thanks are due to my examiners, David Manlove and Giorgios Christodoulou

for their attention and constructive comments.

Finally, I would like to thank my family for helping me to concentrate on my studies

and forget about other distractions, and my friends for doing the opposite!

x

Chapter 1

Introduction

1.1 History

An auction is a traditional method of selling items, or services, amongst a pool of

interested parties. In the classic setting, an item is offered up for sale and ‘bids’ are

invited by varying means, with the intention that the seller can agree to sell to one of

the interested parties at some price acceptable to the chosen buyer. Reports of sales by

auction go back at least as far as Herodotus [21], around 2,500 years ago.

One of the most common types of auction is an ‘English’ auction, which is an inter-

active process, traditionally held with all of the potential buyers in the same room. In

this auction, the auctioneer starts by offering the item at some low price. When at least

one person indicates their willingness to buy at the current price, they are deemed to

have bid that price on the item, and are accepted, provisionally, as a winner at the price

of the bid. The auctioneer then increases the price, and asks if anyone else in the room

would like to buy at the slightly higher price. If there is somebody else who is prepared

to pay the new price, they then become the provisional winner at the new price. This

process is then repeated until there are no bidders left that are prepared to pay the new

price, and the provisional winner becomes the winner and must pay the price of his final

bid. Although it is not relevant in this work, for completeness, it is worth describing a

reasonably common complication — a seller may specify a reserve price, which is not

communicated to the buyers, and if the result of the auction would be to sell below this

price then the sale is cancelled.

Another type of auction that has been commonly used is the sealed bid auction.

In such an auction, the seller invites the buyers to submit a bid amount, in a sealed

envelope, to be given by a certain date and time. At the given time no more bids are

accepted, and the sealed bids can now be revealed. The seller then chooses the amount

of the largest bid and sells to that bidder at the price of his bid (this property is often

called a first-price auction, as the price paid is equal to the highest bid).

William Vickrey in 1961 [37] made some interesting observations about the different

strategies that are present in these two types of auction. Assuming that all the buyers

have in mind a specific valuation for the item (the maximum price that they are prepared

1

Chapter 1. Introduction 2

to pay) which only they know, their optimal strategy in an English auction is to keep

bidding until the price reaches their private valuation.

The optimal strategy for a sealed bid is rather more complex, as it will depend on

the buyers’ knowledge of the likely bids by the other buyers. As an example, if each

buyer were to believe that his is the only bid, he could place an arbitrarily low bid with

the expectation that he could secure the purchase at a very low price. There is also

certainly no incentive to place a bid that is in excess of their valuations, so this auction

tends to incentivize bidding below their valuation, but not in an easily predicted way.

If we wish to make any sort of mathematical analysis of an auction then being unable

to determine the correct strategy for any of the buyers is obviously undesirable.

Vickrey proposed a sealed-bid auction that avoids this problem. His auction takes

sealed bids, chooses the winner with the highest bid, but only sells at the price of the

next highest bid. He shows, through case analysis, that the optimal strategy in this type

of auction is for each of the sellers to submit a bid which is equal to their full valuation

for the item. This type of auction is now generally known as a Vickrey Auction, and the

term second-price is often used as a description. We will see an example of this shortly,

in Section 1.1.2, which will also describe the case analysis which shows that each bidder

should only ever bid their full, truthful, valuation.

A dominant strategy in an auction is some strategy that a buyer can adopt in order

to guarantee their best possible outcome, no matter what the bids of the other buyers

may be. When the dominant strategy for a type of auction is truth-telling, we often

describe it as truthful. Obviously, not all types of auction admit a dominant strategy,

such as the ‘first-price’ sealed-bid auction discussed earlier — in order to get the best

possible result, the bidder would need to know all of the other bids first.

While, of course, humans are quite capable of employing many convoluted, devious

and even unfathomable strategies, the notion of the ‘rational, selfish agent’ is perhaps

not so far from reality. As Vickrey pointed out, truthfulness removes the (possibly

substantial) burden for each bidder of trying to predict the behaviour of the other

bidders. If this difficult prediction is not done correctly then it seems likely that this

will lead to less than optimal outcomes.

The notion of truthfulness is not restricted to auctions, and can be applied to many

other settings which involve making some allocation of resources within some community,

such as in auctions, markets, voting and routing games. Perhaps, unsurprisingly, there

is a great deal of literature studying truthful mechanisms and there are many references

as well as descriptions of several domains in the book by Nisan et al. [35].

So far, we have been discussing sales by auction as they have been historically the

most commonly seen type of auction. However, this thesis is primarily about procure-

ment auctions where the auction is run on behalf of a single buyer, rather than a seller.

Sales by auction can sometimes be called forward auctions with procurement auctions

being called reverse auctions. We primarily concern ourselves with sealed bid auctions

Chapter 1. Introduction 3

(although we do not restrict ourselves to a single item), and the notion of truthfulness

in these auctions is an important theme in this thesis.

As is common with the literature in the field, throughout this work we refer to the

auction participants as agents, with the body deemed to be running the auction called

the auctioneer.

One assumption we make, which is extremely natural in an auction setting, is that

we imagine the use of some form of currency or money. The way that we imagine the

use of money throughout this work is to assign values to certain properties that the

participants hold. We measure how ‘happy’ an agent is with some utility value, so our

assumption that each participant acts purely selfishly (or rationally) can be modelled

by requiring that every agent maximizes its utility value.

1.1.1 Auction Mechanisms

We generally call these rules concerning the running of an auction a mechanism (see,

e.g., [3, 4, 24, 35, 11]).

In the case of a sealed-bid procurement auction a mechanism may be uniquely char-

acterized by just two rules — a selection rule and a payment rule. The selection rule

examines all of the bids supplied by the agents and then chooses which of the agents it

will buy from. The payment rule will then decide a value for a payment to each of the

agents that was selected. We will also make the standard, reasonable, assumptions on

individual rationality — that an agent which is not selected will always have a payment

value of zero, and that each agent that is selling an item will be paid no less than the

amount that they bid, otherwise they would not be willing to participate in the auction.

The same concept of a mechanism can be applied to a forward auction. The mecha-

nism will select a ‘winning set’ to sell items to, and will decide on the payment amount

that each of the winning agents must make. It is also standard to assume that agents

who do not win pay zero, and that no agent is asked to pay more than the amount of

their bid.

1.1.2 Example of a Vickrey Auction

We now give a more detailed description of a procurement auction. In this example, we

have a person, Mary who wishes to purchase a pet lamb. Mary has identified a number

of possible suppliers. The first on her list is a nearby farm owned by Fred. Fred would

be able to get £20 each for his lambs at the local market, but making a special delivery

to Mary would cost him an additional £5 in time and fuel, so Fred values his lamb at

£25. The second supplier on Mary’s list is George’s Farm, which is somewhat further

away. Including the delivery, George values his lamb at £40. The final possible supplier

is a neighbour and small-holder, Bob. He also keeps sheep as pets and has had more

lambs this year than he expected; he would be happy to let one go to a good home (and

not to slaughter) for free to reduce his maintenance costs, and hence he values his lamb

at zero, although he would still like to be paid a fair price.

Chapter 1. Introduction 4

Mary has chosen to purchase her lamb by way of a sealed-bid auction, and has chosen

to use the Vickrey, 2nd-price, auction. In this auction, Mary will ask for sealed-bids and

will select the lowest-cost supplier. She will then pay the second-lowest cost. As Fred,

George and Bob are all aware of this, they can each see that their best strategy is simply

to bid their actual valuations, of £25, £40 and 0 respectively. As Vickrey noted, there

is never any advantage to bidding other than their valuations in this setting, but we will

briefly demonstrate it here.

Truthfulness of Vickrey Auction

We will examine Fred’s possible choice of bids, assuming that the other bids are unknown

to him. We take the first case, that Fred bids £25 and wins the auction. This means

that Fred is paid the second-lowest price, £x and that x ≥ 25. If Fred bids below £25

he will still win the auction, and still be paid £x so does not benefit by changing it. If

Fred bids above £25, and still wins the auction, then he must have bid no more than

x, so is still paid £x. If Fred bids above £25, but loses the auction, then he makes no

profit at all, so cannot benefit by this.

In the second case, Fred bids £25 but loses in the auction, so somebody must have

bid £x, where x ≤ 25. If he bids more than £25, he will still lose. If he were to bid

£y with y < 25 and he manages to win the auction, then he must have bid y ≤ x, but

x ≤ 25, so he cannot make any profit with this bid either (and will make a loss unless

x = 25 exactly). This analysis may be duplicated for each of the other suppliers with

the obvious changes.

Notation

Now we have seen why the Vickrey auction ensures that the suppliers bid truthfully,

we will consider a more formal notation for this auction. We denote Fred by Agent 1,

George by 2 and Bob by 3, and write this auction in the form given in Example 1.1; in

order to avoid ambiguity we will use the labels A1, A2, A3 to refer to agents 1, 2, and 3

(this notation is used throughout this thesis).

The example shows the set of solutions that are acceptable to Mary as feasible sets,

denoted by F = {{A1}, {A2}, {A3}}, which shows simply that Mary may have chosen to

buy from any of Fred, George, or Bob. We can see from Table 1.1 in column ce that the

entry for agent A1 gives c1 = 251 which is the cost value for Fred, and hence the amount

of the bid he submitted, as he will bid truthfully. The other costs given are c2 = 40 and

c3 = 0.

We can see that Mary chooses to buy her lamb from Bob, where the winning set is

given as S = {A3}. The payment made to Bob of £25, as the second-highest, is given

by pV3 = 25. We follow the convention that ‘losing’ agents do not receive any payment.

1The notation describing the cost of agent A1 is abbreviated from cA1 to c1 throughout. Similar
abbreviations for the bid, price and valuation of an agent Ae are given as be, pe, and ve respectively.

Chapter 1. Introduction 5

Example 1.1. Suppose that we have three agents A1, A2 and A3, and that the feasible

sets are F = {{A1}, {A2}, {A3}}. Observe that the winning set S = {A3}.
Agent ce pVe

A1 25

A2 40

A3 0 25

Table 1.1: Mary’s Vickrey Auction

1.2 Procurement Auctions

In recent years, competitive tendering has been of great importance to many organi-

sations, in particular public bodies, not least due to the accountability it lends to the

procurement process. For example, in the United Kingdom, The 1980 Local Govern-

ment, Planning and Land Act (c.65) made competitive tendering compulsory in certain

circumstances. Competitive tendering typically requires that a number of different com-

petitors are given the opportunity to bid for a contract, with the contract awarded to

the most competitive bid (typically the lowest cost, but there may be other factors taken

into consideration).

The traditional auction sales that have been discussed here have often been about

selling lots of single items and, similarly, ‘competitive tendering’ can be seen as an

auction for a single contract. These may easily and naturally be extended to include

auctions for multiple items, which were also studied by Vickrey [37]. From the assump-

tion that a buyer may wish to procure some number of items it is only a small step to

assume that a buyer may wish to procure only certain specific combinations of items.

To give a possible example; perhaps an organisation may need promotional materials to

be printed and there are a number of different technologies available. If they buy inkjet

printers then they may also need plain paper and ink. Laser printing may use the same

paper but require toner rather than ink. Thermal printing may require special paper

but no further consumables. This choice may easily extend to many other items, such

as the options for covers or bindings. It is certainly conceivable that there are many

different manufacturers who may be able to competitively supply specific parts of the

requirements without being able to fulfil the entire need unilaterally.

Another way of considering this type of auction is assume it that of ‘hiring a team

of agents’ (see, e.g., [4, 24, 11]) to perform some complex task. In this model we assume

that each agent can perform some task, for a price, which is a sub-task of the more

complex task that is required. It is the goal of the auctioneer to buy any set of agents

such that, between them, they can perform the entire complex task required.

This notion, of buying only certain combinations of items, can be captured with a set-

system auction, and we will now see a more precise definition of the type of procurement

Chapter 1. Introduction 6

auction that we will study. In the general case, we allow the acceptable solutions to be

defined as a specified collection of sets, each of which is some acceptable subset of the

selling agents that are taking part in the auction (which we call a feasible set). We call

this auction a Set-System Auction.

Set-System auctions are integral to much of the work that is presented in this thesis.

We will now formally define the Set-System Auction as a method of using an auction to

purchase a solution to some problem that can be represented by a set-system, following

the definitions of Karlin et al. [24].

1.2.1 Set-System Auctions

Let a set-system (E ,F) be specified by a set E of n elements, each representing an agent,

and a collection F ⊆ 2E of feasible sets; these are the subsets of agents that make an

acceptable solution for the buyer. We will, in general, assume that any superset of a

feasible set is also a feasible set, which is a reasonable assumption for many problems of

‘hiring a team’.

The final outcome of the auction will be achieved by a process as follows. Each agent

e ∈ E will submit a sealed bid be to the auction, giving a bid vector b. Let n = |E|,
and b = (b1, . . . , bn). We also assume that there is a cost vector c = (c1, . . . , cn) that

represents the cost ce that each agent e will incur in providing its goods or services, but

that this information is private and known only to the agent. Recall that a truthful

mechanism is designed to elicit truth-telling, so that an agent may maximize its utility

by truthful bidding, i.e., that ∀e ∈ E , be = ce. Typically, in a procurement auction, the

utility value is simply defined as payment received minus cost outlaid.

In order to simplify some of the later notation, we will define aggregates over any

set of agents, denoted by T , to refer to the sum of values of those agents. Recall that

we have defined a cost vector c = (c1, . . . , cn), and a bid vector b = (b1, . . . , bn), and let

p be a payment vector p = (p1, . . . , pn) representing the payments made to each agent.

Let these aggregates be

cT =
∑
e∈T

ce,

bT =
∑
e∈T

be,

pT =
∑
e∈T

pe.

Recall that a mechanism, which we will denote by M, is a method (or set of rules)

for running the auction. Every mechanismM consists of a selection rule, and a payment

rule, which are implemented as follows. The auctioneer will, by means of this mechanism

M, select a set of agents (which must be a feasible set defined by the set-system) which

we will call SM ∈ F to be the ‘winners’. The mechanism will then pay each agent

e ∈ SM some value pMe . Note that the set SM will depend on the mechanism M, and

may not always be the same as the lowest-cost solution.

Chapter 1. Introduction 7

1.3 Truthful Strategies

Recall the idea of dominant strategies — which are when an auction participant (a seller

or buyer, for procurement auctions or forward auctions respectively) has some specific

strategy that will always give them the best possible result, regardless of the bids of

other participants. We are interested in designing mechanisms that have truth-telling

as a dominant strategy; that is designing auction mechanisms so that all participants

are incentivized to bid only their true valuations — often referred to as a truthful mech-

anism [35].

The notion of a truthful mechanism is an interesting one, not least because it allows

some method of predicting the strategies that may be employed by bidders. While this

idea of truthfulness may perhaps seems a little difficult to pinpoint at first, given some

reasonable assumptions, and appropriate definitions, it can be very well defined.

In a procurement auction we will generally assume that an agent is supplying some

sort of goods or services and that it will incur some cost if it is selected but zero cost if it

is not selected. Many of the more esoteric preferences that exist in real-world situations

can be thought of as being included in this ‘cost’ valuation and we can think of it as the

price at which the participant is ambivalent to being selected or not.

It is well-known, in our auction setting, that there are certain properties that mech-

anism must hold which are both necessary and sufficient for the mechanism to be truth-

ful [35]. The first is that the selection rule must be monotonic. In a procurement

auction this means that, given all other bids being equal, if agent e may be selected in

the ‘winning’ set with some bid value be then agent e must always be selected with any

bid b′e when b′e ≤ be. More intuitively, an agent can never get into the winning set by

increasing its bid. The second property that must be met is that the payment rule must

pay threshold payments. A threshold payment is the supremum of the amounts that the

agent can bid and still be selected in the winning set, given the fixed bids of the other

agents. In the case of the Vickrey ‘second-price’ auctions that we have seen it is easy

to observe that the threshold payment is exactly the price of the second-highest bid, as

any lower bid would not win and any higher bid would be unnecessarily high.

1.3.1 The Vickrey-Clarke-Groves (VCG) Mechanism

Vickrey described a truthful way to purchase single, or multiple, items at auction. Fur-

ther work, by Clarke [6] and Groves [18] then extended this mechanism to more general

settings. The mechanism that they devised has become known as the Vickrey-Clarke-

Groves (VCG) mechanism and is perfectly applicable to the types of set-system auctions

that we are interested in. As VCG is historically important, and has a quite gen-

eral definition, it is quite common for any new mechanism to be compared with VCG

(see,e.g., [4, 24, 11]), and we will see a number of comparisons to the VCG mechanism

throughout this work.

Chapter 1. Introduction 8

While the VCG mechanism is applicable to a large range of scenarios it does have

a simple definition when applied to set-system auctions. We give a definition here that

was described by Karlin et al. [24].

Definition 1.1. Given a set-system auction having cost vector c, let S be the lowest-

cost feasible set. Let the VCG payment denoted by pV CGe given to each agent e ∈ S, be

pV CGe = ce + cT − cS when T is the lowest cost feasible set T ∈ F such that e /∈ T .

VCG is well known to be a truthful mechanism (see, e.g., [35]), and we can easily

verify this. The selection rule chooses the lowest-cost feasible set, which is clearly mono-

tonic. The payment rule given is a threshold payment — assuming that all agents bid

their cost value, then if e were to submit a bid be = ce + cT − cS then we would have

bS = cS\{e} + ce + cT − cS = cS + cT − cS = cT . Hence be = ce + cT − cS is a threshold

bid, as T is an alternative feasible set, and the cost of T compared to the cost of S

represents the threshold between e ‘winning’ the auction and ‘losing’. We already know

that having a monotonic selection rule and threshold payments are sufficient conditions

for a truthful mechanism.

Although the definition is given in terms of costs, we know that VCG is truthful, so

we can assume that the bids made to the mechanism are identical to the costs, and the

VCG payment can equally be given by pV CGe = be + bT − bS .

Observe that using VCG requires finding the lowest-cost feasible set. However, find-

ing a lowest-cost feasible set may be an NP-hard problem, making VCG not universally

useful. For example, Elkind et al. [11] describe a polynomial-time truthful mechanism

for (NP-hard) vertex cover auctions by using an approximation algorithm.

1.3.2 VCG Example

To demonstrate VCG in action, we return to the example of Mary and her attempt to

buy a pet lamb.

Mary has discovered that sheep are social animals, so she has decided that she would

need to purchase at least 3 lambs. Bob still has a lamb available, and has found 2 other

local small-holders that each have one lamb available that they would be prepared to

accept no payment for (although Mary does not know this prior to the auction). Mary

has also found a farmer who will give her two lambs for just the cost of delivery, at £40

for both.

Mary, again, decides to run an auction, and invites sealed bids. The VCG payment

is slightly more complex than in Example 1.1, but the VCG payment to an agent can

be thought of as the amount extra that would need to be paid if that agent were not

involved in the auction. In this example, Mary will choose the 3 lambs from the small-

holders, and each will be paid £40 — the cost that Mary would have incurred if each

one, individually, did not participate (defined by pV CGe = ce + cT − cS) — giving a total

of £120.

Chapter 1. Introduction 9

This example is shown as Example 1.2, where agents A1, A2, A3 represent the small-

holders, and agent A4 the farmer.

Example 1.2. Suppose that we have four agents A1, A2, A3, and A4. The feasible sets

are F = {{A1, A2, A3}, {A1, A4}, {A2, A4}, {A3, A4}}. The costs are given in Table 1.2,

and observe that the winning set S = {A1, A2, A3}.
Agent ce pVCG

e

A1 0 40

A2 0 40

A3 0 40

A4 40

Total 120

Table 1.2: Mary’s VCG Auction

1.4 Frugality

Recall that, in the Vickrey procurement auction, a single item is bought for a price

equal to the second-lowest bid. Obviously, this may not be the optimal outcome for the

auctioneer as there may have been a seller willing to sell at a much lower price (such as

in Example 1.1). If we wish to make our mechanisms truthful, then we may have to pay

more than perhaps we might had we somehow known all of the bidder’s true valuations.

Truthful mechanisms are certainly very desirable mechanisms for study, so we would

naturally like to understand more about this potential downside of overpayment. Not

surprisingly, the question of studying overpayment has been looked at earlier — initially

by Archer and Tardos [4] in 2002. They called this concept, of measuring overpayment,

frugality. The measuring of frugality is a common theme throughout this thesis, where

we aim to extend the known results in this field. Firstly, though, we need to give a

description of what exactly we mean by frugality, which is followed by a formal definition

of a metric which allows the idea of frugality to be measured.

Perhaps the first question that springs to mind in measuring ‘overpayment’ would be

‘what do we compare the payment with?’. It turns out that this is not a trivial question.

A first attempt may be to consider taking the cost of the winning set as a possible

benchmark, but even for the Vickrey mechanism, Archer and Tardos in [4] observed

that no truthful mechanism can hope to get near this lowest price (within an arbitrary

factor). To help illustrate this, if we refer to Mary’s Vickrey auction in Example 1.1,

we see that the lowest-cost feasible set has a cost of 0, and the Vickrey payment has no

finite approximation ratio to this. If we were to assume that 0 was a reasonable payment

for this auction, then there would be no incentive for Bob to bid truthfully, as a larger

bid may well gain him some payment, causing him not to bid truthfully.

Chapter 1. Introduction 10

Next, we could possibly consider using the second lowest cost feasible set as a bench-

mark. In the case of an auction for a single item, this would give the same value as the

Vickrey payment. This idea was addressed by Archer and Tardos in [4]. They consid-

ered the case of path auctions2, and while they quickly discount the lowest-cost set as

a possible benchmark for truthful mechanisms, they do consider the cost of the second-

best disjoint solution (or feasible set) to be a reasonable benchmark. They observe that,

in the case of a path auction, there must always be at least two disjoint feasible sets

or else some agent holds a monopoly. (We do not consider auctions where some agent

holds a monopoly, and must always be selected, as an auction is not a useful method of

purchasing items in such situations.)

However, in our general setting, it is easy to see that disjoint feasible sets may not

always exist, which we can demonstrate. Returning to Example 1.2, We can easily see

that there are no disjoint solutions, as any solution must contain at least 3 lambs, leaving

at most 2 others. Therefore, we need some more general approach than that of Archer

and Tardos, and here we turn to the procedure suggested by Karlin, Kempe and Tamir

in [24] and extended by Elkind, Goldberg and Goldberg in [11].

Karlin et al. [24] decided to look at first-price auctions in an attempt to define a

reasonable benchmark figure. Recall that first-price auctions are where the buyer is paid

exactly their bid price, and that first-price auctions do not generally admit dominant

strategies, and so are not truthful. They decided that, due to the lack of dominant

strategies in first-price auctions, they would consider the concept of a Nash equilibrium.

Generally, a Nash equilibrium is a set of strategies for the agents such that no agent

may increase utility by unilaterally deviating from its current strategy. More specifically,

in this auction setting, we can consider an agent’s strategy to be simply the bid that it

makes. Hence a Nash equilibrium is an assignment of bids to the agents such that no

agent would increase utility by choosing a different bid. For completeness, a pure Nash

equilibrium requires that each agent deterministically chooses a single strategy. There

is an alternative — a mixed Nash equilibrium, where every agent may choose a number

of different strategies, each with some probability.

Based upon this idea of a Nash equilibrium, they gave the following definition for a

benchmark figure, which will be referred to throughout this thesis.

2In a path auction, the sellers represent edges in a graph, and the auctioneer wishes to purchase a path
between two specified vertices of the graph. Path Auctions are described in more detail in Section 1.5.1.

Chapter 1. Introduction 11

1.4.1 Frugality Definitions

Definition 1.2. Let the cost vector be c = (c1, . . . , cn). For an instance I = (E ,F , c)

of a set-system auction, define S as a feasible set S ∈ F with the lowest cost, i.e.,

∀S′ ∈ F ,
(∑

e′∈S′ ce′
)
≥
(∑

e∈S ce
)
. Define NTUmin(c) as the solution to the following

problem. 3

Minimize B =
∑

e∈S be subject to

(1) be ≥ ce for all e ∈ S

(2)
∑

e∈S\T be ≤
∑

e∈T\S ce for all T ∈ F

(3) for every e ∈ S, there is Te ∈ F such that e /∈ Te and
∑

e′∈S\Te be′ =
∑

e′∈Te\S ce′

For concreteness, we will assume that that S is the lexicographically first of the

lowest cost feasible sets. It was shown in Proposition 24 of [11], that NTUmin(c) will

give the same result for any legal choice of S as a lowest cost winning set. So we can,

also, without loss of generality, assume that S is minimal with regard to set inclusion.

We can regard these three conditions less formally as something like ‘fairness’ criteria

that should be met to qualify as a reasonable benchmark. Specifically, they can be

thought of as “1) No agent should lose out by taking part, 2) No set of agents can bid

more than a competing set, and 3) Every agent bids as much as possible, as long as 1)

and 2) are not violated.”

We can now define how we measure a mechanism’s ‘overpayment’ more precisely by

referring to its frugality ratio. This is the worst-case ratio (over all possible instances)

of the ratio between the payments made by that mechanism and the chosen benchmark

figure. Let pM(c) be the total payment made by mechanism M, given the cost vector

c. We will then use the NTUmin(c) value to define the frugality ratio of a mechanism

M — which is the supremum of the ratio of pM(c) to NTUmin(c) over all possible cost

vectors (over all instances).

More formally, we will define this as

φNTUmin(M) = sup
c

(pM(c)/NTUmin(c)).

We will now define the variations that were introduced by Elkind et al. [11]. Firstly

the maximization version of NTUmin, as follows. Define NTUmax(c) as the solution to

the optimization problem “Maximize B subject to conditions (1),(2), and (3)”. There

are also similar versions that capture the idea of transferable utility. This notion is that

some agents could possibly, rationally, bid below their costs if they could ‘privately’

3 The idea that these values come from the agents’ bids in a first-price auction, and also the notation
be, are those used previously in the literature (see, e.g., [24, 11, 5]). However, we also use the same
description and notation for describing the bids an agent may make to some mechanism to actually take
part in an auction (again, consistent with the literature), even though the two concepts are not entirely
equivalent.

Chapter 1. Introduction 12

arrange a transfer of utility from some of the other agents. Allowing artificially low bids

from some of the agents may allow other agents (possibly more of them) to improve

their bids, which can lead to a wider range of values4. We define this by modifying the

first condition, such that each agent may bid below its cost value, but not below zero,

as follows.

(1*) be ≥ 0 for all e ∈ S

We now use this modified constraint in the following definitions.

Definition 1.3. Let TUmin(c) be the solution to the optimization problem “Minimize

B subject to (1*),(2), and (3)”.

Let TUmax(c) be the solution to the optimization problem “Maximize B subject to

(1*),(2), and (3)”.

We simply define the other frugality ratios described by Elkind et al. [11] in the same

way as we did for NTUmin.

φNTUmax(M) = sup
c

(pM(c)/NTUmax(c)).

φTUmin(M) = sup
c

(pM(c)/TUmin(c)).

φTUmax(M) = sup
c

(pM(c)/TUmax(c)).

It was noted by Elkind et al. [11] that TUmin may be too low to be a realistic

benchmark, as it may even be lower than the cost of the winning set, and that TUmax

may be too liberal to use as a benchmark, as it may be much higher than the sum of

VCG payments. Therefore, we do not use TUmin or TUmax widely here, but there

is some comparison of other possible benchmark figures with both TUmin and TUmax

given in Chapter 5.

An agent e ∈ E may sometimes be referred to by a numerical index; in order to

maintain clarity, these agents will often be labelled as A1, . . . , An rather than the less

specific 1, . . . , n. In order to specify different bid vectors, we will also describe some of

them with a label, such as α. In these cases we will simply have bα = (bα1 , . . . , b
α
n) and

call the aggregate

bαV =
∑
e∈V

bαe .

1.4.2 Benchmarks

Now that we have these definitions, we can see the NTUmin and NTUmax values from

Mary’s VCG Auction that was given in Example 1.2. These are shown in Table 1.3,

where the bmin
e column shows an NTUmin value of £40 and an NTUmax value of £60 is

shown in the bmax
e column. The existence of the alternative feasible sets T1 = {A3, A4},

4Elkind et al. [11] showed a factor of n− 1

Chapter 1. Introduction 13

T2 = {A1, A4}, and T3 = {A2, A4} implies the following constraints (from condition (2)

of Definition 1.2) respectively b1+b2 ≤ 40, b2+b3 ≤ 40, and b1+b3 ≤ 40. It is easy to see,

given that one of these constraints must be tight due to satisfying condition (3), that the

minimum value possible is 40. It is also easy to see that the maximum value that satisfies

these constraints is 60 (as adding the constraints together gives 2(b1 + b2 + b3) ≤ 120).

In this thesis, we will primarily focus on the use of NTUmin due to its appearance in

the literature (e.g. [24, 39, 23, 11]).

Agent ce pVCG
e bmin

e bmax
e

A1 0 40 40 20

A2 0 40 0 20

A3 0 40 0 20

A4 40

Total 120 40 60

Table 1.3: Mary’s VCG Auction with NTUmin, NTUmax

Using this frugality ratio to measure overpayment, Karlin et al. [24] gave examples

that show VCG may overpay (relative to NTUmin) by a factor of n− 1, where n is the

number of agents. They observe that Ω(n) is obviously an upper bound on frugality 5

and hence that the VCG payment may be undesirably large.

1.4.3 Feasible Bid Vectors and Nash Equilibrium

We will consider any bid vector which satisfies conditions (1),(2), and (3) of Definition 1.2

as a feasible bid vector. It is worth observing the similarity of a bid vector to a pure

Nash equilibrium — given a feasible bid vector, no agent has any incentive to deviate

from its current bid (assuming that the bids of agents not in S are equal to their cost).

A winning agent would lose utility by strictly decreasing its bid and would drop out of

the winning set by strictly increasing its bid (reducing its utility to zero). Any losing

agent that decreased its bid would then be bidding a value lower than its cost, which

could only lead to it possibly receiving negative utility. Hence we can think of NTUmin

as being something like the cheapest Nash equilibrium for a first-price auction and it is

sometimes referred to in this way (see, e.g., [35] for an example). However, we would

not consider this to be a conventional pure Nash equilibrium as it requires that certain

assumptions are made, particularly to do with tie-breaking rules. For instance, even

though NTUmin is clearly defined for path auctions, Immorlica et al. [22] have shown

that, for first-price path auctions, pure Nash equilibria may not even exist.

5We show that n− 1 is an upper bound in Chapter 2.

Chapter 1. Introduction 14

1.5 Special Cases of Set-Systems

It is very often interesting to examine special cases of these set-system auctions. There

are many reasons for this, but an important one is that a well-chosen special case may

provide a good model for common, real-world, requirements. There are two special

cases that are particularly important to this thesis, they are path auctions and single-

commodity auctions.

1.5.1 Path Auctions

One of these special cases is for path auctions, which was formally introduced in 1999 by

Nisan and Ronen [33], and involves buying, by auction, some path between two specified

vertices on a weighted graph. Measuring the payments made by a truthful mechanism

was studied by Archer and Tardos in 2001 [3], which they applied to path auctions

in 2002 [4]. This work was extended by Elkind, Sahai, and Steiglitz in 2004 [12]. In

2005, Karlin, Kempe and Tamir [24] proposed a more general framework for measuring

frugality which could be applied to all set-system auctions. They also proposed a ‘scaling’

mechanism which has a worst-case overpayment (or frugality ratio) of Ω(
√
n). They then

show that it is within a factor of 2
√

2 of optimal for any truthful mechanism. 6

In a path auction, we assume an underlying weighted graph G = (V,E) and represent

the participation of each seller as an edge e ∈ E. The aim of the buyer is to purchase, by

auction, any path between two specified vertices s and t. It is easy to imagine real-world

examples that can be exactly, or closely, modelled with this case. Buying paths in a

communications network or the use of transport infrastructure are natural things for a

large organisation, like a government, to purchase. One desirable feature of the path

auction is that an optimal solution can be computed quickly (in quadratic time, due to

Dijkstra [9]), but with other types of set-system there may not even be a polynomial-time

algorithm for finding a best solution. In this work, we will spend some time looking for

reasonable auction solutions to some such ‘hard’ problems; there has been previous work

that has attempted to do that for other hard problems (e.g. the vertex cover auctions

in [11, 25]).

1.5.2 Commodity Auctions

Another special case that is particularly studied here, but is not seen in the literature,

is of a single commodity auction. In this auction we have some parameter, which we

denote by Q, of individual, identical items to purchase. Each seller e also has some

amount, denoted by qe, of these items to sell which they will only sell as an entire lot.

Any subset of sellers with at least a quantity of Q between them is a feasible set. This

is perhaps the most simple, yet still potentially useful, set system auction which makes

it particularly worthy of study.

6The analysis of this mechanism has since been improved to a factor of 2 by Yan [39] and Chen et
al. [5]

Chapter 1. Introduction 15

1.6 Thesis Outline

We now give a brief description of the aims and main results of this thesis.

1.6.1 Chapter 2

Chapter 2 gives a bound on frugality for VCG of n− 1, improving on the observation of

Karlin et al. [24] that the frugality ratio of VCG is obviously O(n). We extend this to

give a frugality ratio for any truthful mechanisms based on monotonic approximation

algorithms (when the approximation algorithm is used as the selection rule).

1.6.2 Chapter 3

In Chapter 3 we mostly consider the special-case of the single-commodity auction when

each agent has at most 2 items for sale. The aim here is to design a mechanism which

performs better than VCG in terms of frugality, but does not have significantly greater

time complexity. We give a formal definition for this auction and show, through exam-

ples, that the VCG mechanism can overpay by as much as a factor of n− 1 even in this

restricted setting. It is reasonably obvious that this results from VCG possibly choosing

a large winning set, as this requires a large number of individual payments to be made.

The mechanism of Karlin et al. [24] improves on VCG by using a ‘scaling’ mechanism

that biases the mechanism towards choosing smaller winning sets, and hence having

less agents to pay. Of course, this bias must not go too far, or else a small winning

set would still be able to attract undesirably large payments. Their approach was to

consider two possible disjoint solutions and bias towards the smaller. Unlike path auc-

tions, monopoly-free single commodity auctions do not have the luxury of always having

at least two disjoint solutions, but it is reasonably obvious that choosing agents with

larger quantities will tend to result in smaller winning sets. It is this observation that

motivates the scaling mechanism proposed in Chapter 3 which results in a frugality ratio

that is significantly lower than VCG (recall that frugality ratios are always worst-case).

However, we show that if we lift the restriction that sellers have at most two items then

similar types of scaling mechanisms can only possibly have limited success in improving

frugality.

1.6.3 Chapter 4

The challenge for the mechanism design in Chapter 4 is somewhat different. We firstly

propose a problem that is a reasonable generalization of a path auction. In this model,

we consider that each agent owns some collection of edges, and is willing to provide all

of their edges for some fixed cost. If we think of ‘off-peak’ or ‘surplus capacity’ path

auctions then we can reason that sellers may often be willing to sell access to their entire

network for some fixed cost. Additional network usage may add little to any overheads,

for example in transport or telecommunication networks. It is also reasonable to assume

that having just a single payment may reduce administration (and hence costs) for both

Chapter 1. Introduction 16

buyer and seller, making this model attractive. This type of path auction has been

previously studied by Du, Sami and Shi [10]. However, in their model, they allow agents

to incorrectly declare the ownership of the edges, which is a fundamental difference.

They show negative results for this setting — that there is no truthful mechanism when

only the edge costs are reported. Furthermore, other auctions of that type have been

shown by Kempe et al. [23] to have a lower bound on frugality of Ω(2n) for all false-

name-proof mechanisms (where an agent is incentivized to give an honest valuation

as well as an honest declaration of ownership). These results suggest that allowing

agents to dishonestly report ownership would prove a major obstacle to finding frugal

(truthful) mechanisms. In many real-world cases it is reasonable to assume that the

ownership information may well be public knowledge, and hence we restrict our analysis

to the cases that either the information is public, or analogously, that it will be honestly

revealed.

The main result of this chapter is to show that finding the lowest-cost feasible set is

not polynomial-time solvable (unless P=NP), hence there is no known way of running

VCG in polynomial time. We then describe a mechanism for this that has bounded

frugality. Although its frugality ratio is larger than VCG (by a factor of k, a parameter

of the auction) this mechanism is significant as it may be computed in polynomial time,

unlike VCG.

1.6.4 Chapter 5

Chapter 5 examines a number of alternative procedures to find reasonable benchmark

figures for set-system auctions. Many of the results here can be thought of as being

negative as they show reasons why these procedures do not give good benchmarks, but

we do see some interesting results on the possible ranges of these values.

The question of what to use as a benchmark has been asked since the notion of

frugality was introduced for path auctions in 2002 by Archer and Tardos [4]. In that

setting they could use the fact that there are at least two disjoint solutions in any

monopoly-free graph. However, this solution does not easily generalize to many other

types of procurement auction — we have seen that often no disjoint solutions even exist.

Recall that Elkind et al. proposed a number of variations of this benchmark, (NTU-

max, TUmin and TUmax). The variants TUmin and TUmax (that have a weakened rule

1, allowing transfer of utility between agents) were discounted as being too weak and

too strong respectively. They also noted that NTUmin has some undesirable properties

— it may be non-monotonic, in that increased competition between agents may actually

cause the benchmark to rise. They also show that this may be NP-hard to compute,

even where finding the minimum solutions are easily computed.

As we have already noted, the NTUmin and NTUmax values can be thought of as

equilibrium values of first-price auctions. We have seen, in recent work, a move from

the NTUmin benchmark ([24, 11]) to the NTUmax value ([5, 25]). However, in [11] it

was shown that there may be a large difference between them (a ratio of n − 2 exists

Chapter 1. Introduction 17

for any n > 2). It seems reasonable, therefore, to ask the question ‘What else could be

used as a reasonable benchmark’. We examine this question in Chapter 5 by looking at

several other, natural, types of first-price auction.

As we would wish any proposed benchmark to be seen as ‘fair’ we would like our

benchmarks to satisfy the same three ‘fairness’ rules as NTUmin and NTUmax, and

hence we are looking for values in the range between these two (seller-pessimistic and

seller-optimistic) values. We imagine a number of iterative processes where agents are

allowed to make bids according to some rules (such as each bid must be lower than

the preceding bid). Our contribution is to examine the results of these and consider

the range of values that may possibly be obtained in comparison with NTUmin and

NTUmax, as well as examining the complexity of actually computing the result. We

will also show that approximating NTUmin can be NP-hard, even when the minimum

solutions may be easily computed.

1.6.5 Chapter 6

Forward auctions are, if anything, even more ubiquitous than procurement auctions.

There has been much research in the area of combinatorial auctions, where buyers may

bid on particular ‘bundles’ of the items for sale (e.g. Chapter 11 of [35]). However,

defining a ‘fair’ value to compare with the price obtained by a truthful combinatorial

auction does not seem like an easy question to answer. There are benchmark figures

that are used in certain special-cases, such as the F (2) value proposed by Goldberg et

al. in 2006 [16] for digital goods auctions. As the NTUmin value is so well-defined for

procurement auctions it seems an obvious goal to try and adapt it for use in forward

auctions. In Chapter 6, we look at how we may attempt to define set-system auctions in

the forward setting so that we can define a benchmark figure analogous to NTUmin. We

take the special case of unit-demand forward auctions to give some comparison between

the proposed benchmark, FNTUmax, and the F (2) value used previously.

1.6.6 Chapter 7

We finish, in Chapter 7, with conclusions and a discussion of some of the problems that

are left open by this work.

Chapter 2

Frugality in General Set-System

Auctions

2.1 Introduction

In this chapter we briefly examine frugality ratios for general set-system auctions. It

was observed by Karlin et al. [24] that there is an upper bound on the frugality ratio

of VCG which is trivially O(n). We present a proof that gives an exact upper bound

of n − 1 on the frugality ratio of VCG (Karlin et al. [24] also showed that VCG has

a frugality ratio of at least n − 1). We can then extend this proof and show an upper

bound on the frugality ratio for truthful mechanisms which have selection rules that are

monotonic approximation algorithms. While this result is, perhaps, not very difficult,

it does not appear to have been documented elsewhere. Finally we give a proof that,

for VCG, that the choice of winning set may be made to be minimal with regard to set

inclusion.

As part of the analysis, we will often be considering the best possible (lowest cost)

feasible set that is restricted to only a given subset of agents from E . We will define

some notation for this, let d(V) be the best feasible set (that with the lowest sum of

costs) using only agents in V where V ⊆ E .

We will now see a lower bound for NTUmin(c), based upon this definition, which,

informally, states that NTUmin must be at least as large as the worst-case cost of

replacing one of the agents to make a feasible set without it.

Lemma 2.1. NTUmin ≥ maxe cd(E\{e}).

Proof. If we choose an e that maximizes cd(E\{e}), then we will firstly see e can always

be chosen such that e ∈ S. (We can assume, without loss of generality, that S ⊂ E
because if S does not have a monopoly then we can always choose some smaller feasible

set S′ ⊂ S instead.) We will examine this as two cases;

Case 1: Suppose that cd(E\{e}) > cS .

18

Chapter 2. Frugality in General Set-System Auctions 19

The set given by d(E \ {e}) has been chosen with the minimal sum of costs, with the

restriction that e is not included. Therefore S can only have a lower cost if it has

benefited from including agent e, and therefore it follows that e ∈ S.

Case 2: Suppose that cd(E\{e}) = cS .

As e is chosen to maximize cd(E\{e}), and cS is the minimum possible choice for

any e, then it follows that all possible choices of e must have equal cost. That is,

∀j ∈ E , cd(E\{j}) = cS . Therefore, we can choose e to be any agent in E , and hence

we can choose e such that e ∈ S.

Now, assume an NTUmin bid vector bmin and an agent e that maximizes cd(E\{e}).

Recall the definition that bmin
V =

∑
i∈V b

min
i (the sum of the bids for set V), and for our

chosen agent e and that bid vector bmin satisfies condition (3) in Definition 1.2 we have

bmin
S\Te = cTe\S (2.1)

for some Te ∈ F and e /∈ Te. We know from choosing d(E \{e}), as a lowest cost solution

without e, that

cTe ≥ cd(E\{e}). (2.2)

Additionally, where bmin satisfies condition (1) in Definition 1.2 then we have

bmin
S∩Te ≥ cS∩Te

and adding this to Equation 2.1 gives

bmin
S\Te + bmin

S∩Te ≥ cTe\S + cS∩Te

which can be simplified to

bmin
S ≥ cTe

and with Inequality 2.2, due to transitivity then

bmin
S ≥ cd(E\{e}).

Therefore NTUmin(c) ≥ maxe cd(E\{e}), as claimed.

This lower bound for NTUmin(c) is a useful result in analysing frugality ratios, and

we will now see how it can be used to prove an upper bound on the frugality of VCG.

2.2 Frugality of VCG

For a minimal winning set S, and for each e ∈ S; then we can observe that a threshold

bid (and hence payment pe) can be upper-bounded by the bids of a replacement solution.

Chapter 2. Frugality in General Set-System Auctions 20

Recall that a threshold bid is the largest bid that an agent could have submitted to the

mechanism and still be selected in a winning set. Hence, for any solution Te ∈ F such

that e /∈ Te, then pe ≤ cTe . To verify this; if e had submitted a bid be with be > cTe

then VCG would have chosen Te instead (as Te would bid truthfully, bTe = cTe), so any

be > cTe is too large for a threshold bid.

Lemma 2.2. ∀e ∈ S, pe ≤ NTUmin(c).

Proof. We have defined d(E \ {e}) to be a feasible set, not containing e, hence where

the threshold bid be > cd(E\{e}) then agent e could not have been chosen by VCG in

preference to d(E \ {e}). This gives an upper bound on the threshold payment of pe ≤
cd(E\{e}). From Lemma 2.1 we can observe that cd(E\{e}) ≤ NTUmin(c), by transitivity

we have pe ≤ NTUmin(c).

Theorem 2.3. For all set-system auctions, φNTUmin(c)(V CG) ≤ n− 1.

Proof. As we are always assuming a monopoly-free setting, we will have a winning set

S such that |S| ≤ n − 1. We have upper bounds on the payment for each e ∈ S, from

Lemma 2.2 this is

pe ≤ NTUmin(c).

So summing up over e ∈ S gives

pS ≤ (n− 1)NTUmin(c),

which completes the proof of the theorem.

2.3 Frugality of Approximation Algorithms

Let P be some approximation algorithm, and let SP be the feasible set returned by P
(which uses the bids as an input parameter). We will assume that P is monotonic in

the bids (that is, given fixed bids of the other agents, no agent can be chosen in the

winning set when some smaller bid may result in that agent not being chosen). So if we

use this algorithm as a selection rule, and use threshold payments as a payment rule,

then it is well-known (e.g. [35]) that we have a resulting truthful mechanism MP . Let

k be the approximation ratio of the algorithm; i.e. some k, such that for all instances

of the problem cSP ≤ kcS holds.

Lemma 2.4. Let k be the approximation ratio of the algorithm P. Then ∀e ∈ SP , pe ≤
kNTUmin(c).

Proof. We have defined d(E \ {e}) to be a (lowest cost) feasible set, not containing e.

Assume, for contradiction, that e were to make a threshold bid, be > kNTUmin(c),

and the winning set SP (chosen by P) includes e. Assuming that all other bids are

equal to their costs, as the mechanism is truthful, from Lemma 2.1 we can observe that

Chapter 2. Frugality in General Set-System Auctions 21

bd(E\{e}) ≤ NTUmin(c). As we have assumed that be ≥ kNTUmin(c), and as e ∈ SP

we have bSP > kNTUmin(c) (this holds for all choices of SP when e ∈ SP). Hence, by

transitivity, we have

bSP > kbd(E\{e}). (2.3)

When bSP > bd(E\{e})k, and d(E\{e}) is a feasible set, the approximation ratio of P is

at least
b
SP

bd(E\{e})
and rewriting Inequality 2.3 gives

b
SP

bd(E\{e})
> k, showing that P does not

have an approximation ratio of k, giving a contradiction. Therefore for the threshold bid

the inequality be ≤ kNTUmin(c) holds, and hence the payment pe ≤ kNTUmin(c).

Theorem 2.5. Let P be a monotonic approximation algorithm with an approximation

ratio of k. Then the resulting mechanism MP (with selection rule P and threshold

payments) has φNTUmin(c)(MP) ≤ k(n− 1).

Proof. As we are always assuming a monopoly-free setting, then we will have a winning

set SP such that |S| ≤ n − 1. We have upper bounds on the payment for each e ∈ S,

from Lemma 2.4, this is

pe ≤ kNTUmin(c).

So summing up over e ∈ S gives

pSP ≤ (n− 1)kNTUmin(c)

which completes the proof of the theorem.

2.3.1 Considering the Minimal Winning Sets

In order to avoid some needless technicalities, we wish to, without loss of generality,

restrict the winning sets that VCG may choose to be only those that are minimal with

regard to set inclusion. We can do this simply by choosing the winning set S ∈ F as the

lexicographically first set of those that have the lowest cost and also have the smallest

cardinality. We now present a proof that any choice of winning set, due to tie-breaking,

can be made without changing the payments made.

Proposition 2.6. For all set-system auctions, having S ∈ F and R ∈ F as minimum-

cost feasible sets then pVCG
R = pVCG

S .

Proof. Assume that S is the winning set chosen. For all e /∈ R, from the definition

of a VCG payment, we have pV CGe = ce + cTe − cS for a minimal cost feasible set Te

such that e /∈ Te. From R being a lowest-cost feasible set, we have cR ≤ cTe and hence

pV CGe = ce + cR − cS giving pV CGe = ce. Summing for all e ∈ S \R gives pV CGS\R = cS\R.

Similarly, assume that R is the winning set chosen, and re-arrange the labels to give

pV CGR\S = cR\S .

Additionally, for all e ∈ S ∩R, the threshold bid is not dependent on which of S or

R is chosen as the winning set, and hence we have pV CGS\S + pV CGS∩R = pV CGR\S + pV CGS∩R giving

pV CGS = pV CGR .

Chapter 2. Frugality in General Set-System Auctions 22

Chapter 3

The Single-Commodity Auction

3.1 Overview

In this chapter we examine one of the interesting special-cases of set-system auctions.

We will call this a Single-Commodity Auction; in this auction, we have some number of

interchangeable items for sale, and a quantity parameter, which we will denote by Q,

describing how many of these items the auctioneer requires.

While this auction is relatively simple, it is a reasonable model for the purchase of

some number of items, where the exact properties of each may not be an important

distinction, provided that they all meet some minimum specification. The purchase of

stationery supplies, such as printer paper, seems to be an obvious example for this type of

auction, but there are many purchases that can be made of different but interchangeable

products.

We will formally define this auction in Section 3.2, and examine a further special

case of it (when each agent may only supply at most 2 items) in Section 3.3. There, we

will see that the well-known VCG mechanism can overpay, relative to NTUmin, by a

factor as large as Q — the number of items required by the buyer.

The measure of overpayment by a (truthful) mechanism is the central theme of this

chapter. It is often considered as the additional price that is paid by a mechanism

that is truthful, above the price which might be obtained by an optimal, non-truthful,

mechanism; sometimes called ‘the price of truthfulness’. There was a formal definition

for a ‘frugality ratio’ given in Chapter 1, and it is the primary purpose of this chapter

to improve on the frugality ratio of VCG for the Single-Commodity Auction.

In order to give a frugality ratio for a specific mechanism we need to compare the

payments of the mechanism with the value NTUmin. In order to do that, we present

an algorithm in Section 3.3.3 which computes an NTUmin value, and then use this to

describe a characterization of NTUmin with respect to certain bid values. We then use

this characterization to provide lower-bounds for NTUmin which can then be used to

prove frugality ratios.

In Section 3.4 we discuss a class of alternative, truthful, mechanisms, which we call

αM, before showing that one of these (when the parameter α =
√
Q) has a frugality

23

Chapter 3. The Single-Commodity Auction 24

ratio of 2
√
Q, compared to Q for VCG. We also see that this is within a factor of 2 of

optimal for a particular given class of mechanisms that we describe.

Turning our attention back to the unrestricted single commodity auction, in Sec-

tion 3.5, we then see a lower bound on the frugality ratio that is possible for a particular

class of mechanisms (which includes the αM mechanism).

We finish this chapter with some observations on the results, and some ideas for how

to naturally extend this work.

3.2 Definitions

Here we study the Single-Commodity Auction. In this setting, our auction is for a buyer

to purchase some integer quantity, Q, of identical items from a number of sellers. Each

seller e will have a specific, publicly known, integer quantity of items to sell that we will

call qe, and we will require that an agent either sells all items or none. The feasible sets,

F , are defined from these quantity parameters, as follows;

F = {T ∈ 2E :

(∑
e∈T

qe

)
≥ Q}. (3.1)

We will refer to the sellers as ‘agents’, and we will implement our auction as a set

system auction, which was described in Section 1.2.1.

As a reminder, each agent e will submit a sealed bid be to the auction process. The

auctioneer will then, by means of a mechanism M, use its selection rule to choose one

of the feasible sets, which we will call SM ∈ F to be the ‘winners’. The mechanism will

then pay each agent e ∈ SM a value pMe , calculated using some payment rule.

3.3 The {1, 2} Single-Commodity Auction

In the first part of this chapter, we will impose an additional restriction — that each

agent e will only have for sale at most 2 items. We call this the {1,2} Single-Commodity

Auction.

3.3.1 Auction Definition

The {1, 2} Single-Commodity Auction is a single commodity auction, as defined in Sec-

tion 3.2. The additional restriction, that the {1, 2} Single-Commodity Auction must

meet is that all agents have a quantity value of at most 2,

∀e ∈ E , qe ∈ {1, 2}.

Chapter 3. The Single-Commodity Auction 25

While we could simply use VCG to run this auction (VCG chooses the lowest-cost

solution and pays each winning agent a threshold value), we will see later that this per-

forms poorly in terms of frugality. In an attempt to improve frugality, we will now look

at a class of (truthful) mechanisms that choose a winning set a little more intelligently.

3.3.2 The αM Mechanism

Here we will be analysing a class of mechanisms, αM, each of which is uniquely defined

by its ‘scaling’ value α ≥ 1; a definition for this mechanism follows.

αM will calculate ‘virtual’ bids ve for each agent e by using a scaling factor as follows

ve =

αbe, if qe = 1

be, otherwise.

In order to simplify some of the later notation, we define the aggregate to be the

sum of virtual bids over any set of agents, V ,

vV =
∑
e∈V

ve.

Let Sα ∈ argminT∈F vT be the winning set. For concreteness, let Sα be the lexico-

graphically first of the feasible sets that have the lowest sum of virtual bids. It is easy to

observe that this selection will be monotonic in the bids, which is known to be necessary

for a mechanism to be truthful (see, e.g., [35]).

The payment rule is simple — each agent e ∈ Sα will be paid its threshold bid.

This is the supremum of the amounts that the agent can bid and still be selected in

the winning set, given the fixed bids of the other agents. It is also well-known (see,

e.g. [34, 17]) that this threshold payment is required in order for the mechanism to be

truthful, and that a mechanism with a monotonic selection rule and threshold payments

is a truthful mechanism.

Let m = |Sα| and let the payment to agent e by the αM mechanism be denoted by

pαe , resulting in the payment vector pα = (pα1 , . . . , p
α
m). Observe that when α = 1 the

αM mechanism is exactly equivalent to VCG. The VCG mechanism chooses the feasible

set which has the lowest sum of bids (which are equal to the costs, as VCG is known to

be truthful, see, e.g.,[35]). Each of these ‘winning’ agents is paid its threshold value —

the value of the largest bid the agent could have submitted but still remain in the win-

ning set, given all other bids being unchanged. Interestingly, we can see in Example 3.1

below that the frugality φNTUmin(VCG) ≥ Q even for this restricted setting, so we have

a strong motivation to find a mechanism with lower frugality.

Example 3.1. In this example we will see that VCG has poor frugality; we have a single

commodity auction for quantity Q items and observe that the number of agents n = Q+1.

For each agent e ∈ E the quantity qe and cost ce are given in Table 3.1. Here we can see

Chapter 3. The Single-Commodity Auction 26

that, when S = {1, . . . , n− 1}, the bid vector bmin meets conditions (1),(2) and (3) for

a NTUmin vector. To verify this, for all e ∈ S \ {A1}, then Te = S \ {A1}∪ {An}. This

satisfies condition (3) in Definition 1.2 as be + b1 = cn (and any such Te set satisfies

condition (3) for A1). Conditions (1) and (2) are easily verifiable, showing that NTUmin

≤ 1. The payment vector pα corresponds to the payments made by the αM mechanism,

hence pα ≥ Q and NTUmin ≤ 1 giving pα

NTUmin ≥ Q.

Agent qe ce bmin
e pVCG

e

A1 1 0 1 1

A2 1 0 0 1
...

...
...

...
...

An−1 1 0 0 1

An 2 1

Total 1 n− 1

Table 3.1: Instance I with VCG (α = 1)

Adding some additional notation, let E1 ⊆ E be the subset of all agents having

quantity 1, and let E2 = E \ E1 be the subset of agents having quantity 2. Observe that

this implies qE1 = |E1| and qE2 = 2|E2|.
We only consider the minimal winning sets, with respect to set inclusion. Proposi-

tion 2.6 shows us that this is without loss of generality.

3.3.3 Computing NTUmin for the {1,2} Single-Commodity Auction

Let c be the cost vector of a fixed instance of the {1,2} Single-Commodity Auction. We

will now see a method of computing the NTUmin bid value for all e ∈ S.

We will firstly select a winning set S, as a feasible set with the lowest total cost.

We can do this by the use of a knapsack algorithm. A standard knapsack problem is,

given a capacity C and a set of n items, with each item i ∈ {1, . . . , n} having value vi

and weight wi, to find the set of items with the largest sum of values such that the sum

of weights does not exceed the capacity. Assuming integer weights and capacity, it is

well-known to be solvable in O(nC) time [15]. An integer commodity auction can be

translated to a knapsack problem as follows. Let C = QE − Q, wi = qe and vi = ce

and hence the knapsack algorithm will return a maximum value set T , having weight at

most QE −Q, leaving S = E \ T as a lowest-cost set with quantity at least Q.

We will then present Algorithm 1 that will, for the agents in the winning set S,

calculate a bid vector b = (b1, . . . , bm). We will analyse the properties of any valid

NTUmin bid vector, and we will see a proof that the bid vector b output by the algorithm

qualifies as a NTUmin bid vector. We will then see in Theorem 3.12 how the NTUmin

Chapter 3. The Single-Commodity Auction 27

value may be given by a number of expressions, based on the composition of the cost

vector c .

Preliminaries

Fix S as a single winning solution. (Remember that, if there are ties, the NTUmin value

is computed from any of these choices of S). For ease of notation, let S1 = S ∩ E1 and

let S2 = S ∩E1; similarly when SM is a set chosen by mechanismM, let SM1 = SM∩E1
and let SM2 = SM ∩ E2.

In order to examine NTUmin we will define some ‘replacement’ sets, as follows.

Let Rx ⊆ (E\S) be a subset of non-elements of S when qRx ≥ x and cRx is minimized.

For concreteness, if there is more than one suitable choice, let Rx be the lexicographically

first. This will be used in this general form in Proposition 3.1, but more frequently as

one of the following specific forms.

Let R1 ⊆ (E \ S) be the subset from outside S when qR1 ≥ 1 and cR1 is minimized.

Note that R1 is only empty when S is the only feasible set, and hence each agent has

a monopoly. As we are only interested in monopoly-free set systems, we can therefore

assume that R1 is non-empty.

Let R2 ⊆ (E \ S) be the subset from outside S when qR2 ≥ 2 and cR2 is minimized.

Observe that R2 may be empty, in a monopoly-free set-system, only if Q = qE−1. When

the lowest-cost agent outside S has quantity 2, we may have R1 = R2.

Let R∗2 ⊆ (E2 \ S) be the set containing the lowest-cost agent with quantity 2 from

non-members of S. Note that this may be empty even when there is no monopoly.

Describing the NTUmin bids.

Recall Definition 1.2, the definition of NTUmin given in Chapter 1. In this section, we

give an algorithm to compute a bid vector bmin that meets the definition of NTUmin

for all instances of the {1,2} Single-Commodity Auction. We then use the result of this

algorithm to describe the NTUmin value in terms of the agents’ bids.

Firstly, for each agent e, we will see an upper bound on the bid bmin
e of that agent e.

This upper bound is simply the lowest cost of some subset Rqe ⊆ E \ S of non-members

of S that could ‘replace’ the agent e and make a feasible set.

We then address the following technical difficulty; there may be many sets for Te

that meet the definition for condition (3) in Definition 1.2, and some of these Te sets

may be unnecessarily different to S. We will see in Proposition 3.2 a result that implies,

when calculating NTUmin values, we only need to be concerned with the ‘minimally

different’ Te sets — a precise definition of this is given there. Intuitively, this occurs

when Te has chosen some agents, due to tie-breaking, but in choosing S different agents

were chosen in the tie-breaking.

We will then use these results, in Lemma 3.4 and Lemma 3.5, to define the payments

given to all agents with quantity 2. Lemma 3.5 deals with a special case, when Q is

Chapter 3. The Single-Commodity Auction 28

odd and S is made up of agents each with quantity 2, and hence qS > Q. Following

that, there are several lemmas (3.6, 3.8, 3.9, and 3.10) that give the bids of agents with

quantity 1 under different conditions.

Our first proposition provides a straightforward upper bound on the NTUmin bids

for sets of agents; any subset of winning agents may not bid more than some possible

replacement from outside S. Recall from Chapter 1 the definition bmin
V =

∑
e∈V b

min
e .

Proposition 3.1. For any subset V ⊆ S having qE\S ≥ qV , the inequality bmin
V ≤ cRqV

holds.

Proof. Our assumption that qE\S ≥ qV provides that there is a non-empty assignment

for RqV . Let W = (S \ V) ∪ RqV . We can observe that W is a feasible set as follows;

from the definition of R, RqV must be large enough to replace quantity qV and still make

a feasible set. We can write this as

qRqV ≥ qV (3.2)

and we can expand qW to get

qW = qS − qV + qRqV

and substituting the inequality of 3.2 we can rewrite this as qW ≥ qS , showing that W

is a feasible set.

Therefore, we must have bmin
S\W ≤ cW\S or else W violates condition (2) in Defini-

tion 1.2. By substituting from the definition of W , this can be written as bmin
V ≤ cRqV .

Hence any bid vector that does not satisfy this inequality must violate the constraint in

condition (2) and hence cannot be a valid NTUmin bid vector.

We will now see that when qTe\S is larger than necessary, for a Te set satisfying

condition (3) in Definition 1.2, then there is always some other set T ′e with a smaller

qT ′e\S , and that this ‘less different’ set also satisfies condition (3). We will use this to

show that we can restrict our analysis to the ‘less different’ sets, and hence finally the

‘minimally different’ sets, which are those that have the largest intersection with the

winning set S. Informally, this is quite obvious — when we may have some Te set given

which contains some agents that are outside S, but could have also chosen them from

inside S instead (in the event of a tie), we don’t need to consider that Te set, but would

prefer to analyse the one that chose agents inside S, when possible.

Proposition 3.2. For every set Te that satisfies condition (3) in Definition 1.2 and has

qTe\S ≥ 3, there exists another feasible set T ′e when the equation qT ′e\S = qTe\S − 2 holds

and T ′e satisfies condition (3) in Definition 1.2.

Proof. Observe that any set of quantity at least 2 must contain a subset of quantity 2.

Therefore there exists a subset Y ⊂ (Te \ S) such that qY = 2. As qTe\S ≥ 3, we have

Chapter 3. The Single-Commodity Auction 29

qS\Te ≥ 2 (or else qS < qTe − 1 implying S is not a feasible set). Hence there is some

subset Y ′ ⊂ (S \ Te) such that qY ′ = 2.

Let TY = (S \ Y ′) ∪ Y be a feasible set (it has quantity qS). As TY must satisfy

condition (2) in Definition 1.2, we have

bmin
S\TY ≤ cTY \S

which can be re-expressed as

bmin
S\((S\Y ′)∪Y) ≤ c((S\Y ′)∪Y)\S

and (as Y ′ ⊂ S and Y ⊂ (TY \ S))

bmin
Y ′ ≤ cY . (3.3)

Let T ′e = (Te \ Y) ∪ Y ′ be a feasible set (it has quantity qTe), which must also satisfy

condition (2) in Definition 1.2, we can rewrite this as

bmin
(S\Te)\Y ′ ≤ c(Te\S)\Y (3.4)

As we have assumed that Te satisfies condition (3) in Definition 1.2, we can write this

as

bmin
S\Te = cTe\S (3.5)

and we can trivially observe that S\Te = ((S\Te)\Y ′)∪Y ′ and Te\S = ((TY \S)\Y)∪Y ,

which shows that the sets in inequalities 3.3 and 3.4 make partitions of the sets in

Equation 3.5. Therefore Inequality 3.3 and Equation 3.4 can be strengthened to give

bmin
Y ′ = cY (3.6)

and

bmin
(S\Te)\Y ′ = c(Te\S)\Y (3.7)

Equation 3.7 can be rewritten to give

bmin
S\T ′e = cT ′e\S

showing that set T ′e satisfies (3), and we can see from its definition that qT ′e\S = qTe\S−2.

A similar proposition can be proven for some cases when Te \ S contains an agent

with quantity 1. Recall the definition that S1 = S ∩ E1.

Proposition 3.3. Suppose there is a feasible set Te that satisfies condition (3) in Defi-

nition 1.2, qS = Q, qTe\S ≥ 3, and qTe\S is odd. Then there exists another feasible set T ′e

when the equation qT ′e\S = qTe\S−1 holds and T ′e satisfies condition (3)in Definition 1.2.

Chapter 3. The Single-Commodity Auction 30

Proof. Observe that there exists a subset Y ⊂ (Te \ S) such that qY = 1 (as qTe\S is

odd).

As Te contains an agent with quantity 1, hence qTe = Q = qS . This implies qTe\S =

qS\Te and hence S \ Te also contains an agent with quantity 1. Therefore there is also

some other subset Y ′ ⊂ (S \ Te) such that qY ′ = 1.

Let TY = S \ Y ′ ∪ Y be a feasible set (it has quantity of qS). As TY must satisfy

condition (2) in Definition 1.2, we have

bmin
S\TY ≤ cTY \S

which can be simplified to

bmin
Y ′ ≤ cY . (3.8)

Let T ′e = (Te \ Y) ∪ Y ′ be a feasible set (it has quantity of qTe), which must also satisfy

condition (2) in Definition 1.2, we can rewrite this as

bmin
(S\Te)\Y ′ ≤ c(Te\S)\Y . (3.9)

As we have assumed that Te satisfies condition (3), we can write this as

bmin
S\Te = cTe\S (3.10)

we have seen that the sets in inequalities 3.8 and 3.9 make partitions of the sets in

Equation 3.10. Therefore Inequality 3.8 and Inequality 3.9 can be strengthened to give

bmin
Y ′ = cY (3.11)

and

bmin
(S\Te)\Y ′ = c(Te\S)\Y . (3.12)

Equation 3.12 can be rewritten to give

bmin
S\T ′e = cT ′e\S

showing that set T ′e satisfies (3).

We will now proceed to examine the NTUmin bid values directly. Recall that Q is

the quantity required by the buyer, and observe that when qS 6= Q there are no agents

in S with quantity 1, and Q is odd. (We have previously discounted solutions when

superfluous agents with cost 0 have been included). We will now see a characterization

of the NTUmin bid values for the agents having quantity 2, as separate cases for qS = Q

and qS 6= Q.

Lemma 3.4. Given a {1, 2} single-commodity auction having qS = Q, for every agent

e ∈ S2 the equation bmin
e = cR2 holds.

Chapter 3. The Single-Commodity Auction 31

Proof. Proposition 3.1 gives us bmin
e ≤ cR2 . For the other direction, we will see this as two

cases. Firstly, for some Te satisfying (3), when qTe\S = 2 then (3) gives us bmin
S\Te = cTe\S ,

and by the minimality of R2, we have bmin
S\Te ≥ cR2 , which can be simplified to bmin

e ≥ cR2 .

Secondly, when qTe\S > 2 either Proposition 3.3 or Proposition 3.2 may be applied

(possibly repeatedly) to give some set T ′e such that qT ′e\S = 2 and T ′e satisfies condition

(3), giving bmin
S\Te ≥ cR2 and hence bmin

e ≥ cR2 .

This has shown that bmin
e ≤ cR2 and bmin

e ≥ cR2 hold, therefore we have bmin
e = cR2 .

Lemma 3.5. Given a {1, 2} single-commodity auction having qS = Q + 1, for every

agent e ∈ S the equation bmin
e = cR1 holds.

Proof. Observe that, as the largest quantity of any agent is 2, then qS < Q + 2. This

implies that there are no agents in S with quantity 1 (as they would not be needed, and

we assume that we do not include superfluous agents).

Let T = S \{e}∪R1; observe that T ∈ F and so Proposition 3.1 gives us bmin
e ≤ cR1 .

Assume some Te set that satisfies condition (3). As qS = Q+ 1, then qTe ≥ qS − 1 must

hold. Hence we must have qTe\S ≥ qS\Te − 1. We will now examine this as three cases.

Case 1: qTe\S = 1

If qTe\S = 1 then qS\Te ≤ 2, hence bmin
e = cTe\S which gives bmin

e ≥ cR1 by the

minimality of R1.

Case 2: qTe\S = 2

If qTe\S = 2 then qS\Te ≤ 3, and as there are no agents in S with quantity 1, we have

bmin
e = cTe\S and hence bmin

e ≥ cR1 .

Case 3: qTe\S ≥ 3

If qTe\S ≥ 3 then we can use Proposition 3.2 (possibly repeatedly) to show that there

is some T ′e such that qT ′e\S ≤ 2 and case 1 or case 2 above must apply.

Now we have seen that both bmin
e ≤ cR1 and bmin

e ≥ cR1 are proven, showing that

bmin
e = cR1 as claimed.

Now that we have seen the bid values described for agents with quantity 2, so we

will move on to examine the bid values for the agents with quantity 1. For |S1| ≥ 2 we

will do this as three separate cases, which depend on the relationship between certain

cost values of the instance. |S1| = 1 will be treated as a (simple) special case.

Lemma 3.6. Given any NTUmin bid vector bmin having cR1 < cR2/2, for all e ∈ S1,

the equation bmin
e = cR1 holds.

Chapter 3. The Single-Commodity Auction 32

Proof. When S1 6= ∅ we have qS = Q, or else there is some superfluous agent e ∈ S

that would not have been included. From condition (3) there is some Te such that

bmin
S\Te = cTe\S , which we will examine as three cases.

Case 1: qTe\S = 1

As qTe = Q, by Te including some agent with quantity 1, then we have qS\Te ≤ 1

(if not, this would imply that qTe < qS = Q). This gives S \ Te = {e}, and hence

bmin
e = cTe\S , and by definition of R1, that bmin

e ≥ cR1 .

Case 2: qTe\S = 2

We will see that there are actually no cases, satisfying the assumptions, when this

holds. For contradiction, assume that qTe\S = 2, therefore qS\Te = 2 (if not, this

would imply that qTe < qS) and there exists some j such that bmin
e + bmin

j = cTe\S .

From Proposition 3.1, bmin
e ≤ cR1 , so we can rewrite to give bmin

j ≥ cTe\S − cR1 . As,

by definition, cR2 ≤ cTe\S this can be substituted to give bmin
j ≥ cR2 − cR1 . As the

assumption for this lemma states that cR1 < cR2/2, we have bmin
j > cR2−cR2/2, hence

bmin
j > cR2/2, and from the lemma again bmin

j > cR1 contradicting Proposition 3.1.

Case 3: qTe\S ≥ 3

When qTe\S > 2, from Proposition 3.2, there exists some other feasible set T ′e such

that T ′e satisfies condition (3). Applying Proposition 3.2 repeatedly will give some T ′e

set such that qT ′e\S ≤ 2 , and hence satisfies the definition for either case 1 or case 2

above (although we have seen that only case 1 is possible).

This has shown that, when cR1 < cR2/2 holds, for every agent e ∈ S1 then every

possible set Te satisfying (3) gives bmin
e ≥ cR1 , and from Proposition 3.1 we have bmin

e ≤
cR1 , with both together giving bmin

e = cR1 as claimed.

The other two cases will both make use of the following proposition, which shows

that there is a limit on the sum of the bids of two agents that each have quantity 1, and

that this limit is always reached provided that cR1 ≥ cR2/2.

Proposition 3.7. Let bmin be a NTUmin bid vector and suppose the inequalities cR1 ≥
cR2/2 and |S1| ≥ 2 hold. Then, for every agent e ∈ S1, bmin

e = cR2 −maxj∈(S1\{e}) b
min
j .

Proof. Firstly, assume for contradiction that bmin
e > cR2 −maxj∈(S1)\{e} b

min
j . This gives

bmin
e + bmin

j > cR2 , which contradicts Proposition 3.1. For the other direction, assume

for contradiction that bmin
e < cR2 −maxj∈(S1)\{e} b

min
j .

Using a similar method as in Lemma 3.6, we will examine the possible Te sets satis-

fying (3) for every agent e ∈ S1.

Case 1: qTe\S = 1

Chapter 3. The Single-Commodity Auction 33

Assume, for contradiction, that there exists some other agent, j, such that qTj\S = 1.

This would give bmin
e ≥ cTe\S and bmin

j ≥ cTj\S . By the minimality of R1, we would

have bmin
e + bmin

j ≥ 2cR1 . For this proposition, we assume that cR1 ≥ cR2/2, which

would give bmin
e + bmin

j > cR2 giving a contradiction with Proposition 3.1.

This shows that case 1 may be true, but for at most one agent.

Case 2: qTe\S = 2

This gives bmin
e + bmin

j = cTe\S , and hence bmin
e + bmin

j ≥ cR2 from the minimality of

R2.

Case 3: qTe\S ≥ 3

When qTe\S > 2, from Proposition 3.2, there exists some other feasible set T ′e such

that T ′e satisfies condition (3). Applying Proposition 3.2 repeatedly will give some T ′e

set such that qTe\S ≤ 2 , and hence either case 1 or case 2 above applies.

As case 1 can hold for only one agent, the application of case 2 to all other agents in E1
is sufficient to apply to every possible pair of agents, and thus completes the proof.

Finally, we need to consider the cost values of the two agents in S1 with largest cost.

To that end, there are some definitions that will be used; Let `1 be an agent in S1 with

highest cost, more formally

`1 ∈ argmax
e∈S1

ce

and let `2 be an agent in S1 with second highest cost;

`2 ∈ argmax
e∈(S1\{`1})

ce.

Lemma 3.8. Suppose that |S1| ≥ 2 and cR2/2 < cR1 ≤ cR2 − c`2. Then there exists a

NTUmin bid vector bmin such that there is exactly one agent e ∈ S1 having bmin
e = cR1

and every other agent j ∈ (S1) \ {e} has bmin
j = cR2 − cR1.

Proof. Recall that we can assume qS = Q, and Proposition 3.7 states that for every

agent e ∈ S1, the following holds;

bmin
e = cR2 − max

j∈(S1)\{e}
bj .

For any bid vector, b, let ` ∈ argmaxe∈S1
be be an agent with quantity 1 that has

the largest bid, and hence b` = maxe∈S1 be is the largest bid of any agent with quantity

1. Observe that Proposition 3.7 implies that ∀e ∈ (S1 \ `), be = cR2 − b`.
We now claim that, in an NTUmin bid vector bmin, this largest bid bmin

` must be

equal to cR1 . Proposition 3.1 tells us that bmin
` ≤ cR1 . Now assume for contradiction

that when |S1| > 2 there exists a bid vector b such that bS ≤ bmin
S and that b` < bmin

` .

Chapter 3. The Single-Commodity Auction 34

Let ε = bmin
` − b` (giving b` = bmin

` − ε) and that, due to Proposition 3.7, this implies

that

∀e ∈ (S1 \ {`}), be = bmin
e + ε.

Summing up over S1 gives

bS1 = bmin
S1

+ (|S1| − 1)ε.

As we have assumed |S1| > 2, this gives bS1 > bmin
S1

. Observe that any Te set that has

agents of both quantity 1 and 2 in Te \ S must have qTe\S ≥ 3, and hence Lemma 3.2

shows that there is some other set T ′e (with qT ′e\S < 2) which determines the bid values of

S \T ′e. This shows that the bids of agents with quantity 1 are not dependent on the bids

of agents with quantity 2 and hence bS1 > bmin
S1

contradicts bS ≤ bmin
S (as bmin

S2
≤ bS2).

As we have seen that b` = cR1 , then Proposition 3.7 shows that every other agent

j ∈ (S1 \ {`}) must bid bj = cR2 − cR1 . As this concludes the proof when |S1| > 2, we

finish with |S1| = 2. Due to Proposition 3.7, we must have bS1 = cR2 , which may be

achieved with two bids of (cR1 , cR2 − cR1). (Although there are other bid vectors that

would satisfy NTUmin.)

Lemma 3.9. Suppose |S1| ≥ 2 and cR1 > cR2 − c`2. Then there exists a NTUmin bid

vector bmin such that there is exactly one agent e ∈ S1 having bmin
e = cR2−c`2 and every

other agent j ∈ (S1) \ {e} has bmin
j = c`2.

Proof. No agent e ∈ S1 may bid bmin
e > cR2 − c`2 or else there exists some j ∈ {`1, `2}

such that bmin
e + bmin

j > cR2 and Proposition 3.1 would show that this contradicts bmin

being a valid NTUmin bid vector.

Now we will see that, when |S1| > 2 there is some agent e ∈ S1 that must bid

bmin
e = cR2 − c`2 .

As in Lemma 3.8, let ` = argmaxe∈S1
be be the agent with quantity 1 that has the

largest bid, and hence b` = maxe∈S1 be is the largest bid of any agent with quantity 1.

Observe that Proposition 3.7 implies that ∀e ∈ (S1 \ {`}), be = cR2 − b`.
We now claim that, in an NTUmin bid vector bmin, this largest bid bmin

` must be

equal to cR2− c`2 . Assume for contradiction that when |S1| > 2 there exists a bid vector

b such that bS ≤ bmin
S and that b` < bmin

` . Let ε = bmin
` − b` (giving b` = bmin

` − ε) and

that, due to Proposition 3.7, this implies that

∀e ∈ S1 \ {`}, be = bmin
e + ε

Summing up over S1 gives

bS1 = bmin
S1

+ (|S1| − 1)ε

As we have assumed |S1| > 2, this gives bS1 > bmin
S1

, giving a contradiction.

Recall that the bids of agents with quantity 1 are not dependent on the bids of agents

with quantity 2 and therefore bS1 > bmin
S1

contradicts bS ≤ bmin
S . As we have seen that

b` = cR2 − c`2 , then Proposition 3.7 shows that every other agent j ∈ (S1 \ {`}) must

bid bj = c`2 .

Finally, when |S1| = 2, then due to Proposition 3.7, we must have bS1 = cR2 , which

may be achieved with two bids of (c`2 , cR2 − c`2).

We now finish the bids of agents with quantity 1, by looking at the remaining case

when there is only a single agent with quantity 1 in the winning set.

Lemma 3.10. For all e ∈ S1, the equation bmin
e = cR1 holds when |S1| = 1.

Proof. Again, using a similar method to Lemma 3.6, we will examine the possible Te

sets satisfying (3) for the agent e ∈ S1.

Case 1: qTe\S = 1

This gives bmin
S\Te = cTe\S . As S1 is non-empty, we have qS = Q, and hence qS\Te =

qTe\S = 1, and hence bmin
e = cTe\S . From the minimality of R1, we have bmin

e ≥ cR1 .

The other direction, bmin
e ≤ cR1 is shown by Proposition 3.1, giving bmin

e = cR1 .

Case 2: qTe\S = 2

Observe that there is no Te set where qS\Te = 2 (as there is no other agent with

quantity 1).

Case 3: qTe\S ≥ 3

When qTe\S > 2 then, from Proposition 3.2, there exists some other feasible set T ′e

with qT ′e\S < qTe\S such that T ′e satisfies condition (3). Applying Proposition 3.2

repeatedly will give some T ′e set such that qTe\S ≤ 2 , and hence either case 1 or case

2 above can be applied.

Computing the NTUmin bid values

We propose a simple algorithm, Algorithm 1, which computes an NTUmin bid vector.

We use the results of the lemmas in the previous section to verify that Algorithm 1

correctly calculates a bid vector bmin that satisfies the definition of NTUmin. Recall

that S is a lowest cost solution.

Lemma 3.11. Algorithm 1 computes a NTUmin bid vector bmin for any cost vector c

of a {1,2} Single-Commodity Auction.

Proof. If there is at least one agent with quantity 1, then exactly one element ` is

assigned bmin
` = min(cR1 , cR2 − c`2); all other elements with quantity 1 are assigned

min(cR1 , cR2 − bmin
`). This requirement was proven in Lemmas 3.6, 3.8, 3.9, and 3.10.

All other agents with quantity 2 are assigned cR2 , which was proven to be correct in

Lemma 3.4. Hence, as each agent is assigned a value that is consistent with the values

Chapter 3. The Single-Commodity Auction 36

Algorithm 1: Algorithm to calculate NTUmin bids

1 R1 ← argminR{cR : R ⊆ E \ S, qR = 1};
2 R2 ← argminR{cR : R ⊆ E \ S, qR = 2};
3 `1 ← argmaxe{ce : e ∈ S1};
4 `2 ← argmaxe{ce : e ∈ (S1 \ {`1})};
5 if |S1| > 0 then
6 bmin

`1
← min(cR1 , cR2 − c`2);

7 for each i ∈ (S1) \ {`1} do
8 bmin

i ← min(cR1 , cR2 − bmin
`1

);

9 for each j ∈ S2 do
10 if qS = Q then
11 bmin

j ← cR2;

12 else
13 bmin

j ← cR1;

14 Return bmin;

required for a NTUmin bid vector, then Algorithm 1 correctly calculates a NTUmin bid

vector bmin.

Theorem 3.12. For a {1, 2} single commodity auction, NTUmin(c) is given by one of

the following expressions.

Case 1: If |S1| = 0 and qS = Q then

NTUmin(c) = |S|cR2 . (3.13)

Case 2: If |S1| = 0 and qS > Q then

NTUmin(c) = |S|cR1 . (3.14)

Case 3: If |S1| = 1 then

NTUmin(c) = (|S| − 1)cR2 + cR1 . (3.15)

Case 4: If |S1| > 1 then, letting `2 be the agent from E1 \ S that has second-highest

cost,

NTUmin(c) = |S2|cR2 +min(cR1 , cR2−c`2)+|S1−1|min(cR1 , cR2−min(cR1 , cR2−c`2)).

(3.16)

Chapter 3. The Single-Commodity Auction 37

Proof. As we have seen, in Lemma 3.11, that Algorithm 1 correctly computes the NTU-

min value, we can examine Algorithm 1 to verify that it produces the results given by the

cases here. In cases 1 and 2 there are no agents with quantity 1, so running Algorithm 1

will result in the ‘if’ statement in line 5 being false. For case 1, this is followed by the

‘if’ statement in line 10 being true — therefore each agent’s bid is allocated in line 11 of

Algorithm 1, so each agent e ∈ S has bmin
e = cR2 proving that bmin

S = |S|cR2 and hence

NTUmin (c) = |S|cR2 .

Case 2 is similar, but being false in line 10 results in each bid being allocated in line

13, and hence NTUmin = |S|cR1 .

For case 3, there is only a single agent e with quantity 1, which will be allocated a

bid value in line 6. As here `2 = ∅ and we will consider that c`2 = 0, then e will be

allocated a bid of cR1 (as cR1 ≤ cR2 − 0). All other |S| − 1 agents (with quantity 2) will

be allocated a bid value in line 11 (including any agent with quantity 1 in S implies that

qS = Q), and hence NTUmin(c) = cR1 + (|S| − 1)cR2 .

For case 4, we have a single agent with quantity 1 that gets allocated a bid in line 6 -

this is min(cR1 , cR2−c`2), all other agents with quantity 1 are allocated their bid in line 8,

this bid is equivalent to min(cR1 , cR2−min(cR1 , cR2−c`2) (as bmin
` = min(cR1 , cR2−c`2)).

Finally each agent with quantity 2 is allocated a bid in line 10, and summing up the

three different bid values gives NTUmin(c) = |S2|cR2 + min(cR1 , cR2 − c`2) + (|S1| −
1) min(cR1 , cR2 −min(cR1 , cR2 − c`2)).

Simplifying lower bounds for NTUmin

We will now briefly use the proofs in Theorem 3.12 to show some simple lower bounds

for NTUmin. These lower bounds are easier to analyse than the complete NTUmin

calculations, and will be used in a later section when examining frugality.

Proposition 3.13. For all instances having qS > Q, the inequality NTUmin ≥ (|S|cR1)

holds.

Proof. This trivially follows from case 2 in Theorem 3.12.

Proposition 3.14. For all instances having qS = Q, the inequality NTUmin ≥ (|S2|cR2)

holds.

Proof. This follows from cases 1,3 and 4 in Theorem 3.12.

Proposition 3.15. NTUmin ≥ min(|S1|cR1 , cR∗2).

Proof. When |S1| = 0 this trivially holds; when |S1| = 1 then case 3 in Theorem 3.12

applies, and we can use Equation 3.15. This trivially shows that NTUmin≥ |S1|cR1 and

proves the claim for this case. We will now look at the more interesting case, when

|S1| > 1.

Chapter 3. The Single-Commodity Auction 38

The first case of this that we will examine is when cR2 < cR∗2 (remember that R2 is

any cheapest subset with quantity 2, and that R∗2 contains only an agent with quantity

2).

Case 1: cR2 < cR∗2

As we know that R2 is made up of two agents, we will call these j, k where cj = cR1

and ck ≥ cR1 . Hence cR2 = cR1 + ck We also know that c`2 ≤ ck or else k would be in

the lowest-cost set, hence cR2 ≥ cR1 + c`2 , which can be rewritten as cR1 ≤ cR2 − c`2 .

We can now use this to rewrite Equation 3.16 as

NTUmin = |S2|cR2 + cR1 + |S1 − 1|min(cR1 , cR2 − cR1)

and clearly cR2 ≥ cR1 + cR1 , hence cR2 − cR1 ≥ cR1 , so this can be simplified to

NTUmin = |S2|cR2 + cR1 + (|S1| − 1)cR1

and therefore

NTUmin = |S2|cR2 + |S1|cR1

which proves that NTUmin ≥ |S1|cR1 and hence the claim is proven for this case.

Case 2: cR2 = cR∗2

Let bmin
` = min(cR1 , cR2 − c`2). This is the bid made by the agent with largest cost in

S1 (from Proposition 3.7) and rewrite Equation 3.16 as

NTUmin = |S2|cR2 + bmin
` + (|S1| − 1) min(cR1 , cR2 − bmin

`).

We will take this as two cases, where the assumption that cR1 ≤ cR2 − bmin
` either

holds or does not.

Case 2.1: cR1 ≤ cR2 − bmin
`

We know that bmin
` ≥ c` ≥ c`2 , hence it also follows by transitivity that cR1 ≤

cR2 − c`2 , so we can rewrite Equation 3.16 as

NTUmin ≥ |S2|cR2 + cR1 + (|S1| − 1)cR1

and as

NTUmin ≥ |S2|cR2 + |S1|cR1

hence

NTUmin ≥ |S1|cR1

and the claim is proven for this case.

Case 2.2: cR1 > cR2 − bmin
`

Chapter 3. The Single-Commodity Auction 39

We can take a lower bound on Equation 3.16, using |S1| > 1

NTUmin ≥ |S2|cR2 + bmin
` + min(cR1 , cR2 − bmin

`)

and use our assumption in this case 2.2 (cR1 > cR2 − bmin
`) to simplify to

NTUmin ≥ |S2|cR2 + bmin
` + cR2 − bmin

`

and hence

NTUmin ≥ |S2|cR2 + cR2 .

As case 2 also assumes that cR2 = cR∗2 then we can observe that NTUmin ≥ cR∗2
and hence the claim is proven.

3.4 The αM mechanism

We have seen that VCG has a frugality ratio of Ω(Q), so we now propose a mechanism,

αM , that has a much lower frugality ratio (Ω(
√
Q)). We study here, the αMmechanism

when α =
√
Q, and aim to show an upper bound on the frugality for this mechanism.

We will do this by partitioning Sα, the winning set under the αM mechanism, into

three subsets — they are Sα ∩ S1,Sα ∩ S2, and Sα \ S. We will examine the payments

made to each of the subsets, and then combine these payments to give an upper bound

for Sα. Recall that, when α = 1 the αM mechanism is equivalent to VCG and we have

seen φNTUmin(VCG) ≥ Q so we will be looking to achieve a lower frugality ratio than Q.

3.4.1 Frugality results for the αM mechanism

We first see some technical propositions that give a bound on the payment value to an

agent, based on the cost of some set of agents that could replace it in the winning set.

These are given as separate propositions to try and keep the notation simple, but the

proofs are identical save for the variation in which of the agents have their bids scaled

by α and which do not.

Proposition 3.16. For all instances of αM, for all e ∈ Sα and any set V ⊆ (E \ Sα)

with qSα − qe + qV ≥ Q the inequality pe ≤ cV α holds.

Proof. Observe that qSα − qe + qV ≥ Q implies that Sα \ {e} ∪ V is a feasible set, and

hence that the payment made to e is upper bounded by the maximum that e could bid

yet still be chosen in preference to V .

Assume for contradiction that pe > cV α; as the mechanism pays threshold payments,

then pe > cV α implies that agent e could possibly be chosen with a threshold bid be = pe.

Hence if pe > cV α then e is still chosen by the αM mechanism when we have

be > cV α. (3.17)

Chapter 3. The Single-Commodity Auction 40

The mechanism chooses the winning set by comparing the virtual bids, and as both

e and V may be added to Sα \ {e} to make a feasible set, and e was chosen, this implies

that ve ≤ vV . From the definition of the mechanism, we see that vV ≤ bV α and that

ve ≥ be. (As the mechanism is truthful we can substitute cV , ce for bV , be). Therefore

if ve ≤ vV and ve ≥ be then through transitivity be ≤ vV . Again, through transitivity,

with vV ≤ bV α, then we have

be ≤ bV α

and

be ≤ cV α

giving a contradiction with 3.17.

Recall the notation that Sα1 = Sα ∪ E1 and Sα2 = Sα ∪ E2, i.e. Sα1 are the agents in

the winning set Sα that have quantity 1, and Sα2 are the agents in Sα with quantity 2.

Proposition 3.17. For all instances of αM, for all e ∈ Sα1 and any set V ⊆ (E \ Sα)

the inequality pe ≤ cV holds.

Proof. Assume for contradiction that pe > cV ; as the mechanism pays threshold pay-

ments, then pe > cV implies that agent e could possibly be chosen with a threshold bid

be = pe. Hence if pe > cV then e is still chosen by the αM mechanism when we have

be > cV . (3.18)

The mechanism chooses the winning set by comparing the virtual bids, and as both

e and V may be added to Sα \ {e} to make a feasible set, and e was chosen, this implies

that ve ≤ vV . From the definition of the mechanism, we see that vV ≤ bV α and that

ve = beα. (As the mechanism is truthful we can substitute cV , ce for bV , be). Therefore

if ve ≤ vV and ve ≥ beα then through transitivity beα ≤ vV . Again, through transitivity,

with vV ≤ bV α, then we have beα ≤ bV α hence

be ≤ bV

and

be ≤ cV

giving a contradiction with Inequality 3.18.

Proposition 3.18. For all instances of αM, for all e ∈ Sα1 and any V ⊆ (E2 \ Sα) the

inequality pe ≤ cV /α holds.

Proof. Assume for contradiction that pe > cV /α; as the mechanism pays threshold

payments, then pe > cV /α implies that agent e could possibly be chosen with a threshold

bid be = pe. Hence if pe > cV /α then e is still chosen by the αM mechanism when we

have

be > cV /α. (3.19)

Chapter 3. The Single-Commodity Auction 41

The mechanism chooses the winning set by comparing the virtual bids, and as both

e and V may be added to Sα \ {e} to make a feasible set, and e was chosen, this implies

that ve ≤ vV . From the definition of the mechanism, we see that vV = bV and that

ve = beα. (As the mechanism is truthful we can substitute cV , ce for bV , be.) Therefore if

ve ≤ vV and ve = beα then through substitution beα ≤ vV . Again, through transitivity,

with vV = bV , then we have beα ≤ bV and rewriting gives

be ≤ bV /α

and

be ≤ cV /α

giving a contradiction with 3.19.

We now have one more technical proposition, which tells us which agents can appear

in (Sα \ S) and (S \ Sα). Informally, no agent with quantity 2 will be removed from an

optimal set S, and no agent with quantity 1 will be introduced.

Proposition 3.19. For all instances of αM , having winning set Sα, (Sα \S)∩E2 = ∅
and (S \ Sα) ∩ E1 = ∅.

Proof. Firstly, for contradiction, assume that ∃e ∈ ((Sα \ S) ∩ E2). Let Ve ⊆ S \ Sα be

the lexicographically first subset with smallest quantity such that qS − qe + qVe ≥ Q.

Without loss of generality, assume that e is before Ve lexicographically. As Ve ⊆ S

and e /∈ S then ce < cVe (this is strict due to the lexicographical ordering assumed).

Conversely, as e ∈ Sα and Ve ∩ Sα = ∅ then we have ve ≤ vVe as e was chosen by the

mechanism in preference to Ve, based on their virtual bids.

From the mechanism definition, and assuming truthfulness, we have ve = ce and

vVe ≥ cVe , hence we get ce ≥ cVe giving a contradiction with ce < cVe , showing that there

is no e ∈ ((Sα \ S) ∩ E2 and therefore (Sα \ S) ∩ E2 = ∅. Observe that assuming Ve is

before e lexicographically simply gives ce ≤ cVe and ce > cVe instead.

As we have seen that ∀e ∈ (Sα \ S) the equation qe = 1 holds, it is simple to see

that there is no j ∈ (S \ Sα) with qj = 1, as the same agent with quantity 1 must be

preferred by both the choice for S and the choice for Sα.

Now we move on to the body of the proof, considering the partition of the winning

set Sα into three sets (Sα ∩ S1, Sα ∩ S2, and Sα \ S). We will show payment bounds of

αM for these sets.

Lemma 3.20. For every instance of αM where α =
√
Q, the inequality pSα∩S1 ≤√

QNTUmin holds.

Chapter 3. The Single-Commodity Auction 42

Proof. We will prove this lemma as two cases. Recalling the definition of NTUmin,

given in Definition 1.2. Condition (3) states that

for every e ∈ S, there is Te ∈ F such that e /∈ Ti and
∑

e′∈S\Te

be′ =
∑

e′∈Te\S

ce′ .

Case 1: For every e ∈ Sα1 there exists a Te set satisfying (3) when (Te \S)∩E1 is not

empty.

From the case definition, there is some agent j ∈ Te \ S such that qj = 1. Applying

Proposition 3.2 or 3.3 repeatedly shows that there exists a T ′e such that qT ′e\S = 1.

We can let T ′e = S \ {e} ∪ {j} and hence we have bmin
e = cj , giving bmin

e = cR1 (from

R1 having minimal cost).

As e has quantity 1, it can be replaced by any agent, and Proposition 3.17 gives

pe ≤ cj . As we have bmin
e = cR1 , then through substitution we have pe ≤ bmin

e , and

summing over Sα ∩ S1 gives

pSα∩S1 ≤ bmin
Sα∩S1

and

pSα∩S1 ≤ NTUmin.

Case 2: Otherwise (i.e. for some e ∈ Sα1 there is some Te set satisfying condition (3)

in Definition 1.2 when (Te \ S) ∩ E1 is empty).

From Proposition 3.2 we must have some T ′e such that qT ′e\S = 2 (as Te \ S contains

only agents with quantity 2). As we have seen qS = Q then we must have qS\T ′e ≤
qT ′e\S (or else we would have qT ′e\S < qS\T ′e and qT ′e < Q).

Fix j ∈ T ′e\S to be any agent with qj = 2. By satisfying condition (3) in Definition 1.2

there exists some S \ T ′e such that bmin
S\T ′e

= cT ′e\S .

As S \ T ′e ⊆ S we have bmin
S ≥ cj and hence

NTUmin ≥ cj . (3.20)

We will know examine the payments to each e ∈ (Sα ∩ S1) as two sub-cases.

Case 2.1: j /∈ Sα.

From Proposition 3.18 we have pe ≤ cj/α and summing up over Sα ∩ S1 gives

pSα∩S1 ≤ |Sα ∩ S1| cj/α. As we have defined α =
√
Q and we can observe that

|Sα ∩ S1| ≤ Q then we can express this as pSα∩S1 ≤ Qcj/
√
Q and hence pSα∩S1 ≤√

Qcj .

Chapter 3. The Single-Commodity Auction 43

Therefore, with Inequality 3.20, we have

pSα∩S1 ≤
√
QNTUmin.

Case 2.2: j ∈ Sα .

If we examine Lemmas 3.6,3.8, and 3.9 we see that every agent e ∈ S1 must make an

NTUmin bid which is one of at most two distinct values, and if these two values are

different then only one agent may bid the higher amount. Let these two bid values

be by, bz and assume that bz ≥ by (if only one value exists, assume for simplicity that

bz = by). Hence we can describe the NTUmin bids by

bmin
S1

= (|S1| − 1)by + bz. (3.21)

Recall that `1 ∈ argmaxi∈S1
ci is the lexicographically first agent with the highest

cost, and that `2 ∈ argmaxi∈S1\{`1} ci is the lexicographically first agent with second

highest cost.

We can observe, from condition (1) in Definition 1.2, that bz ≥ c`1 and that when

|S1| > 1 then `2 exists and by ≥ c`2 .

Hence we can substitute in Equation 3.21 to get

bmin
S1
≥ (|S1| − 1)c`2 + c`1 . (3.22)

If |S1| = 1 then we simply have pe ≤ bmin
S\Sα and hence pe ≤ NTUmin giving pSα∩S1 ≤

NTUmin.

Now we will consider when |S1| > 1.

We can firstly observe that qS = qSα = Q, as qS = Q is clear from S being minimal

and S1 being non-empty. As |S1| > 1 then for any size of Sα \ S there is some

subset of equal quantity in S that can be removed so that qS\Sα = qSα\S and hence

qSα = qS (as Sα is minimal with respect to set inclusion).

Therefore qS\Sα ≥ qSα\S ≥ 2, and as j was not chosen by S, we must assume that

S \ Sα must contain at least two agents with quantity 1. As `1, `2 have the highest

cost (and hence bids as αM was shown to be truthful in Section 3.3.2), we can

assume that `1, `2 ∈ S \ Sα.

As neither `1 or `2 will be chosen in Sα, and c`2 ≤ c`1 we can use Proposition 3.17

to give pe ≤ c`2 .

Summing up over all e ∈ Sα ∩ S1 gives

pSα∩S1 ≤ |Sα ∩ S1|c`2 .

We have |Sα ∩ S1| < |S1| (as we saw that (S \ Sα)∩ S1 contains at least two agents)

hence we can upper bound with

Chapter 3. The Single-Commodity Auction 44

pSα∩S1 ≤ (|S1| − 1)c`2

Clearly, as c`1 ≥ 0, we have (|S1| − 1)c`2 ≤ (|S1| − 1)c`2 + c`1 so we can use the lower

bound for bmin
S1

given in Inequality 3.22 to get

pSα∩S1 ≤ bmin
S1

and hence

pSα∩S1 ≤ NTUmin.

Lemma 3.21. For every instance of αM having α =
√
Q the inequality pSα∩S2 ≤

bmin
Sα∩S2

√
Q holds.

Proof. Recall the definition of set R2, which was given in Algorithm 1, as the lowest-cost

subset from E \S with quantity at least 2. We will examine the proof as two cases; firstly

when the replacement set R2 was not chosen in Sα by αM.

Case 1 : R2 ⊆ E \ Sα .

Let e be some agent in Sα ∩ S2. As qR2 = qe = 2 then R2 could replace e in Sα

to make a feasible set; hence pe ≤ cR2α, from Proposition 3.16. Observe that when

S1 6= ∅ holds then qS = Q, and from Lemma 3.4 we have bmin
e = cR2 . By substitution

this gives pe ≤ bmin
e α. Summing this up over every e in Sα ∩ S2 gives

pSα∩S2 ≤ bmin
Sα∩S2

α.

The second case is when the replacement set R2 was chosen in the winning set Sα by

αM.

Case 2 : R2 ⊆ Sα .

Let e be some agent in Sα∩S2. Let Rα2 ⊆ Sα\S be a subset such that qSα\{e}∪Rα2 ≥ Q.

(i.e. qRα2 = 1 if qSα > Q and qRα2 = 2 where qSα = Q).

As the lowest-cost winning set S included Rα2 in preference to R2 then we have

cRα2 ≤ cR2 . From Proposition 3.16 we have pe ≤ cRα2 α and hence pe ≤ cR2α. from

Lemma 3.4 we have bmin
e = cR2 . Hence, by substitution, this gives pe ≤ bmin

e α.

Summing this up over every e in Sα ∩ S2 gives

pSα∩S2 ≤ bmin
Sα∩S2

α.

Lemma 3.22. For every instance of αM when α =
√
Q the inequality pSα\S ≤

√
Qbmin

S\Sα

holds.

Chapter 3. The Single-Commodity Auction 45

Proof. Firstly, from Proposition 3.19 when Sα\S is non-empty then S1 is also non-empty

(the lemma trivially holds if Sα \ S is empty).

We will now consider the more simple case when qSα > Q.

Case 1: qSα > Q

As (from Proposition 3.19) there is some agent i ∈ S \ Sα with qi = 1 then agent

e ∈ (Sα\S) could be replaced by agent i ∈ (S\Sα) as qSα−qe+qi = Q+1−2+1 = Q.

Let i ∈ argminj∈S\Sα cj and from Proposition 3.16 we have pe ≤ ciα. Sum up over

e ∈ Sα \ S to get

pSα\S ≤ |Sα \ S|cjα.

Observe (using Proposition 3.19) that |Sα \ S| ≤ |S \ Sα| and we get

pSα\S ≤ |S \ Sα|cjα

and as j has the minimum cost in S \ Sα then it follows that |S \ Sα|cj ≤ cS\Sα and

hence

pSα\S ≤ cS\Sαα

and from condition (1) in Definition 1.2

pSα\S ≤ bmin
S\Sαα.

Now we consider the remaining case.

Case 2: qSα = Q

As S1 is non-empty, it follows that qS = Q also, and so qS\Sα = qSα\S . From

Proposition 3.19 we then have |S \ Sα| = 2|Sα \ S|. Let i, j ∈ S \ Sα be the two

agents with lowest cost.

Observe that as no two agents costs may sum up to less than ci + cj we then have

a lower bound on the cost of S \ Sα, which is cS\Sα ≥ |S \ Sα|(ci + cj)/2. Using

|S \ Sα| = 2|Sα \ S| we then have

cS\Sα ≥ |Sα \ S|(ci + cj) (3.23)

For each e ∈ Sα \ S, from Proposition 3.16, we have pe ≤ (ci + cj)α, and summing

up gives

pSα\S ≤ |Sα \ S|(ci + cj)α

and with 3.23

pSα\S ≤ cS\Sαα

Chapter 3. The Single-Commodity Auction 46

and from condition (1) in Definition 1.2

pSα\S ≤ bmin
S\Sαα

which completes the proof.

Theorem 3.23. Suppose that there is a {1, 2} single-commodity auction requiring quan-

tity Q. Then for the αM mechanism with α =
√
Q the frugality ratio is upper bounded

with φNTUmin(αM) ≤ 2
√
Q.

Proof. From Lemmas 3.21, 3.20, and 3.20, we have the following

pSα∩S2 ≤
√
Qbmin

Sα∩S2
,

pSα∩S1 ≤
√
QNTUmin, (3.24)

pSα\S ≤
√
QcS\Sα .

As S \ Sα is obviously disjoint with Sα ∩ S2 and both are in S, then bmin
Sα∩S2

+cS\Sα ≤
bmin
S ≤ NTUmin. Therefore, we have pSα∩S2 + pSα\S ≤

√
QNTUmin, and we can add

this to Inequality 3.24 to give

pS ≤ 2
√
QNTUmin.

This shows that the payment is upper bounded by 2
√
QNTUmin and hence we have

φNTUmin(αM) ≤ 2
√
Q.

We will now briefly consider the upper bound with respect to NTUmax.

Corollary 3.24. For {1, 2} Single-Commodity Auctions with quantity Q, the αM scal-

ing mechanism when α =
√
Q, the frugality ratio is upper bounded with φNTUmax(αM) ≤

2
√
Q.

Proof. From their definitions, NTUmax ≥ NTUmin, hence the proof in Theorem 3.23

trivially applies with regard to NTUmax.

3.4.2 A lower bound on frugality with the αM mechanism

We will show lower bounds by using a series of examples. For any instance of a set-

system auction let the total payment made to all agents be pE and let the payment

ratio be pE
NTUmin . Hence the frugality ratio for a mechanism is given by the maximum

payment ratio over all possible instances. This means that, when we have a mechanism

Chapter 3. The Single-Commodity Auction 47

that has an instance with some payment ratio pE
NTUmin then pE

NTUmin is a lower bound for

the frugality ratio of that mechanism.

Recall that when α = 1 this mechanism is exactly equivalent to VCG (no scaling

takes place, and all agents are paid their threshold value). Recall that Example 3.1

showed an instance I where the frugality ratio is φNTUmin(αM) ≥ Q. As this shows a

small value of α does not improve frugality, perhaps some larger value of α may produce

better results. Example 3.2 shows the same instance I with the αM mechanism when

α = Q.

Example 3.2. In this example we have a commodity auction for quantity Q items and

observe that the number of agents n = Q+ 1. For each agent e ∈ E the quantity qe and

cost ce are given in Table 3.2. A value bmin
e for a NTUmin bid vector is also given, as

is the payment made by the αM mechanism pαe .

Agent qe ce bmin
e pαe

A1 1 0 1 1/Q

A2 1 0 0 1/Q
...

...
...

...
...

An−1 1 0 0 1/Q

An 2 1

Table 3.2: Instance I with α = Q

To verify that the payments given are correct, observe that vn = cn = 1, and when

there is a threshold bid be = 1/Q then applying the scaling for e < n gives ve = Q(1/Q)

so clearly ve = 1 = vn making pe = 1/Q the threshold value. Now for instance I we

would have a payment of 1/Q to all n − 1 winning agents, giving a payment ratio of
Q
Q = 1.

While Example 3.2 having a frugality ratio of 1 is obviously a positive result, we now

examine, in Example 3.3, another instance of the auction, I ′ where we see that α = Q

gives poor frugality.

Example 3.3.

In this example we have a commodity auction for quantity Q items and observe that

the number of agents n = Q/2 + 2. For each agent e ∈ E the quantity qe and cost ce

are given in Table 3.3. A value bmin
e for a NTUmin bid vector is also given, as is the

payment made by the αM mechanism pαe .

Chapter 3. The Single-Commodity Auction 48

Agent qe ce bmin
e pαe

A1 2 0 2 2Q

A2 2 0 2 2Q
...

...
...

...
...

An−2 2 0 2 2Q

An−1 1 1

An 1 1

Table 3.3: Instance I ′ with α = Q

Here, there is a payment of 2Q to all n− 2 winning agents, (when the threshold bid

be = 2Q then ve = 2Q = (vn−1 + vn) making pe = 2Q a threshold value). This gives a

payment ratio of Q.

Example 3.3 shows that αM has a frugality ratio that is no lower than that of VCG,

which was also shown to be Q in Example 3.1.

Although we can see that Instance I ′ does give a small payment ratio for αM when

α = Q.

Example 3.4. In this example we have a commodity auction for quantity Q items and

observe that the number of agents n = Q/2 + 2. For each agent e ∈ E the quantity qe

and cost ce are given in Table 3.4. A value bmin
e for a NTUmin bid vector is also given,

as is the payment made by the VCG mechanism pVCG
e .

Agent qe ce bmin
e pVCG

e

A1 2 0 2 2

A2 2 0 2 2
...

...
...

...
...

An−2 2 0 2 2

An−1 1 1

An 1 1

Table 3.4: Instance I ′ with α = 1 (equivalent to VCG)

Here we see that {A1, . . . , An−2} is a winning set, the bid vector bmin meets the

conditions for a NTUmin vector, hence NTUmin(c) = 2(n−2). For this instance, then,

the payment ratio for 1M (i.e. VCG) is simply 1, which we already know is optimal.

Calculation of a lower bound

The examples have shown that some instances give low frugality with large values of

α, but some other instances only give low frugality with small values of α. We now

Chapter 3. The Single-Commodity Auction 49

generalize these examples to show possible ratios of Q/α or α and hence that any scaling

mechanism of this type must have a frugality ratio of at least
√
Q.

Theorem 3.25. For {1, 2} Single-Commodity Auctions with quantity Q, the αM scaling

mechanism has a frugality ratio given by φNTUmin(αM) ≥
√
Q for all values of α.

Proof. We will now consider both the example instances I and I ′ under the more general

αM mechanism. By generalizing instance I in Example 3.2 for any value of α we get

Example 3.5. Similarly, by generalizing I ′ in Example 3.3 we get Example 3.6. Let m

be some integer parameter that denotes the size of the instance. Note that for all α > 0

then the winning sets Sα, S′α will not change for either instance. We will not consider

the mechanism when α = 0, as there are no defined threshold payments.

Firstly, examining the instance I in Example 3.5; for each winning agent e ∈ Sα, we

can observe that pαe = 1/α. As agent Am+1 could replace agent e to make a feasible set,

the threshold payment is upper bounded by the maximum amount that e could bid, and

still possibly be chosen in preference to agent Am+1. That is when ve = vm+1, and as

we can see that vm+1 = 1 in this instance, then when be = 1/α we have ve = 1 hence

1/α is the threshold value.

This givesQ/α as the sum of such payments over all agents in Sα. The example shows

a feasible bid vector, bmin which has bmin
S = 1, and hence the NTUmin value for this

instance is at most 1 (NTUmin(c) ≤ 1). This gives a payment ratio of pαE/NTUmin(c) ≥
Q/α.

Now examining the instance I ′ in Example 3.6; for each winning agent e ∈ Sα, we

can calculate that pe = 2α. As before, we look for a replacement for agent e; in this

instance it is the set {Am+1, Am+2}. Observe that v{Am+1,Am+2} = 2α and when the

threshold bid is be = 2α then ve = 2α, which gives be = 2α as the threshold value, and

hence pαe = 2α This gives a total payment of pαE = m2α = Qα. The bid vector bmin

shows that NTUmin(c) ≤ Q; combining this with the payments shown gives a payment

ratio for this instance which is pαE/NTUmin(c) ≥ α.

For Instance I we have a payment ratio of at least Q/α, and for I ′ a payment ratio

of at least α. As any αM mechanism may be applied to both instances I and I ′ we can

see that

φNTUmin(αM) ≥ max

(
Q

α
,α

)
hence we can see a lower bound of frugality exists, for any αM mechanism, of

φNTUmin(αM) ≥
√
Q.

Example 3.5. In this example we have a commodity auction for quantity Q items and

observe that the number of agents in the winning set m = Q. For each agent e ∈ E the

quantity qe and cost ce are given in Table 3.5. A value bmin
e for a NTUmin bid vector is

also given, as is the payment made by the αM mechanism pαe .

Chapter 3. The Single-Commodity Auction 50

Agent qe ce bmin
e pαe

A1 1 1 1 1/α

A2 1 0 0 1/α
...

...
...

...
...

Am 1 0 0 1/α

Am+1 2 1

Total 1 m/α

= 1 Q/α

Table 3.5: Instance I with αM

Example 3.6. In this example we have a commodity auction for quantity Q items and

observe that the number of agents in the winning set m = Q/2. For each agent e ∈ E the

quantity qe and cost ce are given in Table 3.6. A value bmin
e for a NTUmin bid vector is

also given, as is the payment made by the αM mechanism pαe .

Agent qe ce bmin
e pαe

A1 2 0 2 2α

A2 2 0 2 2α
...

...
...

...
...

Am 2 0 2 2α

Am+1 1 1

Am+2 1 1

Total 2m 2mα

= Q Qα

Table 3.6: Instance I ′ with αM

3.5 The Unrestricted Integer Single-Commodity Auction

We now turn our attention to the general case for integer single-commodity auctions,

and remove the restriction on the quantity that each agent may supply.

3.5.1 A lower bound on frugality for all Scaling Mechanisms

We have seen that our simple scaling mechanism works well for the {1, 2} case, so we

now consider the frugality of similar scaling mechanisms in the unrestricted case.

Chapter 3. The Single-Commodity Auction 51

Preliminaries

We will now extend the lower bound results from the {1, 2} integer auction to show a

lower bound for the more general case of the Integer Single-Commodity Auction (which

satisfies ∀e ∈ E , qe ∈ Z+) with scaling mechanisms similar to those seen in the {1, 2}
integer auction.

Let β be a scaling function, returning a linear scaling vector, a = β(Q, k) (with

αe ∈ R). The two parameters of β are Q, which is given in the auction instance, and

k ∈ Z which is the ‘maximum quantity’ parameter for any agent, i.e. ∀e ∈ E , qe ≤ k.

For ease of notation we will assume for the rest of this section that we are using the

mechanism βM, and hence both S = SβM and p = pβM can be assumed. Let βM be

the mechanism that uses the scaling vector a = (a1, . . . , ak) returned by β, as follows.

Compute a ‘virtual’ bid ve for each agent e as

ve = beaqe .

Let the winning set, S ∈ F , be a feasible set with the lowest ‘virtual’ cost, i.e.

S ∈ argmax
T∈F

vT .

Each agent e will be paid its threshold value, pe.

If we consider every scaling function β, and the resulting class of mechanisms, then

we can think of βM as the class of all ‘blind-scaling’ mechanisms; when the mechanism

must choose a scaling factor for each possible quantity, based only on the quantity

required Q and the maximum quantity parameter k (so the mechanism does not look at

any more details of each instance before deciding the scaling factors).

Proof of lower bound

The proof will be given by examining a series of example instances given, and showing

that at least one of them must cause a payment ratio that satisfies the lower bound. We

will begin this, simply by reminding ourselves of Example 3.5, which is duplicated here

as Instance I1 in Example 3.7.

Example 3.7. In this example we have a {1, 2} commodity auction for quantity Q

items. Let m = Q and observe that the winning set is given by S = {A1, . . . , Am} . For

each agent e ∈ E the quantity qe and cost ce are given in Table 3.7. A value bmin
e for a

NTUmin bid vector is also given, giving NTUmin≤ 1. The payment made by the βM
mechanism is also given in the table as pe.

Chapter 3. The Single-Commodity Auction 52

Agent qe ce bmin
e pe

A1 1 0 1 a2
a1

A2 1 0 0 a2
a1

...
...

...
...

Am 1 0 0 a2
a1

Am+1 2 1

Total 1 Qa2
a1

Table 3.7: Instance I1

Here, there are at least Q agents in S, each is paid a2
a1

, and NTUmin ≤ 1 (as shown

in Section 3.4.2); hence the payment ratio pE
NTUmin ≥ Q

a2
a1

.

In order to verify that these payments are correct, we need to establish the threshold

bids. For each agent e ∈ S, if ve > vm+1 then agent e would not be chosen, as the

winning set would become S \ {e} ∪ {m + 1}. When ve = vm+1, agent e may still be

chosen (assuming that it is lexicographically first), hence when agent e bids be such that

ve = vm+1 this is the threshold bid, and hence the payment made by this mechanism.

As the mechanism is truthful, we can assume bm+1 = cm+1 hence vm+1 = cm+1a2 =

a2. Then, if we assume for all e ∈ S, that be = a2
a1

then as ve = bea1 we have ve =
a2
a1
a1 = a2 = vm+1. This shows that be = a2

a1
is a threshold bid for all e ∈ S, hence the

payment is given by pe = a2
a1

, confirming the payment given in Table 3.7.

Example 3.7 illustrates that, in order for the frugality ratio to be less than Q, it is

necessary for a2 < a1. The first technique used in this section will be to see that, in order

to meet some given bound on the frugality, the consecutive scaling values (i.e. aj , aj+1)

must be separated by at least a certain ratio. This will be achieved by generalizing

Example 3.7, and in order to show how this example will be scaled-up to the general

case we will now look at the next example, Example 3.8. This instance, I2, has agents

with quantities 2 and 3.

Example 3.8. In this example we have a {2, 3}-commodity auction for quantity Q

items and observe that the winning set S is given by S = {A1, . . . , Am} (with m = dQ2 e).

For each agent e ∈ E the quantity qe and cost ce are given in Table 3.8. A value bmin
e

for a NTUmin bid vector is also given, giving NTUmin≤ 2. The payment made by the

βM mechanism is also given in Table 3.8 as pe.

Chapter 3. The Single-Commodity Auction 53

Agent qe ce bmin
e pe

A1 2 0 1 a3
a2

A2 2 0 1 a3
a2

A3 2 0 0 a3
a2

...
...

...
...

Am 2 0 0 a3
a2

Am+1 3 1

Am+2 3 1

Table 3.8: Instance I2

We can note here that there are now two agents in S that can have a bid value

bmin
e = 1, and that the vector bmin shows NTUmin ≤ 2. (For all e ∈ {3, . . . ,m} then

from T = S \ {1, 2, e} ∪ {m + 1,m + 2} then condition (2) in Definition 1.2 gives

bmin
1 + bmin

2 + bmin
e ≤ cm+1 + cm+2 giving bmin

e ≤ 0).

Again, to verify that these payments are correct, we establish the threshold bids. For

each agent e ∈ S, if ve > vm+1 then agent e would not be chosen, as the winning set

could become S\{e}∪{m+1}. When ve = vm+1, agent e may still be chosen, hence when

agent e bids be such that ve = vm+1 this is the threshold bid, and hence the payment.

If we assume for all e ∈ S, that be = a3
a2

then as ve = bea2 we have ve = a3
a2
a2 = a3

and observe that vm+1 = a3. This shows that be = a3
a2

is a threshold bid and hence the

payment is pe = a3
a2

.

Here, there are at least Q
2 agents in S, each is paid a3

a2
, and NTUmin ≤ 2; hence the

payment ratio
pE

NTUmin
≥ Qa3

4a2

Example 3.9 will now generalize these examples. Recall the assumption that k is a

maximum size parameter, and that k ≤
√
Q. For each j ∈ {1, . . . , k−1} let Example 3.9

describe instance Ij . Observe the assumption that j < k ≤
√
Q implies thatm ≥ j which

is required by the structure of the example (m is defined in the example as m = dQj e).

Example 3.9. In this example we have a {j, j + 1}-commodity auction for quantity Q

items. Let m = dQj e and observe that the winning set is given by S = {A1, . . . , Am}.
For each agent e ∈ E the quantity qe and cost ce are given in Table 3.9. A value bmin

e

for a NTUmin bid vector is also given, giving NTUmin≤ j. The payment made by the

βM mechanism is also given in Table 3.9 as pe.

Chapter 3. The Single-Commodity Auction 54

Agent qe ce bmin
e pe

A1 j 0 1
aj+1

aj

...
...

...
...

Aj j 0 1
aj+1

aj

Aj+1 j 0 0
aj+1

aj

...
...

...
...

Am j 0 0
aj+1

aj

Am+1 j + 1 1

...
...

...

Am+j j + 1 1

Total j m
aj+1

aj

Table 3.9: Instance Ij

Firstly, we can observe that Examples 3.7 and 3.8 are special cases of Example 3.9

with j = 1 and j = 2 respectively. We can see that with this parameter j, that there

are j agents in S that can have a (NTUmin) bid value be = 1 (for e ∈ S). We can show

that there can be no more than j agents that can each bid 1 as follows; j + 1 agents,

each with quantity j, could be ‘replaced’ by the j agents outside S, each with quantity

j + 1, so no set of j + 1 agents in S can bid a sum of more than j.

More formally,

∀e ∈ S, let Te = S \ {1, . . . , j, e} ∪ {(m+ 1), . . . , (m+ j + 1)}.

Observe that (
j∑
i=1

qi

)
+ qe = j(j + 1)

and (
j∑
i=1

+1qm+i

)
= j(j + 1)

hence qS = qT and Te is a feasible set.

Using this Te in condition (3) in Definition 1.2, for all e ∈ {j + 1, . . . ,m} gives(
j∑
i=1

bmin
i

)
+ bmin

e =

j∑
i=1

cm+1.

Chapter 3. The Single-Commodity Auction 55

As
∑j

i=1 b
min
i = j and

∑j
i=1 cm+i = j then we have bmin

e = 0, which shows that for all

e ∈ {j+1, . . . ,m} then vector bmin has some Te satisfying condition (3) in Definition 1.2.

For all e ∈ {1, . . . , j}, let Te = S \ {e} ∪ {Am+1} which gives bmin
e = 1, showing that

the bid vector bmin has, for all e ∈ S, some Te satisfying condition (3) in Definition 1.2

and as we can observe bmin satisfies conditions (1) and (2) of Definition 1.2 then this

shows NTUmin ≤ bmin
S and hence NTUmin ≤ j.

We can also generalize the payment to each e ∈ S. For each agent e ∈ S, if ve > vm+1

then agent e would not be chosen, as the winning set could become S \ {e} ∪ (m + 1).

When ve = vm+1, then agent e may still be chosen, hence when agent e bids be such

that ve = vm+1 this is the threshold bid, and hence the payment.

If we assume for all e ∈ S, that be =
aj+1

aj
then as ve = beaj we have ve =

aj+1

aj
aj =

aj+1 = vm+1. This shows that be =
aj+1

aj
is a threshold bid for all e ∈ S, hence the

payment is given by pe =
aj+1

aj
.

Let c be a cost vector for instance Ij and we examine the payment ratio pE
NTUmin as

follows; there are at least Q
j agents in S, each is paid

aj+1

aj
, and NTUmin ≤ j; hence the

payment ratio satisfies the following inequality

pE
NTUmin

≥ Qaj+1

j2aj
. (3.25)

We can then use this as we move onto the first part of the proof.

We will initially define a ‘maximum size’ parameter, k, and will examine a series

of instances when all agents have quantity at most k. From these instances we will be

able to show a lower-bound in terms of this parameter, k. Finally we will show how to

compute a value for k that gives a lower-bound for any given Q.

Let k ∈ {1, . . . , b
√
Qc} be a size parameter. and we will consider just the instances

I1, . . . , Ik. We will show a minimum ratio needed between any consecutive scaling values

(aj , aj+1) (when j < k) in order to satisfy the specific payment ratio given.

Proposition 3.26. For instance Ij of βM with j ≤ k−1 and
aj
aj+1

≤ Q
1
k the inequality

pE
NTUmin ≥

Q
k−1
k

k2
holds.

Proof. From inequality 3.25 we have pE
NTUmin ≥

Qaj+1

j2aj
, and as j ≤ k implies 1

j2
≥ 1

k2

and hence
Qaj+1

j2aj
≥ Qaj+1

k2aj
it follows, due to transitivity, that

pE
NTUmin

≥ Qaj+1

k2aj

additionally
aj
aj+1

≤ Q
1
k can be inverted to be expressed as

aj+1

aj
≥ Q

−1
k

Chapter 3. The Single-Commodity Auction 56

therefore, by transitivity

pE
NTUmin

≥ Q

k2
aj+1

aj
≥ QQ

−1
k

k2

and as QQ
−1
k = Q

k−1
k this can be simplified to state

pE
NTUmin

≥ Q
k−1
k

k2
.

completing the proof.

This minimum separation required between every aj and aj+1 implies that there is

large separation between a1 and ak. We will then see in Example 3.10 that when this

large separation between a1 and ak exists, this will give rise to a large payment ratio

(and hence frugality ratio).

Example 3.10. In this example we have a commodity auction for quantity Q items

with the parameter k. Let m = dQk e and observe that the winning set is given by S =

{A1, . . . , Am}. For each agent e ∈ E the quantity qe and cost ce are given in Table 3.10.

A value bmin
e for a NTUmin bid vector is also given, giving NTUmin≤ mk. The payment

made by the βM mechanism is also given in the table as pe.

Agent qe ce bmin
e pe

A1 k 0 k ka1
ak

...
...

...
...

Am k 0 k ka1
ak

Am+1 1 1
...

...
...

Am+k 1 1

Table 3.10: Instance Ik

Proposition 3.27. For instance Ik of βM the inequality pE
NTUmin ≥

a1
ak

holds.

Proof. For each e ∈ S, there is exactly one feasible set not containing e — that is E \{e}.
Therefore the only bid vector that could satisfy NTUmin must satisfy condition (3) in

Definition 1.2 with Te = E \ {e}. Therefore the NTUmin bid for each e ∈ S must be

bmin
e = cTe\S = c{m+1,...,m+k+1} = k

As there are m agents in S, each having a bid bmin
e = k, we have

NTUmin ≤ mk.

Chapter 3. The Single-Commodity Auction 57

Similarly, the threshold bid for e must be when ve = v{m+1,...,m+k}. Assuming be = ka1
ak

multiplying by the scaling factor ak gives ve = ka1
ak
ak = ka1. The virtual bids of the

competing agents i ∈ {m+1, . . . ,m+k} are vi = a1, hence v{m+1,...,m+k} = ka1 showing

that

be =
ka1
ak

is a threshold bid, and hence the payment

pe =
ka1
ak

.

Therefore, in Instance Ik, there are m agents in S; each is paid ka1
ak

giving a total

payment of mka1
ak

. As we have seen NTUmin ≤ mk hence

pE
NTUmin

≥ a1
ak
.

We will now move on to a result which shows that, for any scaling vector that could

be used by the βM mechanism, there will be some instance, from the examples that we

have seen, that give a payment ratio of at least Q
k−1
k

k2
.

Proposition 3.28. For any scaling vector a given by βM there is some Instance Ij for

j ∈ {1, . . . , k − 1} or Instance Ik such that the inequality pE
NTUmin ≥

Q
k−1
k

k2
holds.

Proof. If there existed some j ∈ {1, . . . , k−1} such that
aj
aj+1

≤ Q
1
k then Proposition 3.26

implies that pE
NTUmin ≥

Q
k−1
k

k2
. Therefore, if the expression

∀j ∈ {1, . . . , k − 1}, aj
aj+1

> Q
1
k (3.26)

does not hold then the proof is complete.

Hence suppose that expression 3.26 does hold. We can see this implies that the

consecutive scaling values must have a certain separation. By way of example, this gives
a1
a2
> Q

1
k , a2

a3
> Q

1
k etc. By transitivity we would have a1

a3
> Q

2
k ,a1a4 > Q

3
k etc. This can

then be generalized, for j ∈ 1, . . . , k − 1 to give

a1
aj+1

> Q
j
k

Suppose that j = k − 1, then we have

a1
ak

> Q
k−1
k .

Referring back to Proposition 3.27, Instance Ik gives

pE
NTUmin

≥ a1
ak

Chapter 3. The Single-Commodity Auction 58

hence, by transitivity,
pE

NTUmin
> Q

k−1
k .

As we have seen that, if expression 3.26 does not hold, then the proposition is satisfied

for some Instance Ij where j ∈ {1, . . . , k− 1}. When expression 3.26 does hold, then we

have instance Ik giving pE
NTUmin ≥

Q
k−1
k

k2
, satisfying the proposition. Hence there is some

instance, either Ij for j ∈ {1, . . . , k − 1} or Ik that satisfies the proposition.

Now that we have seen that there is always some instance that gives at least this

(reasonably large) payment ratio in terms of k, we can use this to prove a lemma that

shows a lower bound on the frugality ratio for all Integer Single-Commodity Auctions.

Lemma 3.29. For all Integer Single-Commodity Auctions for quantity Q items and

a maximum-quantity parameter k ≤
√
Q, every blind-scaling mechanism βM has a

frugality ratio which satisfies the inequality φNTUmin(βM) ≥ Q
k−1
k

k2
.

Proof. The blind-scaling mechanism βM must, by definition, calculate its scaling vector

a for use on any instance that it may be given with these parameters. Once this scaling

vector is fixed the mechanism may possibly be given either Instance Ik or Instance Ij

for any j ∈ {1, . . . , k − 1}. Proposition 3.28 shows that at least one of these instances

gives pE
NTUmin ≥

Q
k−1
k

k2
. The existence of such an instance proves

φNTUmin(βM) ≥ Q
k−1
k

k2
.

Now that we have shown a lower bound on frugality for values of Q in terms of the

parameter k, we can specify a value of k such as to give a lower bound entirely in terms

of Q. To that end, suppose k = lnQ
2 , and we will see this implies a lower bound of 4Qe−2

ln2Q

for βM mechanisms.

Theorem 3.30. Given an Integer Single-Commodity Auction for quantity Q items,

every blind-scaling mechanism, βM, has a frugality ratio which satisfies the inequality

φNTUmin(βM) ≥ 4Qe−2

ln2Q
.

Proof. Considering the proof of Lemma 3.29, suppose k = lnQ
2 . Re-arranging the ex-

pression given in Lemma 3.29 gives Q
k−1
k

k2
= 4Qe−2

ln2Q
, and hence, by substitution

φNTUmin(βM) ≥ 4Qe−2

ln2Q
.

(Note that this only holds exactly when lnQ
2 ∈ Z as k must be an integer parameter

but this restriction is not important to the asymptotic result.)

Chapter 4

Shortest Path with k-sets

4.1 Overview

One of the most commonly studied types of set-system auctions is the path auction

(e.g. [4, 12, 39, 23, 10]). A path auction is a special-case of the set-system auction,

where each agent represents an edge in a graph, and the feasible sets are the sets of

agents that include a path between two specified vertices of the graph. In this chapter,

we propose a generalization of this path auction, and give some preliminary results.

In a typical path auction, we consider that each agent is represented by some edge

in a graph (or multigraph), and that the feasible sets are exactly those sets that contain

a path between two pre-determined vertices of the graph.

In real-world situations, it is normally the case that, in any given network, not all of

the edges are owned by separate entities. While, of course, that does not preclude them

being auctioned individually, we will see some reasons why this is not always desirable.

Therefore, it seems reasonable to generalize the path auction to allow edges to be sold

in ‘bundles’, rather than as individual edges.

This type of auction, where agents own multiple edges, has been previously studied

(e.g. [10]). However, one fundamental difference in our approach is that they assume

the ownership information is private, and agents may not always honestly reveal which

edges they own. They then study truthful mechanisms based on this assumption, and

show negative results for this setting — that no mechanism which only requires the edge

costs to be reported can also be truthful.

That general idea, of studying mechanisms where ownership may be dishonestly

reported has also been studied by Kempe et al. in [23]. They consider the concept of

mechanisms that are false-name-proof. In this setting the auctioneer does not know all

of the set-system and the element ownership information. Thus agents can declare this

information to the auction, which would allow manipulations such as falsely claiming

an element that they own to be a set of agents, or to claim that individual elements are

owned by separate agents. A false-name-proof mechanism would not allow any agent to

gain greater utility by making a false declaration as to ownership. However, they show

a lower bound on frugality of Ω(2n) for all false-name-proof mechanisms. These results

59

Chapter 4. Shortest Path with k-sets 60

suggest that allowing agents to dishonestly report their ownership information would

prove a major obstacle to finding frugal (truthful) mechanisms in this setting. However,

in many real cases, the ownership information would be public knowledge, and not

manipulable, and we will restrict our analysis to the cases that either the information is

public, or analogously, that it will be honestly revealed due to some external incentive.

In this model, we consider that each agent owns some collection of edges, and is

willing to provide all of their edges for some fixed cost. We can see that this may have

real applications if we think of this as some ‘off-peak’ or ‘surplus capacity’ shortest path

problem. Where network owners may have surplus capacity, for instance at certain times

of day, then they may be willing to sell access to their entire network for some fixed cost.

The fixed cost may represent the overhead of enabling access to the service, or simply

what the network considers reasonable so as not to impact on their ‘regular’ sales.

In many cases, such as public transport or telecommunications, it may well be true

that additional network use adds little or nothing to the running cost. It is reasonable

to assume that having a single payment for access to the entire network may be quite

desirable for the seller — it may be simpler to setup, and more attractive to potential

buyers than dealing with smaller network bundles. We can see such an approach used by

rail or bus companies in the UK, who will often provide some unlimited off-peak travel

opportunities for a single payment [31, 30].

4.2 Problem Definitions and Examples

We now present definitions for the problems that we study here.

Chapter 4. Shortest Path with k-sets 61

4.2.1 Problem Definitions

Name SHORTEST PATH WITH k-SETS (SPk) (unweighted version)

Instance A graph G = (V,E) with two distinct vertices s, t and a collection, Z =

{Z1, . . . , Zm} of subsets of E (Zi ⊆ E) such that |Zi| ≤ k (each ‘bundle’ has at

most k edges, for some integer parameter k) and ∀e ∈ E, e occurs in exactly one

Zi.

Output The minimum size subset S ⊆ Z that contains a path from s to t. i.e. that

there is a path P ⊆ E from s to t in G such that ∀e ∈ P ;∃Zi ∈ S such that e ∈ Zi.

Name SHORTEST PATH WITH k-SETS (SPk) (weighted version)

Instance A weighted graphG = (V,E,w) with two distinct vertices s, t and a collection,

Z = {Z1, . . . , Zm} of subsets of E (Zi ⊆ E) such that |Zi| ≤ k (each ‘bundle’ has

at most k edges, for some integer parameter k) and ∀e ∈ E, e occurs in exactly

one Zi. There is a weight function w(Zi) such that w(Zi) ∈ Q and w(Zi) ≥ 0.

Output The subset S ⊆ Z with minimum weight w(S), that contains a path from s

to t. i.e. that there is a path P ⊆ E from s to t in G such that ∀e ∈ P ;∃Zi ∈
S such that e ∈ Zi.

Problem 1: SHORTEST PATH WITH k-SETS

We now define other problems that will be used later on to show hardness results for

SPk.

Name EXACT COVER BY 3-SETS (X3C)

Instance A finite set X with |X| = 3q for some q ∈ Z+ and a collection, C, of 3-element

subsets of X

Output Does C contain an exact cover, i.e. a subcollection S ⊆ C such that every

element in X occurs in exactly one member of S?

Problem 2: EXACT COVER BY 3-SETS

X3C is well-known to be NP-complete [14].

Chapter 4. Shortest Path with k-sets 62

Name MINIMUM SET COVER (MSC)

Instance A finite set X and a collection, C, of subsets of X

Output The size of a minimum set cover for X; i.e the minimum size |S| of a sub-

collection S ⊆ C such that every element in X occurs in at least one member of

S.

Problem 3: MINIMUM SET COVER

MSC is well-known to be NP-hard [14].

Name MINIMUM k-SET COVER (MkC)

Instance A finite set X and a collection, C, of subsets of X, such that ∀Ci ∈ C, |Ci| ≤ k.

Output The size of a minimum set cover for X; i.e the minimum size |S| of a sub-

collection S ⊆ C such that every element in X occurs in at least one member of

S.

Problem 4: MINIMUM k-SET COVER

MkC is known to be NP-hard when k ≥ 3 and in P when k < 3 [14]. (Although a

hardness proof will be given as a reduction from X3C).

Chapter 4. Shortest Path with k-sets 63

4.2.2 Example

In Figure 4.1 we see an example of an instance of MkC, when k = 3 and in Figure 4.2

we see a similar example of an instance of SHORTEST PATH WITH k-SETS, when

k = 3. The purpose of these two examples is to demonstrate the connection between

the two problems, which is that any instance of MkC can easily be transformed into an

instance of SPk. This will be shown in more detail later, but it is possible to see from

these examples that any solution to Figure 4.1 implies a solution of the same size in

Figure 4.2, and vice-versa.

X = {X1,X2,X3,X4,X5,X6}

C1 = {X1,X2,X5} C2 = {X1,X3,X4} C3 = {X2,X3,X6}

C4 = {X3,X4,X6} C5 = {X4,X5,X6}

S = {C1, C4}

Figure 4.1: Example of M3C

s=V1 V2 V3 V5V4 t=V7V6
Z1

Z2

Z3

Z4Z1

Z2

Z4

Z5

Z2

Z5 Z5

Z4 Z1

Z3 Z3

S = {Z1, Z4}

Figure 4.2: Figure 4.1 as SHORTEST PATH WITH 3-SETS

4.3 Hardness results

We can observe that the SPk problem is, when k = 1, exactly equivalent to the shortest-

path problem that has been well-studied. Furthermore, it is well-known that this prob-

lem can be solved optimally in time that is polynomial in the number of edges, e.g. using

Dijkstra’s algorithm [9]. So, it is an obvious question to ask about the complexity of

computing exact solutions when k ≥ 2, and that is addressed in this section.

For this section, we need only consider the unweighted version of the SPk problem;

we will generalize to the weighted version when we examine this problem in an auction

setting. Firstly, we will examine the SHORTEST PATH WITH 3-SETS problem, and

show that this is NP-hard. This will be achieved by a reduction from MINIMUM 3-SET

COVER (M3C), which we will see is a generalization of the known NP-hard problem

Chapter 4. Shortest Path with k-sets 64

EXACT COVER BY 3-SETS (X3C). We then see a reduction from k = 3 to k = 2,

showing that the problem is NP-hard even when each bundle only contains 2 edges,

giving a complete characterization for all values of k (namely, in P for k = 1 and NP-

hard otherwise).

4.3.1 SHORTEST PATH WITH 3-SETS

Proposition 4.1. M3C is a generalization of the NP-hard problem EXACT COVER

BY 3-SETS.

Proof. Assume that we have an input to EXACT COVER BY 3-SETS that has |X| = 3q

for some q ∈ Z+. For this input, EXACT COVER BY 3-SETS(X) is equivalent to the

decision problem ‘Is there a solution to M3C(X) with size |X|3 ?’. Hence if M3C can be

computed exactly then this can be used to give an answer to any instance of the problem

EXACT COVER BY 3-SETS, which is well-known to be NP-hard (see, e.g., [14]).

Lemma 4.2. There is a polynomial-time reduction from MkC to SPk such that the

optimal solution to any instance of MkC can be found with an optimal solution to a

given instance of SPk.

Proof. Taking the input (X,C) from an instance of MkC, when m = |X| and n =

|C|, build an instance (G,Z)1 of SPk as follows. Add m + 1 new vertices, labelled

V1, . . . , Vm+1, and let s = V1 and t = Vm+1.

For each of the subcollections Ci ∈ C, add a bundle Zi ∈ E , and for each element e in

Ci give the corresponding bundle Zi an edge from Ve to Ve+1. Hence, every subcollection

is mapped to a single agent, and each element in a subcollection is mapped to an

edge going from the corresponding vertex to the next vertex in the path. Hence, for

every set of subcollections that contains all of the elements of the groundset, there is a

corresponding set of bundles that contain all the edges from s to t.

The construction was demonstrated in Figures 4.1 and 4.2. The groundset in Fig-

ure 4.1 consists of {1, . . . , 6}, hence the set of vertices are {1, . . . , 7} in Figure 4.2.

Collection C1 contains elements 1, 2 and 5, and so bundle Z1 has corresponding edges

from V1, V2 and V5 (every edge simply connects vertex Vi to Vi+1). This is repeated for

the other subcollections C2, C3, C4, C5 in Figure 4.1 to give the edges shown for bundles

Z2, Z3, Z4, Z5 in Figure 4.2

We can observe that the optimal solution in Figure 4.1 is of size 2; subcollection

C1 has elements {1, 2, 5} and C4 has {2, 3, 6} and so all 6 elements are covered. The

corresponding optimal path in Figure 4.2 is also of size 2 and contains bundle Z1 with

edges from V1, V2, V5 and bundle Z4 with edges from V2, V3, V6. As there are edges from

V1, V2, V3, V4, V5, V6 then there is a complete path from s = V1 to t = V7.

1G is actually presented as a multigraph for simplicity, but Section 4.4.4 shows that this is not
important.

Chapter 4. Shortest Path with k-sets 65

Returning to the proof, suppose that we have an instance of MkC (X,C), and a

corresponding instance of an SPk problem (G,Z), generated as described. We will then

see that for any solution S to MkC there exists a solution S′ to SPk such that |S| = |S′|,
and that for every solution S′ to SPk a solution S to MkC also exists with |S′| = |S|.

Taking S ⊆ C as a solution to MkC (X,C) , construct S′ ⊆ Z as a solution to SPk

(G,Z) by including a bundle Zi in S′ if and only if the corresponding subcollection Ci

is in the solution S. Clearly this implies |S| = |S′|, so it is sufficient to see that S′ is a

valid solution.

For S to be a valid solution, every j ∈ X is present in some Ci ∈ S. As Ci ∈ S ⇔
Zi ∈ S′ then there is a corresponding Zi ∈ S′ for every Ci ∈ S. As every j ∈ X must be

present in some Ci ∈ S (or else S is not a valid solution) then every j ∈ {1, . . . ,m} is

present in some Zi ∈ S′. As we add an edge from Vj to Vj+1 for each j ∈ Ci ∈ C, then

there is an edge from every Vj : j ∈ {1, . . . ,m} to Vj+1 — implying a path of m edges

from V1 to Vm+1, proving that S′ is a valid solution (as s = V1 and t = Vm+1).

This procedure will be reversed to see that when S′ ⊆ Z is a solution to SPk then

there exists S, a solution to MkC (X,C) when |S| = |S′|. This is simply created in the

same way, and includes Ci in S if and only if the corresponding bundle Zi is in S′.

As before, clearly |S| = |S′|, and an edge between every Vj and Vj+1 must be

contained in some Zi ∈ S′. The corresponding Ci is included in S and hence every

element j ∈ X is covered by some Ci ∈ S.

This shows that every instance of the problem MkC can be solved exactly with an

instance of SPk and the proof is complete.

Lemma 4.3. SHORTEST PATH WITH 3-SETS is NP-hard.

Proof. Using Lemma 4.2 any instance of M3C can be polynomial-time reduced to an

instance of SP3. As Proposition 4.1 has shown that M3C is NP-hard, this shows that

SP3 is NP-hard.

4.3.2 SHORTEST PATH WITH 2-SETS

We will now see a reduction from SP3 to SP2, showing that SP2 is also NP-hard.

Taking as input an instance of SP3 (G,Z), we will generate a graph G′ = (V ′, E′)

and a collection Z ′ as an input (G′, Z ′) to SP2 as follows.

Let n = |Z|, and for each i ∈ {1, . . . , n} create 4 new vertices, labelled V ′i , V
′
i,a, V

′
i,b

and V ′i,0. Let W be a set containing these vertices.

W =

n⋃
i=1

{V ′i , V ′i,a, V ′i,b, V ′i,0}.

Additionally, add copies of all of the vertices in V ∈ G, to complete the vertex set V ′.

V ′ = V ∪W.

Chapter 4. Shortest Path with k-sets 66

Z'i,x

Z'i,y

Z'i,z

Z'i,0

V'i+1V'i

V'i,a V'i,b

Z'i,1

V'i,0

Figure 4.3: Construction for V ′
i to V ′

i+1

Let V ′n+1 = s (combine the last of the new vertices with the vertex marked as s in G).

For each i ∈ {1, . . . , n} define 5 new edges, and let Y be the set of all these edges,

as follows.

Y =
n⋃
i=1

{(V ′i , V ′i,a), (V ′i,a, V ′i,b), (V ′i,b, V ′i+1), (V
′
i , V

′
i,0), (V

′
i,0, V

′
i+1)}

Now copy all of the edges in G, to give the edge set E′,

let E′ = Y ∪ E.

Observe that the vertices W and edges in Y give two parallel paths from each V ′i to

V ′i+1, one of length 3 (via V ′i,a and V ′i,b) and the other of length 2 (via V ′i,0); we can see

this construction in Figure 4.3 as well as the example presented in Figure 4.5.

s t

Z1

Z2Z2

Z3

Z1

Z2

Z3

Z1

Z3

S = {Z1, Z2}

Figure 4.4: Example of SHORTEST PATH WITH 3-SETS

V'4 = s
t'=t

Z'1,x

Z'1,y

Z'1,z

Z'1,0

Z'2,x

Z'2,y

Z'2,z

Z'2,0

Z'3,x

Z'3,y

Z'3,z

Z'3,0

s'=V'1 V'2 V'3

Z'1,z

Z'2,yZ'2,x

Z'3,x

Z'1,y

Z'2,z

Z'3,y

Z'1,x

Z'3,z

Z'1,1 Z'2,1 Z'3,1

S = {Z ′1,x, Z ′1,y, Z ′1,z, Z ′2,x, Z ′2,y, Z ′2,z, Z ′3,0, }

Figure 4.5: Figure 4.4 as SHORTEST PATH WITH 2-SETS

Chapter 4. Shortest Path with k-sets 67

For each Zi ∈ Z if we label the three edges in Zi as eα, eβ, eγ (the mapping is not

important) then define the collections as follows

Z ′i,x = {eα, (V ′i , V ′i,a)} (4.1)

Z ′i,y = {eβ, (V ′i,a, V ′i,b)} (4.2)

Z ′i,z = {eγ , (V ′i,b, V ′i+1)} (4.3)

Z ′i,0 = {(V ′i , V ′i,0)} (4.4)

Z ′i,1 = {(V ′i,0, V ′i+1)} (4.5)

That is, for every triple Zi in Z, each edge in Zi will now be ‘paired’ (they will both

be part of the same ‘collection’ Z ′i,...) with any one of the three edges in the three-edge

path between V ′i and V ′i+1. Both Z ′i,0 and Z ′i,1 contain only one edge.

This duplicates every edge in E in E′, and recall that V ′n+1 = s, which connects the

end of the ‘path’ construction we created with the vertex s in the copy of the original

graph G.

Combine these to give all of the collections

Z ′ =

n⋃
i=1

{Z ′i,x, Z ′i,y, Z ′i,z, Z ′i,0, Z ′i,1}.

Let the two distinct vertices in G′ be s′ = V ′1 , and t′ = t.

We will now see that any SP3 problem can be solved with this construction of

SP2. We will start with two propositions which, when taken together, will show that a

minimum solution to either problem will give a minimum solution to the other.

Referring again to the construction in Figure 4.3; informally, we will arrange these so

that any s−t path must pass through each of these n constructions in turn. If the upper

path is chosen, with three edges, then each of these edges is ‘bundled’ with one edge from

Z ′i, and all three of these bundled edges (belonging to Z ′i,x, Z
′
i,y, Z

′
i,z) may be selected at

no additional cost. If the lower path is chosen, with two edges, then no further edges are

‘bundled’. Therefore, by choosing the upper path in preference to the lower path, we

may select all of Zi’s three edges in G, which ‘costs’ one edge more than taking the lower

path with no additional edges included. We can see that this is equivalent to adding one

for every edge Zi chosen in a solution to SP3(G), with a constant value of two added

for every Zi ∈ Z.

Proposition 4.4. For any solution S ⊆ Z to SP3(G) there is a solution S′ ⊆ Z ′ to

SP2(G′) such that |S|+ 2|Z| = |S′|.

Proof. Construct a solution S′ from S, as follows. When Zi is in S include all three of

Z ′i,x, Z
′
i,y and Z ′i,z in S′, otherwise include Z ′i,0, Z

′
i,1 in S′

We will see that this is a valid solution in two parts - firstly that there is a path from

s′ to V ′n+1, and secondly a path from V ′n+1 to t′. We can see that for every i ∈ {1, ..., n}
there is a path from V ′i to V ′i+1 (for each Zi ∈ Z then exactly one of the two paths

Chapter 4. Shortest Path with k-sets 68

Z ′i,x, Z
′
i,y, Z

′
i,z or Z ′i,0, Z

′
i,1 is included in S′ and either path reaches from Ve to Ve+1).

Hence there is a path from s′ = V ′1 to V ′n+1.

We will then see that, if Z contains a path from s to t in G then Z ′ contains a path

from s′ to t′ in G′. For each Zi ∈ S then all three of Z ′i,x, Z
′
i,y, Z

′
i,z are in S′ and these

contain all of the edges that are in Zi. This shows that all of the three edges present

in each Zi ∈ S are contained in some Z ′i,x, Z
′
i,y or Z ′i,z that is in S′. If a path were

not present in Z ′ from V ′n+1 (recall that V ′n+1 = s) to t′ in G′, then Z could not have

contained a path from s to t in G.

As we have seen that there is a path from s′ to V ′n+1 and a path from V ′n+1 to t′ then

it follows that there is a path from s′ to t′. Now we have seen that S′ is a valid solution,

we will continue by verifying the size of the solution.

Recalling that ∀i ∈ {1, . . . , n}, then S′ contains either Z ′i,x, Z
′
i,y, Z

′
i,z when Zi ∈ S or

Z ′i,0, Z
′
i,1 otherwise. Hence the size of S′ can be written as

|S′| =
n∑
i=1

{3 : Zi ∈ S}+
n∑
i=1

{2 : Zi /∈ S}

Which can be rewritten as

|S′| =
n∑
i=1

2 +
∑
Zi∈S

1

and simplified to

|S′| = 2n+ |S|.

Recalling n = |Z|, this proves the proposition |S|+ 2|Z| = |S′|.

Proposition 4.5. For any solution S′ ⊆ Z ′ to SP2(G′) there exists a solution S ⊆ Z

to SP3(G) such that |S|+ 2|Z| = |S′|.

Proof. As an intermediate step, firstly we will create a new, more structured, solution

S′′ to SP2 having |S′′| = |S′|. For any i ∈ {1, . . . , n} when S′ contains exactly one of

{Z ′i,x, Z ′i,y, Z ′i,z} and both Z ′i,0 and Z ′i,1 then S′′ contains all three of {Z ′i,x, Z ′i,y, Z ′i,z} but

not Z ′i,0 and Z ′i,1. For any i ∈ {1, . . . , n} when this does not hold, S′′ simply contains

whichever of Z ′i,x, Z
′
i,y, Z

′
i,z, Z

′
i,0 and Z ′i,1 that were present in S′.

Observe that, as the only edges removed from S′ were those contained in Z ′i,0, Z
′
i,1

for some i, and these do not contain any edges that are between Vn+1 and t (i.e. in the

G portion of G′), then when S′ contains a path from Vn+1 and t then so does S′′.

As the only substitution replaces exactly three edges in S′ with three in S′′, this tells

us that |S′′| = |S′|. Now construct a solution S, by including Zi in S if and only if there

is at least one of Z ′i,x, Z
′
i,y, Z

′
i,z in S′′. Observe that when {Z ′i,0, Z ′i,1} ⊂ S′′ nothing is

added to S, otherwise Zi is added.

Firstly, see that this makes a valid solution - when S′′ contains any of Z ′i,x, Z
′
i,y or

Z ′i,z then S contains Zi. Suppose, for contradiction, that S does not contain a path from

Chapter 4. Shortest Path with k-sets 69

s to t. As S′′ contains a path from s to t′, then there must be some edge eω (between

s and t′) that is present in S′′ but not in S. (Only the edges between s and t′ exist in

both G and G′). As eω is in S′′, it is present in some Z ′i,x, Z
′
i,y or Z ′i,z that is in S′′ -

but not in Zi. The construction of S includes Zi ∈ S, whenever Z ′i,x, Z
′
i,y or Z ′i,z is in

S′′ , hence it can only be the case that eω /∈ Zi. However, recall that the only edges

between s and t′ in Z ′i,x, Z
′
i,y and Z ′i,z were constructed from the edges in Zi, giving a

contradiction. This shows that when S′′ contains a path from s to t′, then S contains a

path from s to t, making it a feasible solution.

Now, finally, we need to see that |S| + 2|Z| = |S′′|. We can observe that, if at

least two edges from Z ′i,x, Z
′
i,y and Z ′i,z were in the lowest-cost solution, S′, then both

{Z ′i,0, Z ′i,1} would not have been included (as all three of Z ′i,x, Z
′
i,y and Z ′i,z would have

been a lower-cost path from V ′i to V ′i+1). By creating S′′, we removed any cases when

there is only one edge included from Z ′i,x, Z
′
i,y and Z ′i,z, hence there are only two possible

cases left, either {Z ′i,0, Z ′i,1} ⊂ S′′ or {Z ′i,x, Z ′i,y, Z ′i,z} ⊂ S′′.

Case 1 : {Z ′i,0, Z ′i,1} ⊂ S′′

As we have {Z ′i,x, Z ′i,y, Z ′i,z} ∩ S′′ = ∅ then we can write the contribution to S′′ as

|{Z ′i,x, Z ′i,y, Z ′i,z, Z ′i,0, Z ′i,1} ∩ S′′| = 2.

Case 2 : Z ′i,x, Z
′
i,y and Z ′i,z are all present in S′′

Here, {Z ′i,0, Z ′i,1} ∩ S′′ = ∅ so we have |{Z ′i,x, Z ′i,y, Z ′i,z, Z ′i,0, Z ′i,1} ∩ S′′| = 3.

So, for all i when Zi ∈ S then |{Z ′i,x, Z ′i,y, Z ′i,z, Z ′i,0, Z ′i,1} ∩ S′′| = 3. When Zi /∈ S then

|{Z ′i,x, Z ′i,y, Z ′i,z, Z ′i,0, Z ′i,1} ∩ S′′| = 2. This gives us

|S′′| =
n∑
i=1

{3 : Zi ∈ S}+
n∑
i=1

{2 : Zi /∈ S}

Which can be rewritten as

|S′′| =
n∑
i=1

2 +
∑
Zi∈S

1

and further simplified to

|S′′| = 2n+ |S|

Recalling that n = |Z|, this gives |S|+2|Z| = |S′′|. Recall that |S′| = |S′′| and the proof

of the proposition is complete.

Theorem 4.6. SHORTEST PATH WITH 2-SETS is NP-hard.

Proof. Taking Proposition 4.4 and Proposition 4.5 together shows that the optimal so-

lutions to SP2 and SP3 differ in size by only the constant additive factor, 2|Z|.
As SP3 (G,Z, s, t) was already shown to be NP-hard in Lemma 4.3, this shows that

SP2 is also NP-hard. It is worth noting that, unlike the reduction from M3C to SP3 in

Lemma 4.2, this reduction is not approximation preserving.

Chapter 4. Shortest Path with k-sets 70

Corollary 4.7. SHORTEST-PATH WITH k-SETS is NP-hard for all k ≥ 2,

Proof. Any instance of SHORTEST-PATH WITH 2-SETS, which was shown to be NP-

hard in Theorem 4.6, can be solved by being given as an input to SHORTEST-PATH

WITH k-SETS, wherever k ≥ 2.

Corollary 4.8. The weighted version of SHORTEST-PATH WITH k-SETS problem is

NP-hard for all k ≥ 2.

Proof. As the NP-hard unweighted version is simply a special case of the weighted

version, (with w(Zi) = 1), the weighted version is also NP-hard.

4.4 Auction Design

We will now use the weighted version of the SPk (G,Z,w, s, t) problem in a set-system

auction setting. Let the set system be (E ,F). Let E = {A1, . . . , An} be the set of n

agents owning the edge bundles {Z1, . . . , Zn} respectively. Let F be the set of solutions

for SPk, i.e. T ∈ F implies that there is a path, P , between s and t in G, such that

∀e ∈ P,∃Ai ∈ T and e ∈ Zi (path P uses only the edges ‘owned’ by the agents in T). For

all e ∈ E , let ce = w(Ze), that is the cost of each agent is equivalent to the weight. As

we will be interested in truthful mechanisms, we will also generally assume that be = ce.

We can consider that this auction implements the SPk problem; finding a lowest-

cost solution for the auction is equivalent to finding a minimum-weight solution to the

NP-hard problem SPk.

4.4.1 Using VCG

We saw in Theorem 2.3 that VCG has a frugality ratio of at most n − 1. The simpler

shortest-path problem (when every edge is owned by a unique agent), is trivially im-

plementable as a special case of SPk. Therefore we could use the example instances

from [24] to show a lower bound on frugality of VCG for SPk auctions of n − 1. (The

same lower bound will be proven later in Lemma 4.12, as for k = 1, VCG and the

approximation mechanism we use are identical.) However, implementing VCG would

require finding an exact solution to the SPk problem. We have seen that finding an

exact solution is NP-hard when k ≥ 2, so we know of no way to do this in polynomial

time. As we would like to find some way of running this auction in polynomial time, we

will now turn our attention to a polynomial-time mechanism that uses an approximation

algorithm.

4.4.2 Mechanism MP

We will now define a specific mechanism, we will denote this by MP This mechanism

can be performed in polynomial time, and we will see it has an upper bound on frugality

of k(n− 1), which is within a factor of k of the upper bound on frugality for VCG.

Chapter 4. Shortest Path with k-sets 71

Algorithm 2 is an approximation algorithm for SPk. This algorithm computes a

shortest path on the underlying graph G, as if each edge was owned separately and

given the entire weight (or bid) of the agent that owns it. For each edge e′ in the

shortest path, where bundle Ze contains e′ then the corresponding agent Ae is included

in the winning set.

Algorithm 2: Approximation Algorithm for SPk

1 Take as input an instance of SPk(G,Z,w, s, t);
2 Let G′ = G. (and hence V ′ = V,E′ = E, s′ = s, t′ = t);
3 Let w′(e′) = w(Zi) for e ∈ Zi;
4 Compute S′ ⊆ E′ as the lowest-weight path from s′ to t′ in G′ (use
Dijkstra’s algorithm);

5 Let S = ∅;
6 for each e′ ∈ S′ do
7 add Ae to S, when e′ ∈ Ze;
8 return SP = S;

Let MP be a mechanism with a selection rule that chooses a solution SP ∈ F by

choosing the solution returned by Algorithm 2. As we will be using the bids provided

by the agents, in place of weights, let be = w(Ze).

Let the payment rule for this mechanism pay threshold values, and let pM
P

E be the

sum of payments made by mechanism MP to all agents in SP .

4.4.3 Frugality Results for MP

We will aim to show that the mechanism MP is truthful, and has a frugality ratio of

k(n−1). Firstly, we will see an upper bound on the approximation ratio for the algorithm

that is used. Then, once we have confirmed that MP is a truthful mechanism, we will

use the result about its approximation ratio to determine its frugality.

Proposition 4.9. Algorithm 2 returns a k-approximation for an exact solution.

Proof. Let OPT ⊆ Z be an optimal solution to SPk(G,Z,w, s, t). We can construct

a path OPT ′ ⊆ E′ in G′ using every edge in every agent in OPT . Recall that ∀e ∈
E , |Ze| ≤ k, hence each agent in OPT contributes at most k edges to OPT ′ (each with

weight w(Ze) from line 3). The weight of this path can therefore be upper bounded by

w′(OPT ′) ≤ w(OPT)k. (4.6)

Observe that as OPT is a solution in G, OPT ′ is a solution in G′. When SP is a solution

in G, we can also consider the path S′, (which was chosen in Algorithm 2), which is a

solution to the shortest path in G′. As S′ contains every edge in SP then we have

w′(S′) ≥ w(SP). (4.7)

Chapter 4. Shortest Path with k-sets 72

As the selection rule chose S′ we know that

w′(S′) ≤ w′(OPT ′) (4.8)

and hence we can arrange inequalities 4.6, 4.7 and 4.8 such that

w(SP) ≤ w′(S′) ≤ w′(OPT ′) ≤ w(OPT)k

which simplifies to

w(SP) ≤ w(OPT)k.

This completes the proof that Algorithm 2 returns a solution that is within a factor of

k of the optimal solution, and hence may be called a k-approximation.

Proposition 4.10. MP is a truthful mechanism.

Proof. As the mechanismMP pays threshold values, it is well known that it is truthful

if the selection rule is monotonic (see, e.g., [24]). We will now show that the selection

rule in MP is monotonic.

Let I and I ′ be identical instances, other than there is exactly one agent e where

b′e 6= be.

Assume, for contradiction, that agent e is in the winning set with bid be, but is not

in the winning set with a lower bid b′e. Let S be the winning set chosen by MP for

instance I (with bid vector b) and let T be the winning set chosen by MP for I ′ (with

bid vector b′).

We have defined the weights to be equal to the bids, w(e) = be, so we can consider the

bids to the mechanism to be equivalent to the weights that are used in the approximation

algorithm.

We know, from the definitions of b and b′ that

b′S < bS (because e ∈ S and b′e < be) (4.9)

bT = b′T (because e /∈ T and all other bids are equal.) (4.10)

As S is chosen as optimal for I, therefore T could not have been a better choice, giving

bS ≤ bT (4.11)

similarly, the assumption that T is chosen in I ′ gives

b′T ≤ b′S . (4.12)

By transitivity, from inequalities 4.9 and 4.11 we get

b′S < bT (4.13)

Chapter 4. Shortest Path with k-sets 73

and by substitution of Equation 4.10 into Inequality 4.12 we get

bT ≤ b′S (4.14)

then by transitivity of inequalities 4.13 and 4.14 we get

bT ≤ b′S < bT

giving bT < bT and hence a contradiction. This shows that given fixed bids by all other

agents, no ‘winning’ agent can become a ‘losing’ agent by lowering their bid - hence that

the selection rule is monotonic and, given the threshold payment rule, the mechanism

is truthful.

Theorem 4.11. MP is a polynomial time truthful mechanism for SPk auctions that

has a frugality ratio of at most k(n− 1).

Proof. We use the MP mechanism, which is based on the approximation algorithm

given in Algorithm 2. We saw in Proposition 4.9 that Algorithm 2 has an approximation

ratio of k. Additionally, we saw in the proof of Proposition 4.10 that Algorithm 2 is

a monotonic algorithm, and that MP is a truthful mechanism. Recall that we saw

in Theorem 2.5 that, for all set system auctions, when a mechanism has a monotonic

approximation algorithm with an approximation ratio of k, it has a frugality ratio of at

most k(n− 1), and hence it follows that MP has a frugality of at most k(n− 1).

Lower bounds for MP

In order to see a lower bound, we will see how to construct an example from any size

parameter, m > k ∈ Z.

Lemma 4.12. For any n > 2, there exists an instance of MP that has a payment ratio

of k(n− 1).

Proof. The structure can be seen in Figure 4.6, and most importantly consists of a

‘long’ path from s to t, which has m edges, each owned by a separate agent, which has

weight 0. The only alternative solution will consist of a ‘short’ path of k edges from the

same agent, with weight 1. More formally, construct an instance for the size parameter

m ∈ Z > k as follows.

Let the set of agents be E = {A0, . . . , Am} having the edge bundles {Z0, . . . , Zm}
respectively. Define the sets of vertices V = {v0, . . . , vm} ∪ {w0, . . . , wk}. Now define a

long path (with m edges) ; ∀i ∈ {1, . . . ,m} let Ei = (wi−1, wi), and define a ‘short’ path

(with k edges) ∀i ∈ {1, . . . , k} let Di = (vi−1, vi). Then allocate all edges in the short

Chapter 4. Shortest Path with k-sets 74

path to Z0, let Z0 = {D1, . . . Dk} and allocate each edge in the long path to one agent;

∀i ∈ {1, . . . ,m} let Zi = {Ei}.
Give Z0 a weight of 1 (and hence A0 has a cost of 0, which will be given to the

mechanism as a bid for agent A0) and all other bundles a weight of 0. To define the

graph, let E = {E1, . . . , Ek} ∪ {D1, . . . , Dm} and let G = (V,E).

Finally, define the start and end points as s = v0 = w0 and t = vm = wk.

The lowest-weight path is clearly {Z1, . . . , Zm}, having weight 0. Hence the winning

set S = {A1, . . . , Am} with bids bS = 0. Also we can observe that NTUmin ≤ 1, e.g.

bmin = (1, 0, . . . , 0) satisfies conditions (1),(2) and (3).

The path chosen by the mechanism is the same, SP = S. However, note that if

any agent e > 0 had a threshold bid be < k (with all others being the same) then the

mechanism would still choose SP = S (as w′({Z0}) = k in G′); therefore the threshold

bid for each agent e is be ≥ k, hence ∀e ∈ SP , pPe ≥ k. As |SP | = m = n − 1 then we

have pPE ≥ (n− 1)k and hence pPE ≥ (n− 1)k. The payment ratio is defined as the sum

of payments, divided by NTUmin, which is
pPE

NTUmin . Hence this shows a payment ratio

exists of at least k(n− 1).

As Lemma 4.12 shows that, for any n > 2, there exists an auction with a payment

ratio of k(n− 1), which shows that the upper bound on frugality given in Theorem 4.11

is tight.

D1 Dk

E1

E...

Em
v1 v...

s=v0=w0 t=vm=wkw1

D...

vm-1

w... wk-1

Bundle Edges w(e)

Z0 {D1, . . . , Dk} 1

Z1 {E1} 0
...

...
...

Zm {Em} 0

Figure 4.6: Construction of Example for Lower Bound of MP

4.4.4 Inapproximability Results

Based on the reduction from MkC to SPk (as given in Lemma 4.2) it is clear that the

MkC problem can be solved optimally with an instance of SPk. Although the reduction

gives an instance of SPk that is presented as a multigraph, suppose that each edge

is replaced by the original edge, and an extra edge, in series, which is part of a new

subcollection for each extra edge. The resulting simple graph is identical, other than all

paths now have twice the length of the original, and hence there is just a constant factor

of 2 between the size of the optimal solutions to the original multigraph and the simple

Chapter 4. Shortest Path with k-sets 75

graph. Furthermore, the reduction can easily be generalized to include the weighted

case for both problems.

It is known that the MkC can be approximated to within a constant factor, but that

no better than a constant factor is possible unless P=NP. (see, e.g., [13, 20]). We have

already seen in Proposition 4.9 a k−approximation for SPk, so it is worth comparing this

with the approximation ratios that are known for MkC. The best approximation ratio

for MkC remains something of an open problem — the best known result for (weighted)

MkC is currently Hk − k−1
8k9

, where Hk =
∑

1,...k
1
k is the k−th harmonic number [20].

We may also consider the formulation of SPk which does not provide an upper-

bound on the number of edges that are bundled with each agent. Let this version of the

problem be called SHORTEST PATH WITH SETS. The reduction given in Lemma 4.2

from MkC to SPk can equally be applied to reduce from MINIMUM SET-COVER to

SHORTEST PATH WITH SETS.

Theorem 4.13. No approximation ratio of (1 − ε) lnn exists for SHORTEST PATH

WITH SETS for any ε > 0 under the assumption that NP⊂ DTIME(nlog logn).

Proof. Lemma 4.2 has given a reduction which shows that all possible solutions to the

MINIMUM SET COVER problem exist with the same weight in an instance of SHORT-

EST PATH WITH SETS, and vice-versa. Hence, as the solutions have identical weights,

the reduction is approximation-preserving.

As we have an approximation-preserving reduction, this shows that any approxima-

tion ratio for SHORTEST PATH WITH SETS would give an equivalent approximation

ratio for the MINIMUM SET COVER problem. It was shown by Feige in [13], for the

MINIMUM SET COVER problem, that no approximation ratio of (1− ε) lnn exists for

any ε > 0 under the assumption that NP ⊂ DTIME(nlog logn). This implies that no

approximation ratio of (1− ε) lnn exists for SPk (with arbitrary k) for any ε > 0 under

the assumption that NP ⊂ DTIME(nlog logn).

Chapter 5

Benchmarks and First-Price

Auctions

5.1 Overview

In previous chapters we have considered benchmark values, such as NTUmin and NTU-

max, that have previously been seen in the literature for set-system auctions (e.g. [24,

11, 5, 25]). One possible observation is that each can be thought of as an equilibrium in

a first-price auction, which was described by Karlin et al. [24]. Recall that, in a first-

price auction, the outcome is the price paid when each agent receives exactly their bid

value. However, Karlin et al. concentrated on the properties of NTUmin, as a type of

equilibrium, but did not suggest any method of finding it (or any other equilibrium). In

this chapter we will look at some other possible concepts for types of first-price auction

that also reach some sort of equilibrium, and examine the range of payments associated

with them. While first-price auctions do not generally incentivize the participants to

bid truthfully, they are quite often implemented in reality. As we noted in Chapter 1,

some examples are property auctions, which is particularly common practice in Scotland

and parts of Australia amongst others [29]. Other items that have been sold in this way

include vehicle registration numbers, uranium and radio broadcast licenses.

Before beginning to study other first-price auctions we firstly take a look at some

properties of the NTUmin and NTUmax values that we have seen, and consider another

method of representing the constraints imposed by conditions (1),(2) and (3) in Defini-

tion 1.2. These conditions represent what we might think of as ‘fairness’ criteria and we

will be interested in what we call feasible bid vectors, which are those that satisfy these

criteria without necessarily being the maximum possible (NTUmax) or the minimum

(NTUmin).

Choosing a lowest-cost solution is an obvious goal for the auctioneer, and it is natural

that the auctioneer would not wish to pay a large amount for one set when there might

be a competing set that would cost less. This notion is captured, more formally, by

condition (2) that we saw earlier in Definition 1.2. Looking more closely at condition

76

Chapter 5. Benchmarks and First-Price Auctions 77

(2) tells us that, when comparing the winning set S with some other feasible set T , we

can disregard the common part, S ∩ T , and consider the effect that those outside the

winning set (i.e., T \ S) has on the payments (or bids, in this setting) to the remainder

of the winning set (S \ T).

This tells us that no subset of agents can bid a value which is larger than the bids

of some other subset of agents that could constitute a ‘replacement’ in the winning set.

(i.e., as T \S could replace S\T and would make an alternative feasible solution, namely

T , we can consider T \ S as a possible replacement for S \ T). Effectively, this means

that each feasible set, other than the lowest-cost set S, may provide some upper bound

on the bids of some subset of S. Conceptually, it is possibly easier to imagine these

alternative sets as providing constraints, and we will see in Section 5.2 how to express

the constraints given by condition (2) in Definition 1.2 as a hypergraph.

One of the drawbacks to NTUmin noted by Elkind et al. [11] was that computing

NTUmin is NP-hard. However, they note that computing NTUmax does not require

condition (3) in Definition 1.2 (as it will be satisfied by maximizing anyway), and hence

finding NTUmax is equivalent to solving a linear program. Hence, where a polynomial-

time separation oracle exists for the constraints of (2) then NTUmax may be computed

in polynomial time (e.g. using the well-known ellipsoid method [26, 27]). A separation

oracle is some function that, given a possible solution, can either determine if the solution

satisfies the constraints or can indicate a constraint which is not satisfied. A function

that finds the lowest-cost feasible set could be used to construct a separation oracle, as

follows. Given some possible bid vector, if the feasible set that is returned was equal

to S (with tie-breaking in favour of S) then no constraint was violated, and the bid

vector is feasible. If a different feasible set T was returned, then this would indicate the

constraint that was violated (bS\T ≤ cT\S). Hence, when the lowest-cost feasible set can

be found in polynomial time, a polynomial-time separation oracle exists and NTUmax

can be computed in polynomial time. Some of the procedures that are described in this

chapter also make very similar use of a separation oracle to find the solution to a linear

program.

In Section 5.3 we begin our analysis with a procedure inspired by the progressive

auction introduced by Demange, Gale and Sotomayor in [8]. In their auction, the auc-

tioneer begins by starting at a low price and repeatedly increases the prices on any items

that are over-demanded (more than one agent is prepared to pay the current price for

that item). We take a similar approach, translated it into a reverse setting. We start

with high prices, and repeatedly decrease prices when there is still an ‘over-supply’, until

we reach an equilibrium — when no agent would be willing to decrease their price any

further. We do this by choosing a ‘current’ winning set, then offering the new price to

agents not in the winning set. Those who are not currently chosen can either agree to

the new price, or their cost value, whichever is higher. Hence, when there is at least

one agent that is not currently chosen but can lower her price, we have an ‘over-supply’

situation and have not yet reached equilibrium.

Chapter 5. Benchmarks and First-Price Auctions 78

We show that such an approach can not only give us a complete range of what we

consider fair results (between NTUmin and NTUmax), it may also give some that are

unfair (in the sense of not satisfying conditions (1),(2) and (3)) and hence we believe

that it is not suitable for a reasonable benchmark.

We then consider a special case in Section 5.4 when we allow only simultaneous bid

decrements, so that all agents must lower their bids uniformly. We show that this may

still produce ‘unfair’ results.

Alternative processes, in Sections 5.5 and 5.6, begin by choosing an optimal winning

set based on the costs, and allowing iterations of bid raises. We show that this does meet

the fairness criteria but can result in any of the complete range of values from NTUmin to

NTUmax. Even when this is restricted to simultaneous raising, in Section 5.7, we see an

almost-complete range of possible values. We do note that, when the problem of finding

an optimal feasible set can be solved in polynomial time, then we have a polynomial-time

separation oracle and this value may be computed in polynomial time. Additionally, we

consider versions where the agents begin from bidding zero and subsequently raising

their bids. As much of the literature regarding frugality began with the study of path

auctions (e.g. [4, 36, 12]), Section 5.8 considers these different approaches in the special

cases of path auctions.

Section 5.9 then modifies this method so that we consider a strictly ordered approach.

Every agent is called upon, in turn, to submit a bid value. We assume that each agent

will raise its bid as much as possible while remaining in the winning set, hence achieving

the fairness criteria, as all agents have an opportunity to raise their bids. We see, via

examples, that this procedure may indeed limit the range of values. It depends on the

set system as to which part of the range is favoured by this approach: in some cases no

value close to NTUmax may be obtained, and in some others, no value close to NTUmin.

Given an ordering, and when a polynomial-time separation oracle exists, this may also

be computed in polynomial time. However, finding an ordering that gives a minimum

value (OMBmin) is not only hard to compute, we show that it is hard to find an order

that approximates the minimum value. We can then use instances when NTUmin and

OMBmin are equal to show that NTUmin is equally hard to approximate (extending

the previous NP-hardness result of [11]).

5.2 Hypergraph Representation of Constraints

Sometimes it can be difficult to see how the feasible bid vectors for a set-system auction

are related to each other. In order to assist with visualizing this, we propose a method

of representing the constraints, which are implied by a set-system auction, in the form

of a hypergraph. While understanding this representation is not critical, it does help to

illustrate the underlying structure of some of the examples. Furthermore, in Section 5.9,

we will see how the constraints of certain set-system auctions can be represented as a

graph, which is an important reduction in the hardness proof given in Section 5.9.6.

Chapter 5. Benchmarks and First-Price Auctions 79

Fixing S, we can see that the costs of agents outside S are referred to in conditions

(2) and (3), and only take the form of cT\S for some T ∈ F . Therefore we can, without

loss of generality, consider only the sum of costs in each set, rather than the costs of

individual agents. Specifically, each feasible set, T ∈ F \ {S}, imposes a constraint on

the total bid of agents in S \ T as follows,

bS\T ≤ cT\S .

It is obvious that for each distinct subset of S there is at most one value of cT\S

that provides a minimal (and hence meaningful) constraint in terms of conditions (2)

and (3). Hence, if there is some feasible set T ′ ∈ F \ {S} such that S \ T = S \ T ′ and

cT\S < cT ′\S , then the constraint implied by T ′ is not minimal, and we do not need to

include T ′ in a representation of the constraints.

In order to try and make the structure easier to visualize, we will now represent these

restrictions in the form of a hypergraph H = (X,E) with a weight function w on the

hyperedges. Make each agent e in S a vertex in the hypergraph

Let X = {e1, . . . , em}.

For each feasible set, T , that ‘minimally constrains’ some subset of S, add a hyperedge,

Ee, to exactly those vertices

∀T ∈ F , let Ee = S \ T

and weight the hyperedges with the value of the constraint.

∀T ∈ F , let w(Ee) = cT\S .

Example 5.1 shows how these constraint sets and values are constructed from a

set-system auction.

Example 5.1.

Given 8 agents {1, . . . , 8} with costs given in Table 5.1.

Suppose we have feasible sets F = {T1 = {A1, A2, A3, A4, A5, A6}, T2 = {A7, A3, A5, A6}, T3 =

{A7, A2, A4, A6}, T4 = {A8, A1, A4, A5}};
Thus S = T1 is the cheapest feasible set.

Chapter 5. Benchmarks and First-Price Auctions 80

Agent ce

A1 0

A2 0

A3 0

A4 0

A5 0

A6 0

A7 1

A8 2

Constraint set (S \ Ti) Agents Constraint value (c̄Ti\S)

S \ T2 {1, 2, 4} 1

S \ T3 {1, 3, 5} 1

S \ T4 {2, 3, 6} 2

Table 5.1: Showing Constraint Sets for a Set-System

Table 5.1 shows constraint set and the corresponding constraint values. The feasible

set with lowest cost is T1, with cost 0. Hence all the agents in T1 are the vertices of

the hypergraph (they are A1, . . . , A6). Next, take feasible set T2, and let (S \ T2) be

the constraint set. Condition (2) in Definition 1.2 gives us bS\T2 ≤ cT2\S which can be

rewritten as b{A1,A2,A4} ≤ c{7}. Hence c{7} = 1 is a constraint value for the constraint set

S \ T2, and bS\T2 ≤ 1, which is indicated on the hypergraph by the hyperedge containing

{A1, A2, A4} with weight 1. The same process can be applied to the two other feasible

sets, T3 giving b{A1,A3,A5} ≤ 1, and T4 giving b{A2,A3,A6} ≤ 2, both as shown in the

hypergraph in Figure 5.1.

Chapter 5. Benchmarks and First-Price Auctions 81

A1
A4

A2

A5

A3

A6

≤1 ≤1

≤2

Figure 5.1: Hypergraph Representation of Constraints for Table 5.1

5.3 Descending Price Auction

In this section we consider procedures similar to those of Demange et al. [8]. Recall

that, in their auction, the auctioneer begins by selling items at a low price, and increases

prices on any items that are over-demanded — and hence due to the competition for

those items, the price can be increased. We firstly take a similar approach, but translate

it into a reverse setting. We start off by buying at high prices, and then decrease prices

when there is still an ‘over-supply’, until we reach an equilibrium — where no agent

would be willing to decrease their prices any further.

We analyse this class of descending-price auctions and find that while any feasible

bid vector can result, the scheme is not guaranteed to result in a feasible bid vector.

Algorithm 3 gives a definition for such an auction, for a given function f and let β

be the bid vector returned by this Descending Price Auction. The function f uses the

current state of the auction (i.e., the instance and a current vector of bids) to decide

which agent will be called upon next to reduce its bid. The agent chosen by f will then

be asked to reduce its bid, and the process will repeat until no agent would be willing

to reduce their bid any further.

A more intuitive description is that the procedure initially sets the bids to large

values, identifies a winning set S and then repeatedly allows those outside the winning

set, in some order, to lower their bid values by some small amount ε with the aim of

entering the winning set. It is assumed that a bidder whose cost has been reached, would

decline to reduce his bid and would exit the competition. We repeat this ‘choosing and

Chapter 5. Benchmarks and First-Price Auctions 82

lowering’ process until all losing agents bid their cost; hence no further reductions can

take place and the process terminates. (For the sake of consistency, we call the final

winning set S; observe that this will be equal to a lowest-cost feasible set assuming a

suitable choice of ε and tie-breaking rules). As we will see, the choice of the selection

function, f , allows the auctioneer to create a wide variety of outcomes to this auction

process.

We could consider a slightly more complex version of this auction, whereby an agent

is chosen and simultaneously given a price that it must reduce its bid to (if possible).

It is easy to observe that, given a small enough parameter ε, this could be simulated by

simply calling upon the same agent repeatedly until the desired price is reached. For

that reason, and the additional simplification of the selection function, here we consider

just the version with an ε parameter and assume that all bids and costs are an exact

multiple of ε (such as for a discrete currency value).

Algorithm 3: A Class of Descending Price Auctions

The algorithm defines a class of auctions, each is uniquely defined by the selection
function f(I,b′). The set T represents the current winning solution, given bids
b′.

1 Let ε be some small value, as a parameter of the auction;

2 Let t ∈ R be some large value such that t > cEn;
3 for each e ∈ E do
4 Let b′e = t;

5 Let T ∈ argminR∈F b′R;
When at least one agent, not currently chosen in T , can still reduce its bid then
the selection function f will choose one such agent to reduce its bid by ε.

6 while ∃i /∈ T, such that b′i > ci do
7 Let e = f(I,b′);
8 Let b′e = max(be − ε, ce);
9 Let T = argminR∈F b′(R);

10 Let S = T;
11 Let β = b′;
12 return S, β;

Example 5.2 shows that we may get a bid vector as low as cS , even when cS <TUmin

<NTUmax.

Example 5.2. (a commodity auction:) Suppose there are 4 agents, each Ae ∈ {A1, A2, A3, A4}
with a quantity qe and cost ce given in Table 5.2. Assume the buyer desires 3 units.

Chapter 5. Benchmarks and First-Price Auctions 83

Agent qe ce bmin
e b⇓,fe

A1 2 0 1 0

A2 1 0 0 0

A3 1 0

A4 3 1

Total 1 0

Table 5.2: Descending Price Auction Reaches 0

We will describe how the final bid vector β may be reached as a three-stage process,

as follows.

Stage 1: When b′4 > 1.

When {A4} is the winning set, call upon A2 to reduce its bid when b′2 > b′4, or call

upon A1 otherwise. When {A4} is not the winning set, call upon A4 to reduce its bid.

This stage can be repeated whenever b′4 > 1, as A4 can always be called upon unless

T = {A4} , and then we can call upon A1 or A2 (as above) until b′1 + b′2 ≤ b′4 at

which point T = {A1, A2} becomes the lowest-cost winning set (due to lexicographical

ordering).

Stage 2: When b′4 = 1 and b′1 > 0.

Call upon A1 to reduce its bid. Because A3 has not yet reduced its bid, and we only

called upon A2 when b′2 > b′4 then we have b′3 ≥ b′2 ≥ b′4. Hence the current winning

set is T = {A4} and A1 can be repeatedly call upon to reduce its bid until b′1 = 0.

Stage 3: When b′4 = 1 and b′1 = 0.

Call upon A2 or A3 to reduce its bid, whichever is not in the current winning set T .

When b′3 = 0 then A2 can be called upon to reduce its bid until b′2 = 0 and the winning

set is given by T = {A1, A2} due to lexicographical ordering.

While, in this example we have cS = 0, it is trivial from the algorithm that cS is

a lower bound, as each bid chosen must be at least the cost of the agent (in line 8 of

Algorithm 3).

One feature of this auction is that, by choosing the method of selecting agents, the

auctioneer may be able to obtain any feasible bid vector as a result. A proof of this

follows.

Theorem 5.1. Any feasible bid vector, b (that satisfies conditions (1),(2) and (3)) is

achievable with a Descending Price Auction.

Chapter 5. Benchmarks and First-Price Auctions 84

Proof. The definition of the Descending Price Auction begins with a bid vector b′, such

that ∀e ∈ E , b′e > cEn. Observe that NTUmax ≤ cEn, and that for any feasible bid

vector b then ∀e ∈ S, be ≤ NTUmax by definition of NTUmax, and hence ∀e ∈ S, be ≤
NTUmax ≤ cEn.

This shows that the starting state meets the condition ∀e ∈ E , b′e > be.

We now claim that, providing this condition ∀e ∈ E , b′e > be is maintained, then

Algorithm 3 must reach b′ = b (and terminate with this), as follows.

Let b be any feasible bid vector and let β be the bid vector obtained from the

Descending Price Auction. We will consider that b is a ‘target’ vector — that is the bid

vector that the auctioneer wishes to obtain. We can now see that as long as f chooses

e such that ∀e ∈ E , b′e ≥ be and ∀e /∈ S, b′e ≥ ce then we will reach β = b′ = b.

We claim that when b is a specified feasible bid vector, b′ is a current bid vector

in Algorithm 3 and the following hold; ∀e ∈ S, b′e ≥ be and ∀e /∈ S, b′e ≥ ce, then there

exists a function f , such that b′ = b is achievable with a Descending Price Auction as

follows.

Let S be the lexicographically first lowest-cost feasible set (which will be the set

returned by Algorithm 3).

If we can show that, unless b′S ≤ bS , there is always some agent e that can be chosen

by f to reduce its bid, then reaching b′ = b is inevitable, as trivially when both b′S ≤ bS
and ∀e ∈ S, b′e ≥ be hold then b′ = b. We do this as follows;

Let T be the current winning set, that has been chosen by Algorithm 3 at Line 9.

Case 1: S 6= T .

If T is chosen in preference to S, then we must have b′T < b′S (as ties are broken

lexicographically, both when selecting S and T). This trivially implies that

b′T\S < b′S\T (5.1)

(as each can be added to S∩T to make a feasible set). As we know that the algorithm

does not allow bids below the cost, then we must have

cT\S ≤ b′T\S .

By transitivity (with Inequality 5.1), this gives us

cT\S < b′S\T .

We know, from the fact that S is a cheapest solution, that cS\T ≤ cT\S (or else we

could add S∩T to each and we would have cT < cS). Hence, by substitution, we have

cS\T < b′S\T .

Chapter 5. Benchmarks and First-Price Auctions 85

Therefore there is some agent e ∈ (S \ T) such that ce < b′e and hence there exists

some agent e /∈ T that can be chosen by f to reduce its bid.

Case 2: S = T .

When S = T and b′S > bS (from the property we wish to maintain) then there is some

e such that b′e > be. As b is a feasible bid vector, then it must satisfy (3), and hence

for e there is some Te such that bS\Te = cTe\S (and e ∈ S \Te). We have specified that

there is no j such that b′j < bj , and we have b′e > be, then it follows that

b′S\Te > bS\Te . (5.2)

In order for the algorithm to choose S, instead of Te, then it must not have a higher

bid — hence b′S\Te ≤ b′Te\S (this is trivially implied by b′S ≤ b′Te). By including

Inequality 5.2 we can rewrite this as

bS\Te < b′S\Te ≤ b
′
Te\S

and substituting the equation from condition (3) in Definition 1.2 again (bS\Te = cTe\S)

we get

cTe\S < b′Te\S

therefore there is some agent j ∈ Te \S (and hence not in S = T) that can be selected

to reduce its bid next.

This has shown that, providing that b′S > bS , function f can always choose some

agent to reduce its bid. By repeatedly choosing such an agent, we must eventually reach

b′S ≤ bS , and hence that any ‘target’ vector that is feasible can be achieved with a

Descending Price Auction. Clearly, condition (2) in Definition 1.2 implies that once we

have reached such a target vector, and all other bids are at least their cost, then there

is no other feasible set that would be chosen in preference to S, and the algorithm will

terminate, with b′ = b. Therefore, there is a selection function f , for which Algorithm 3

will return β = b for any feasible bid vector b.

5.4 Uniformly Descending Price Auction

A natural-looking restriction of the Descending Price Auction is to give the agents initial

bids equal to some large (common) value, and then call upon them to reduce the bids in a

round-robin manner. Thus, the prices of bidders who continue to stay in the competition

would go down at the same rate.

A formal definition is given in Algorithm 4.

If we consider this with the simple commodity auction in Example 5.3 it shows that

we may not always get a feasible bid vector from this process.

Chapter 5. Benchmarks and First-Price Auctions 86

Algorithm 4: A Uniformly Descending Price Auction

The current bid value is represented by t, and starts at a large value t > cEn. All
agents that are not in the current winning set S will reduce their bids, as t
reduces with each iteration until either they are chosen in S, or their bid reaches
their cost value.

1 Let g(x,a, X) = argminT∈F bT where ∀e ∈ X, be = ae and

∀e /∈ X, be = max(x, ce);
A function g(x,a, X) which returns the lexicographically first, lowest-cost feasible
set, based on values from the input vector (if the agent is in the current winning
set specified), or the larger of the input value given and the agent’s cost (for those
agents not in the current winning set – they would like to lower their bids to the
specified value, if possible).

2 Let t ∈ R be some large value such that t > cEn;
3 Let S = ∅;
4 Let b′ = ();
5 while ∃t′ < t such that g(t′,b′, S) 6= S do
6 maximize t′ subject to
7 g(t′,b′, S) 6= S;
8 t′ < t;

Finds the next interesting value of t, which is when the winning set can
change.

9 Let t = t′;
10 Let S = g(t,b′, S);
11 for each e /∈ S do
12 b′e = max(t, ce);

13 Let b↓ = b′;

14 return S,b↓;

Example 5.3. (a commodity auction:) Suppose there are 4 agents, each Ae ∈ {A1, A2, A3, A4}
with a quantity qe given in Table 5.3. Assume the buyer desires 3 units.

Agent qe ce bTUmine b↓e

A1 2 0 1 1/2

A2 1 0 0 0

A3 1 0

A4 3 1

Total 1 1/2

Table 5.3: Descending Price Auction as low as TUmin/2

Observe that there are three (minimal) feasible sets, they are

F = {{A1, A2}, {A1, A3}, {A4}}.

Chapter 5. Benchmarks and First-Price Auctions 87

We can verify the descending bid values given in Table 5.3 by following the process of

Algorithm 4 on this instance as follows. When t = 1 at line 9, we must have S = {A4},
as if S 6= {A4} then b′4 = 1 and therefore b′4 < b′S and {A4} is chosen. Then, when we

reach t = 1/2 we will have either S = {A1, A2} or S = {A1, A3} and these two feasible

sets may alternate until t = 0, giving b′1 = 1/2 and b′2 = b′3 = 0.

5.5 Ascending Price Auction

We will now consider a similar process where the bids ascend (initially from their cost),

rather than descend. Again, we will see that by choosing the order in which agents are

called upon to raise their bids, the auctioneer is able to obtain any desired feasible bid

vector.

Algorithm 5 gives a definition for such an auction, which we will call an Ascending

Price Auction.

The agents all start by being given a bid value equal to their cost. A lowest-cost set

S is chosen. Then the auctioneer can repeatedly ask some agent e ∈ S to increase its

bid by some small value ε. The auctioneer chooses the next agent e by means of some

function e = f(I,b′), when I is the instance and b′ is the current bid vector chosen in

Algorithm 5. We assume that an agent that is currently chosen will behave rationally

and never raise its bid when requested if that would remove it from the winning set.

When there are no agents (in S) that can increase their bids and remain in the winning

set, then f(I,b′) will return an empty set, and the process will terminate. As we will

see, the choice of the selection function, f , allows the auctioneer to create a wide variety

of outcomes to this auction process.

Let b⇑,f be the bid vector obtained by the Ascending Price Auction given selection

function f .

Algorithm 5: A Class of Ascending Price Auctions

The algorithm defines a class of auctions, each is uniquely defined by the selection
function f(I,b′). The set S represents the winning solution.

1 Given some selection function f(I,b′);
2 Let ε by some small value, as a parameter of the auction;

3 for each e ∈ E do
4 Let b′e = ce;

5 Let S = argminR∈F b
′
R;

Breaking ties lexicographically
6 while f(I,b′) is non-empty do
7 Let e = f(I,b′);
8 Let b′e = b′e + ε;

9 Let b⇑,f = b′;

10 return S,b⇑,f;

Chapter 5. Benchmarks and First-Price Auctions 88

Let b be any feasible bid vector, which we may consider as a target vector that we

wish to obtain. Let b′ be the bid vector obtained during the Ascending Price Auction.

We will now verify that as long as function f chooses e in order to maintain the property

∀e ∈ S, b′e ≤ be then the algorithm will reach b⇑,f = b′ = b.

Theorem 5.2. Any feasible bid vector b (that satisfies conditions (1),(2) and (3)) is

achievable with an Ascending Price Auction.

Proof. The definition of the Ascending Price Auction begins with a bid vector b′, such

that b′ = c. As any feasible bid vector b must satisfy condition (1) in Definition 1.2, it

has ∀e ∈ S, be ≥ ce and we can substitute to give ∀e ∈ S, be ≥ b′e.
We will now see that, as long as this property (∀e ∈ S, be ≥ b′e) is maintained during

the run of Algorithm 5 then the algorithm will reach b′ = b, and subsequently terminate.

Let S be the lexicographically first, lowest-cost feasible set which is chosen by Algo-

rithm 5.

When b′S = bS and ∀e /∈ S, b′e ≤ be, then b′ = b and hence b′ additionally satisfies

condition (2) and condition (3) in Definition 1.2. Therefore, when b′ = b, no agent can

raise its bid, and the algorithm will terminate. We have assumed a discrete parameter

for ε such that no agent e can have consecutive bids, b′e, be, such that b′e < be and b′′e > be

(i.e., the bids and target are exactly some multiple of ε, hence it is not possible to raise

to strictly more than its target in one increment). Therefore, we only need to show that,

unless b′S ≥ bS , there is always some agent that can be called upon by function f to

increase its bid; i.e., that there is some e such that b′e < be.

When b′S < bS there is some e such that b′e < be (as we may not have a set V ⊆ S

such that b′V > bV).

For every T ∈ F , condition (2) in Definition 1.2 gives us

bS\T ≤ cT\S

and for every Te ∈ F when e ∈ S \ Te then (as b′e < be) we have

b′S\Te < bS\Te

and from condition (2) in Definition 1.2

b′S\Te < bS\Te ≤ cTe\S .

Therefore, as b′S\Te < cTe\S is a strict inequality then, for agent e, there is no Te set that

gives an equation satisfying condition (3) in Definition 1.2, and hence agent e can be

chosen to increase its bid next.

This has shown that, providing that b′S < bS , then there exists some agent e to

increase its bid next, which may be chosen by the selection function f . By repeatedly

choosing such an agent, we must eventually reach b′S ≥ bS , and hence that any ‘target’

vector satsfying condtitions (1*),(2), and (3) can be achieved with an Ascending Price

Chapter 5. Benchmarks and First-Price Auctions 89

Auction. As described earlier, once we have reached such a vector, then no agent can

raise its bid and still be chosen (due to condition (3) in Definition 1.2), and the algorithm

will terminate, with b⇑,f = b′ = b.

This shows that the bid vector b is achievable with an Ascending Price Auction (and

hence for any NTUmin ≤ bS ≤ NTUmax).

5.6 Ascending from Zero Auction

We now see a very similar auction, which differs only in that agents start their bidding

from zero, rather than their cost value. The definitions and proofs are otherwise almost

entirely duplicated, in an attempt to maintain clarity at the expense of verbosity.

Algorithm 6 gives a definition for this auction.

Algorithm 6: A Class of Ascending from Zero Auctions

The algorithm defines a class of auctions, each is uniquely defined by the selection
function f(I,b′). The set S represents the winning solution.

1 Given some selection function f(I,b′);
2 Let ε by some small value, as a parameter of the auction;

3 for each e ∈ E do
4 Let b′e = 0;

5 Let S = argminR∈F b
′
R;

Breaking ties lexicographically
6 while f(I,b′) is non-empty do
7 Let e = f(I,b′);
8 Let b′e = b′e + ε;

9 Let b⇑∗,f = b′;

10 return S,b⇑∗,f;

Let b be any bid vector satisfying conditions (1*),(2) and (3) from Definition 1.3,

which we may consider as a target vector that we wish to obtain. Recall that condition

(1*) is a relaxed version of condition (1) in Definition 1.2, that allows transferable utility,

and states that be ≥ 0. Let b′ be the bid vector obtained during the Ascending from

Zero Auction, using function f . We will now verify that as long as function f chooses

e in order to maintain the property ∀e ∈ S, b′e ≤ be then the algorithm will reach

b′ = b = b⇑,f .

Theorem 5.3. Any target bid vector b (that satisfies conditions (1*),(2) and (3)) is

achievable with an Ascending from Zero Auction.

Proof. The definition of the Ascending from Zero Auction begins with a bid vector b′,

such that ∀e ∈ E , b′e = 0 — therefore trivially, this gives ∀e ∈ S, be ≥ b′e.
We will now see that, as long as this property (∀e ∈ S, be ≥ b′e) is maintained during

the run of Algorithm 6 then the algorithm will reach b′ = b, and subsequently terminate.

Let S be the lexicographically first, lowest-cost feasible set which is chosen by Algo-

rithm 6.

Chapter 5. Benchmarks and First-Price Auctions 90

When b′S = bS and ∀e /∈ S, b′e ≤ be, then b′ = b and hence b′ satisfies condition

(2) and (3) of Definition 1.2. Therefore, when b′ = b, no agent can raise its bid, and

the algorithm will terminate. Again, we only need to show that, unless b′S ≥ bS , there

is always some agent that can be called upon by function f to increase its bid; more

formally, there is some e such that b′e < be.

When b′S < bS then there is some e such that b′e < be.

For every T ∈ F , condition (2) in Definition 1.2 gives us

bS\T ≤ cT\S

and for every Te ∈ F when e ∈ S \ Te then (as b′e < be) we have

b′S\Te < bS\Te

and due to condition (2) in Definition 1.2

b′S\Te < bS\Te ≤ cTe\S .

Therefore, as b′S\Te < cTe\S is a strict inequality then, for agent e, there is no Te set with

an equation satisfying condition (3) in Definition 1.2, and hence agent e can be chose to

increase its bid next.

This has shown that, providing that b′S < bS , then there exists some agent e to

increase its bid next, which may be chosen by some selection function f . By repeatedly

choosing such an agent, we must eventually reach b′S ≥ bS , and hence that any ‘target’

vector that is feasible can be achieved with an Ascending from Zero Auction. As de-

scribed earlier, once we have reached such a feasible vector, then no agent can raise its

bid and still be chosen (due to condition (3) in Definition 1.2), and the algorithm will

terminate, with b⇑,f = b′ = b.

This shows that the feasible bid vector b is achievable with an Ascending from Zero

Auction (that is, for any TUmin ≤ bS ≤ TUmax).

5.7 Uniformly Ascending Auctions

We now consider the special-case of this auction when all of the bids rise at the same,

uniform, rate. In this setting it is unnecessary to specify a discrete parameter ε as we

can compute the exact value that agents may maximally raise their bids to while still

remaining in the winning set.

Algorithm 7 gives a definition for this first-price auction, when all bids increase at a

uniform rate, until an agent stops bidding any higher because then it would no longer be

in the winning set. We call this a ‘Uniformly Ascending Auction’. Observe that line 6

ensures that all rises are performed uniformly (on any agents that have not already

reached a maximum bid).

Chapter 5. Benchmarks and First-Price Auctions 91

Algorithm 7: A Uniformly Ascending Price Auction

Choose S as a lowest-cost solution, then we use a variable t to determine how
much more than its cost an agent can bid. Once an agent, e, can bid no higher, e
is added to set X (to record this information), and the current bid value b′e is
memorized in be. Therefore, when all agents have increased, and none can bid
any higher, X = S (where S is the winning set) and b represents the final bids of
all agents b = (b1, . . . , bn).

1 Let S = {1, . . . ,m} = argminT∈F cT;
2 Let X = ∅;
3 for each e ∈ E do

Set a starting bid b′e for each agent e ∈ S .
4 Let b′e = 0;

5 while X 6= S do
6 maximize t subject to

Find the next interesting value of t — the amount that all of the
remaining agents (not in X) could simultaneously increase their bids by
without changing the winning set.

7 for all T ∈ F , b(S\T)∪X + cS\(T∪X) + t|S \ (T ∪X)| ≤ cT\S
Note that this can be solved in polynomial time as an LP where a separation
oracle exists, as described in Section 5.1.

8 for each e ∈ S do
Set a current bid b′e for each agent e ∈ S — its stored bid be if it has
already stopped, or else it keeps ascending with t.

9 Let b′e = be + t;

10 Let S′ = argminT∈F b
′
T;

11 for each e ∈ S do
If agent e can raise its bid to b′e and still be chosen in the winning set,
then it will now bid b′e. If this raise would cause it to drop out of the
winning set, then it will not raise its bid now, and will stop raising it in
future (its ‘final’ bid value was stored in be in a previous iteration.

12 if e ∈ S′ then
13 Let be = b′e;

14 else
15 Let X = X ∪ {e};

16 return S,b;

We can observe that this uniformly rising process gives a feasible bid vector, and

hence is in the range NTUmin(c) to NTUmax(c), as follows. As each agent starts from

its cost, condition (1) in Definition 1.2 is satisfied, no agent will continue raising when

it would no longer be in the winning set, hence condition (2) is satisfied, and each agent

continues raising until it must stop, satisfying condition (3).

Also observe that this can be solved with at most n iterations of solving the linear

program at line 6, (to determine the next value of t that will result in a change to

the current winning set S′) so it can be solved in polynomial time wherever there is a

polynomial time separation oracle for the constraints. (Recall from Section 5.1 that,

Chapter 5. Benchmarks and First-Price Auctions 92

when the lowest-cost feasible set can be found in polynomial time, a polynomial time

separation oracle exists).

This auction appears to be very natural, and it is an obvious question to ask about

what range of values it may give. It may appear that this restricted version could possi-

bly give results that are within some restricted range between NTUmin and NTUmax.

However, we will see examples that show it can attain NTUmax and may also be arbi-

trarily close to NTUmin (and even equal to NTUmin, when NTUmax
NTUmin ≤ 2). Note that

it can attain NTUmax exactly even in cases when this ratio is much larger than 2 (and

proportional to n).

In Example 5.4 we can see that NTUmax is attainable by this process, and note that

NTUmin<NTUmax (this result would be trivial if NTUmin and NTUmax were equal).

This example uses the single-commodity auction, as described in Chapter 3.

Example 5.4.

This is a commodity auction with `+ 1 agents in which we wish to purchase ` items.

The quantity held by each agent Ae is given by qe in Table 5.4. In this example, bmin

denotes a NTUmin bid vector, bmax is a NTUmax bid vector, and b↑ is a uniformly

ascending bid vector.

Agent qe ce bmin
e bmax

e b↑e

A1 1 0 2 1 1

A2 1 0 0 1 1
...

...
...

...
...

...

A` 1 0 0 1 1

A`+1 2 2

Total 2 ` `

Table 5.4: Uniformly Ascending Bid b↑ Equals NTUmax

Observe that this example shows a Uniformly Ascending bid vector b↑ is reached

when all of the bids have the same value. Recall that a Uniformly Ascending Bid vector

satisfies conditions (2) and (3) in Definition 1.2. It is possible to verify that this bid

vector does not violate condition (2); if it did then there would be some subset with

quantity at most 2 that has a bid of greater than the cost of A`+1 = 2. It is equally

possibly to verify that condition (3) is satisfied, as for every 2 agents in S, the sum of

bids is exactly 2.

As all the bids have increased by the same value, they have stopped ascending at

the same time. Hence there can be no smaller value (i.e., t′ < 1) that they could have

stopped at, as if this smaller value would have satisfied condition (3) in Definition 1.2

then condition (2) in Definition 1.2 must have been violated by reaching t = 1, as all

bids will be strictly greater than if they had stopped at t′.

Chapter 5. Benchmarks and First-Price Auctions 93

This principle can be applied to some of the other examples of Uniformly Ascending

bids that will be shown. Given a bid vector b satisfying conditions (2) and (3), when

all bids have risen from their cost by an equal value, then b is the vector that would be

returned by the Uniformly Ascending auction.

Example 5.5 shows that this process may obtain the value NTUmin, when NTUmin

< NTUmax. Note, however, that this example does not easily generalize to instances

when NTUmax > 2NTUmin. When NTUmax> 2NTUmin, for a single-commodity

auction, then we do not know of any examples where the uniformly ascending process

can give a value exactly as low as NTUmin.

Example 5.5. A commodity auction with 5 agents where we wish to purchase 5 identical

items. Each agent Ae ∈ {A1, A2, A3, A4, A5} has the quantity qe and cost ce given in

Table 5.5. In this example, bmin denotes a NTUmin(c) bid vector, bmax is a NTUmax(c)

bid vector, and b↑ is a uniformly ascending bid vector.

Agent qe ce bmin
e bmax

e b↑e

A1 1 0 1 0 1

A2 2 0 1 2 1

A3 2 0 1 2 1

A4 1 1

A5 3 2

Total 3 4 3

Table 5.5: Uniformly Ascending Bid b↑ equals NTUmin

Observe that every b↑e bid has the same increase in value from the cost, and can be

verified to satisfy condition (2) and (3) in Definition 1.2. Hence b↑ is a valid Uniformly

Ascending Bid.

It is also the case that a value close to NTUmin (again, when NTUmin < NTUmax)

can be obtained when there is no restriction on the ratio between NTUmax and NTUmin.

As a brief description of how this may be achieved, if we consider some example when

NTUmin and NTUmax may differ by a large factor, there will be some agent(s) that

receive a relatively large bid in an NTUmin vector. By using many agents to ‘simulate’

the effect of these particular agent(s) (that would command a large bid) then as the

bidding rises uniformly, the sum of the bids for these many agents will rise quickly. As

other agents, which would receive a lower NTUmin bid, will rise much more slowly in

comparison (not being simulated by multiple agents), then we will end the uniformly

ascending process with a bid vector with a value close to NTUmin (introducing the extra

agents will not affect the value of NTUmin).

Chapter 5. Benchmarks and First-Price Auctions 94

In a commodity auction this can be done by having many agents with a small quantity

replace a single agent with a large quantity, and we will see examples of how this may

occur.

Recall that Example 5.4, shows a single-commodity auction showing a large difference

(a factor of `/2) between NTUmin and NTUmax, when the ascending price is equal to

NTUmax. As an intermediate step, we will scale up all of the quantities, by some

constant factor k, to give Example 5.6.

Example 5.6.

This is a commodity auction with `+ 1 agents to purchase `k identical items. Each

agent Ae ∈ {A1, . . . , A`+1} has the quantity qe and cost ce given in Table 5.6. In this

example, bmin denotes a NTUmin bid vector, bmax is a NTUmax bid vector, and b↑ is

a uniformly ascending bid vector.

Agent qe ce bmin
e bmax

e b↑e

A1 k 0 2 1 1

A2 k 0 0 1 1
...

...
...

...
...

...

A` k 0 0 1 1

A`+1 2k 2

Total 2 ` `

Table 5.6: Example 5.4 Multiplied by constant k

Observe that every b↑e bid has the same increase in value from the cost, and can be

verified to satisfy conditions (2) and (3). Hence b↑ is a valid Uniformly Ascending bid

vector.

In Example 5.7 we then remove the single agent A1 (when q1 = k) and replace it

with k other agents, A′1, . . . , A
′
k (when q{A′1,...,A′k} = k). NTUmin and NTUmax are

unchanged, but the ascending price auction now gives a result much closer to NTUmin

(specifically, it is 2 + 2(`− 1)/k which approaches 2 for large k).

Example 5.7. This is a commodity auction with k+ ` agents to purchase `k identical

items. Each agent A′e has the quantity qe and cost ce given in Table 5.7.

In this example, bmin denotes a NTUmin bid vector, bmax is a NTUmax bid vector,

and b↑ is a uniformly ascending bid vector.

Chapter 5. Benchmarks and First-Price Auctions 95

Agent qe ce bmin
e bmax

e b↑e

A′1 1 0 2 1/k 2/k

A′2 1 0 0 1/k 2/k
...

...
...

...
...

...

A′k 1 0 0 1/k 2/k

A2 k 0 0 1 2/k
...

...
...

...
...

...

A` k 0 0 1 2/k

A`+1 2k 2

Total 2 ` 2 + 2(`− 1)/k

Table 5.7: Example 5.6 substituting A1 with A′
1, . . . , A

′
k

Observe that the Uniformly Ascending bids are all equal, and can be verified to satisfy

conditions (2) and (3). Hence b↑ is a valid Uniformly Ascending bid vector.

5.8 Path Auctions

We will also examine the range of values that are possible in the well-known path auction

(described in Chapter 4). In Figure 5.2 we see an example for a shortest path auction

that shows the ascending price auction gives a value that is close to NTUmin. Note

that the ratio shown of NTUmax
NTUmin = 2 is equal to the upper bound of NTUmax

NTUmin ≤ 2 proven

in [11]. This construction is a variation of the ‘diamond graph’ that was shown by Karlin

et al. [24] and used by Elkind et al. [11] to demonstrate a lower bound of 2 on the ratio

of NTUmax/NTUmin . In this example, the direct path shown between s and t (via u

and v) has cost 0, and hence is chosen as the winning set. In order to satisfy condition

(3) in Definition 1.2, the winning edges between s and v must have a sum of bids equal

to 1. The winning edges between u and t must also have a sum of bids equal to 1. As

the edges between u and v occur in both constraints, minimizing their sum of bids has

the effect of maximizing the bid vector, and vice-versa.

As previously, in order to maximize the sum of bids between u and v, in a uniformly

rising process we ‘simulate’ an edge between u and v with some large number, k, of

separate edges. Hence there are k + 1 edges between s and v and also between u and

t. In a uniformly rising bid process, when each of these winning edges has a bid of

1/(k + 1), condition (3) in Definition 1.2 is satisfied. (Figure 5.3 behaves similarly and

Figure 5.4, instead, uses k edges to simulate the two outer edges of the winning path,

resulting in higher bids.)

Chapter 5. Benchmarks and First-Price Auctions 96

s
t

c=1

c=1

c=0, b=1/(k+1)

s t

c=1

c=1

c=0, b=0c=0, b=0

s
t

c=1

c=1

c=0, b=1c=0, b=1 c=0, b=0

c=0, b=1, b=0, ..., b=0

NTUmin = 1

NTUmax = 2

c=0, b=1/(k+1)c=0, b=1/(k+1)

(1,...,k) edges

(1,...,k) edges

(1,...,k) edges

bĹ = 1/(k+1) + k(1/(k+1)) + 1/(k+1)
 = (k+2) /(k+1)

u v

u v

u v

Figure 5.2: Uniformly Ascending Price Auction for Shortest Path Auction

Observe that the Uniformly Ascending bids are all equal, and can be verified to satisfy

condition (2) and (3) of Definition 1.2.

Perhaps unsurprisingly, should the uniformly ascending-price auction start from bid

values of zero, rather than the cost, a larger range of values is possible, as any bid vector

obtained would have to satisfy condition (1*) in Definition 1.3 rather than condition (1)

in Definition 1.2.

In Figure 5.3 we see an example when beginning from zero would produce a bid

vector, b↑ whose total is below NTUmin (but above TUmin). When we have NTUmin=

3 and TUmin = 2, we can have b↑S = 2 + 2
k+1 for any constant k ≥ 1. In Figure 5.4 see

that beginning from zero could produce a bid vector, b↑ which is above NTUmax; we

have NTUmax= 3, TUmax = 4, and we can have b↑S = 3 + k−1
k+1 for any constant k ≥ 1.

Chapter 5. Benchmarks and First-Price Auctions 97

s
t

c=2

c=2

c=1, b=1c=1, b=1 c=0, b=1, b=0, ..., b=0

NTUmin = b = 3

(1,...,k) edges

s
t

c=2

c=2

c=1, b=0c=1, b=0 c=0, b=2, b=0, ..., b=0

TUmin = b = 2

(1,...,k) edges

s
t

c=2

c=2

c=1, b=2/(k+1)c=1, b=2/(k+1) c=0, b=2/(k+1), ..., b=2/(k+1)

bĹ* = 2/(k+1) + k(2/(k+1)) + 2/(k+1)
 = 2 + 2/(k+1)

(1,...,k) edges

Figure 5.3: A Shortest Path Auction Where the Uniformly Ascending from Zero Price
is Below NTUmin

Chapter 5. Benchmarks and First-Price Auctions 98

s t

c=2

c=2

c=0, b=1, b=0, ..., b=0

NTUmax = b = 3

(1,...,k) edges

bĹ* = k(2/(k+1))+ 2/(k+1) + k(2/(k+1))
 = 3+(k-1)/(k+1)

c=1, b=1c=0, b=1, b=0, ..., b=0

s t

c=2

c=2

c=0, b=2, b=0, ..., b=0

(1,...,k) edges

c=1, b=0c=0, b=2, b=0, ..., b=0

TUmax = b = 4

s t

c=2

c=2

(1,...,k) edges c=1, b=2/(k+1)

c=0, b=2/(k+1), ..., b=2/(k+1) c=0, b=2/(k+1), ..., b=2/(k+1)

(1,...,k) edges

(1,...,k) edges

(1,...,k) edges

Figure 5.4: A Shortest Path Auction where the Uniformly Ascending from Zero Price
is Above NTUmax

5.9 Ordered Maximal Bidding

In Sections 5.3 and 5.5 we saw the idea that agents may be required to make their

bids in some order, with later bids depending on the value of the earlier bids. In those

auctions, we required that the bid increased by some small increment. If we remove this

restriction, and allow the agents to each choose their own bid, then it is obvious that

any rational agent will simply make their bid as large as possible, such that they are

still in the winning set. Therefore each agent bids exactly once. As no agent could gain

greater utility by bidding again, later on, there is no loss of generality in restricting the

ordering function to a single permutation of the winning set.

We will now examine this process for a first-price auction, which we will call ‘Ordered

Maximal Bidding’. In this process, given a specific ordering of the winning agents, each

Chapter 5. Benchmarks and First-Price Auctions 99

will, in turn, choose a bid to be as high as possible (until we have some Te satisfying

(3), giving a ‘tight’ constraint). Bid totals are always in the range between NTUmin

and NTUmax, as any bid vector produced is feasible — all bids start from their cost,

satisfying condition (1) in Definition 1.2, no agent can raise such that there would be

a cheaper feasible set, satisfying condition (2) in Definition 1.2, and every agent will

raise until it can bid no higher due to the presence of an alternative feasible set, thus

satisfying condition (3) in Definition 1.2.

As in the previous first-price auctions, we would like to understand what range of

values are obtainable from this process. For example, can we always choose an ordering

that may result in NTUmin? If not, can we achieve a bid total that is within some

constant factor of NTUmin? Would this hold even for restricted settings?

5.9.1 Definitions

We will fix a winning set S (let m = |S| and S = {e1, . . . , em}), and a cost vector c. Let

σS denote a permutation, or sequence, of the elements in S. During this section, we will

fix S as the lexicographically first winning set (amongst those with lowest cost), and to

simplify the notation, let σS be denoted by σ. For brevity, when σα denotes a specific

ordering on S, let bα be the ordered maximal bid vector for that ordering, rather than

the more clumsy notation bσ
α
. Likewise, let cα be the vector of costs, given the ordering

σα.

If σ = (e′1, . . . , e
′
m) is some ordering of S then define the resulting bid vector bσ =

(bσ1 , . . . , b
σ
m) as follows:

bσ1 = max{b1 : (b1, ce′2 , . . . , ce′m) satisfies (2)}

bσ2 = max{b2 : (bσ1 , b2, ce′3 , . . . , ce′m) satisfies (2)}

bσ3 = max{b3 : (bσ1 , b
σ
2 , b3, ce′4 , . . . , ce′m) satisfies (2)}

...

bσm = max{bm : (bσ1 , . . . , b
σ
m−1, bm) satisfies (2)}

in general, for i = (1, . . . ,m) (in order)

bσi = max{bi : (bσ1 , . . . , b
σ
i−1, bi, ce′i+1

, . . . , ce′m) satisfies (2)}

Let bσS =
∑

i∈S b
σ
i be the sum of bids for the winning set S, and now define the

minimum and maximal bids that are obtainable with a maximal ordered bid. Let

OMBmin(c) = min
σ
bσS

and let

OMBmax(c) = max
σ

bσS .

Chapter 5. Benchmarks and First-Price Auctions 100

We will now see some examples of the ordered maximal bid process, and the values

that result.

5.9.2 Examples

In Example 5.8 we see that the choice of permutation can give either NTUmin, NTUmax,

or some other value which is between the two. This example is presented as a single-

commodity auction where 9 items are desired.

Example 5.8. Suppose there are 8 agents, each Ae ∈ {A1, . . . , A8} with a quantity qe

and cost ce given in Table 5.8. Assume the buyer desires 9 units.

Agent qe ce bαe bβe bγe

A1 1 0 3 2 2

A2 1 0 0 1 1

A3 2 0 2 3 2

A4 2 0 2 3 2

A5 3 0 4 4 5

A6 2 3

A7 3 5

A8 5 7

Total 11 13 12

Table 5.8: Ordered Maximal Bid Auction for 9 items giving differing results

The winning set is S = {A1, A2, A3, A4, A5} and the permutations used are σα =

(A1, A2, A3, A4, A5), σ
β = (A3, A4, A1, A2, A5), and σγ = (A5, A1, A2, A3, A4) giving the

ordered maximal bid vectors bαe , b
β
e , b

γ
e respectively.

Let bα be the bid vector calculated from the ordering σα, and this has bids increased

in order depending on the quantity of each agent (qe = 1, qe = 2, qe = 3).

Let bβ be the bid that uses σβ, and is in order (qe = 2, qe = 1, qe = 3) and bγ uses

σγ in order (qe = 3, qe = 1, qe = 2). We will now see exactly how the bid vectors were

calculated for each of these orderings; Procedure 1 describes the process for ordering

σα, giving one of the possible tight constraints at each step, and showing how the bid

value is determined from that tight constraint as well as the previously determined bids.

Likewise, Procedure 2 describes the ordering σβ and Procedure 3 the ordering σγ. Order

σα gives total bαS = 11, order σβ gives bβS = 13, and order σγ gives bγS = 12.

Chapter 5. Benchmarks and First-Price Auctions 101

Procedure 1 Calculating Bids for bα

bα1 is restricted by bα1 <= bα6 bα1 = bα6 = 3

bα2 is restricted by bα1 + bα2 <= bα6 bα2 = (bα6 − bα1) = (3− 3) = 0

bα3 is restricted by bα1 + bα3 <= bα7 bα3 = bα7 − bα1 = 5− 3 = 2

bα4 is restricted by bα1 + bα4 <= bα7 bα4 = bα7 − bα1 = 5− 3 = 2

bα5 is restricted by bα1 + bα5 <= bα8 bα5 = bα8 − bα1 = 7− 3 = 4

Procedure 2 Calculating Bids for bβ

bβ3 is restricted by bβ3 <= bβ6 bβ3 = bβ6 = 3

bβ4 is restricted by bβ4 <= bβ6 bβ4 = (bβ6) = 3

bβ1 is restricted by bβ3 + bβ1 <= bβ7 bβ1 = (bβ7 − b
β
3) = (5− 3) = 2

bβ2 is restricted by bβ1 + bβ2 <= bβ6 bβ2 = (bβ6 − b
β
1) = (3− 2) = 1

bβ5 is restricted by bβ3 + bβ5 <= bβ8 bβ5 = (bβ8 − b
β
3) = (7− 3) = 4

Procedure 3 Calculating Bids for bγ

bγ5 is restricted by bγ5 <= bγ7 bγ5 = bγ7 = 5

bγ1 is restricted by bγ5 + bγ1 <= bγ8 bγ1 = (bγ8 − b
γ
5) = (7− 5) = 2

bγ2 is restricted by bγ1 + bγ2 <= bγ8 bγ2 = (bγ6 − b
γ
1) = (3− 2) = 1

bγ3 is restricted by bγ5 + bγ3 <= bγ8 bγ3 = (bγ8 − b
γ
5) = (7− 5) = 2

bγ4 is restricted by bγ5 + bγ4 <= bγ8 bγ4 = (bγ8 − b
γ
5) = (7− 5) = 2

Random Orderings

Theorem 5.4. There exists a sequence of set-system auctions indexed by n, where

NTUmax/ NTUmin ≥ n− 2, such that, for any ordering σ that is chosen uniformly at

random, the bid bσS approaches NTUmax in expectation.

Proof. In Example 5.9 we see that any ordered maximal auction, choosing a sequence

uniformly at random, gives an expected value of NTUmin+(`−1)NTUmax
` which is close to

NTUmax for large ` (and hence large n).

Example 5.9.

This is a commodity auction with ` + 1 agents to purchase 2` + 1 identical items.

Each agent Ae ∈ {A1, . . . , A`+1} has the quantity qe and cost ce given in Table 5.9.

Chapter 5. Benchmarks and First-Price Auctions 102

Agent qe ce bmin
e bmax

e

A1 1 0 1 0

A2 2 0 0 1
...

...
...

...

A` 2 0 0 1

A`+1 3 1

Total 1 `− 1

Table 5.9: Ordered Maximal Bid Auction, choosing randomly

We see that any ordered maximal auction, choosing a sequence uniformly at random,

will select A1 first on 1/` occasions and any other agent on (`−1)/` occasions. It is only

by choosing A1 first that NTUmin will be obtained, otherwise NTUmax will be obtained.

Bounds for Values Achievable with Ordered Bidding

In Example 5.10 we see that any ordered auction will result in NTUmin being selected,

whereas NTUmax is not achievable, regardless of the order (i.e., OMBmax < NTUmax).

Example 5.10. This is a commodity auction with ` + 1 agents to purchase ` iden-

tical items. Each agent Ae ∈ {A1, . . . , A`+1} has the quantity qe and cost ce given in

Table 5.10.

Agent qe ce bmin
e bmax

e bσe

A1 1 0 1 1/2 1

A2 1 0 0 1/2 0
...

...
...

...
...

A` 1 0 0 1/2 0

A`+1 2 1

Total 1 `/2 1

Table 5.10: Ordered Maximal Bid Auction may not find NTUmax

Any agent e that appears first in the ordering will have bσe = 1, and so every other

agent j 6= e must bid bσj = 0. Hence, by this symmetry, OMBmax = 1.

However, Example 5.11 shows that NTUmin may not be achieved by any ordering

(OMBmin > NTUmin), even with as few as 5 agents in S.

Example 5.11. In this auction there are 7 agents, {A1, . . . , A7} with feasible sets as

follows.

Chapter 5. Benchmarks and First-Price Auctions 103

F = {{A1, A2, A3, A4, A5}, {A6, A3, A4, A5}, {A6, A1, A4, A5}, {A6, A2, A4, A5},
{A7, A4}, {A7, A5}} . The cost ce for each agent Ae is given in Table 5.11. Observe that

the winning set S = {A1, A2, A3, A4, A5} .

Agent ce bmin
e bσe

A1 0 1/2 1

A2 0 1/2 0

A3 0 1/2 0

A4 0 1/2 1

A5 0 1/2 1

A6 1

A7 2

Total 5/2 3

Table 5.11: Ordered Maximal Bid Auction may not find NTUmin when |S| = 5

A1

A4

A2

A5

A3

≤2

≤2

≤1

≤1 ≤1

Figure 5.5: Hypergraph Representation of constraints for Table 5.11

To verify that this has OMBmin ≥ 3, we can examine all possible orderings; when

A1 appears first in the ordering, then b1 = 1 and the feasible set {A6, A3, A4, A5} would

mean that b2 ≤ 0, and the feasible set {A6, A2, A4, A5} would imply b3 ≤ 0. Then we

will have both b4 = 1 and b5 = 1 (as only the sets {A7, A5} and {A7, A4} respectively

are alternative solutions for A5 and A4) giving OMBmin ≥ 3.

Similarly, when A2 appears first then b2 = 1 and the feasible sets {A6, A3, A4, A5}
and {A6, A1, A4, A5} would give b1 = b3 = 0 and hence b4 = b5 = 1 and OMBmin≥ 3.

When A3 appears first, b3 = 1 and the feasible sets {A6, A2, A4, A5} and {A6, A1, A4, A5}
would give b1 = b2 = 0 and hence b4 = b5 = 1 and OMBmin≥ 3. Now, consider that

when A4 appears first, then b4 = 2, and the set {A7, A5} would give b1 = b2 = b3 = 0,

Chapter 5. Benchmarks and First-Price Auctions 104

and hence b5 = 2 and OMBmin≥ 4. Finally, when A5 appears first, then b5 = 2, and

the set {A7, A4} would give b1 = b2 = b3 = 0, and hence b4 = 2 and OMBmin≥ 4.

Example 5.12 also shows an example where OMBmin > NTUmin, with |S| = 6. We

present this example primarily as a precursor to a more general result. The structure of

this example will be generalized, in Example 5.13,to give a lower bound of Ω(n) for the

ratio of OMBmin/NTUmin.

Example 5.12. In this auction there are 7 agents, {A1, . . . , A7} with feasible sets as

follows.

F = {{A1, A2, A3, A4, A5, A6}, {A7, A3, A5, A6}, {A7, A2, A4, A6}, {A6, A2, A4, A5},
{A7, A1, A4, A5}} . The cost ce for each agent Ae is given in Table 5.12. Observe that

the winning set S = {A1, A2, A3, A4, A5, A6}.

Agent ce bmin
e bσe

A1 0 1/2 1

A2 0 1/2 0

A3 0 1/2 0

A4 0 0 0

A5 0 0 0

A6 0 0 1

A7 1

Total 3/2 2

Table 5.12: Ordered Maximal Bid Auction May Not Find NTUmin

Chapter 5. Benchmarks and First-Price Auctions 105

A1
A4

A2

A5

A3

A6

1 1

1

Figure 5.6: Hypergraph Representation of Constraints for Table 5.12

Theorem 5.5. For any n ≥ 9 there exists a set-system auction with cost vector c such

that OMBmin(c)/NTUmin(c) ≥ 2n/9− 2/3.

Proof. In Example 5.13 we have some integer parameter ` > 0. (While this may appear

to be a complex example, it is simply a generalization of Example 5.12, which has ` = 1).

Here, we see that there exists a feasible bid vector such that b1 = b2 = b3 = 1/2. As

any two of these agents sum up to 1, (b1 + b2 = b2 + b3 = b1 + b3 = 1) and as all

constraints share at least two of these agents, no other agent may bid higher than zero,

giving NTUmin(c) ≤ 3/2. Observe that any ordered bid vector must give some agent e

a bid of be = 1 (i.e., agent e is first in the ordering). If b1 = 1 then in order to satisfy

the constraints on b1 + b2 and b1 + b3 we must have b2 = b3 = 0. There are ` agents that

share a constraint only with A2 and A3 (namely agents A4+`, . . . , A4+2`−1), and hence

each of these agents may bid 1. Therefore that are at least `+ 1 agents that will bid at

least 1. By symmetry, observe that this would also be true if we had b2 = 1 or b3 = 1. If

none of {A1, A2, A3} bid 1, then each agent has some neighbours that can bid 1, and so

all other 3` agents (A4, . . . , A4+3`−1) will bid 1, hence we have OMBmin ≥ `+ 1. There

are a total of 3`+ 3 agents, so we can give this lower bound in terms of n, the number

of agents.

As ` must be an integer parameter, there is some suitable ` such that n ≤ 3`+ 3 + 2,

and hence ` ≥ (n− 5)/3. (If n is not divisible by 3, then we may add at most 2 agents

to the example, that are in no feasible solutions, to give an instance of size n.) Starting

with

OMBmin(c) ≥ `+ 1

Chapter 5. Benchmarks and First-Price Auctions 106

substitute the lower bound for `

OMBmin(c) ≥ (n− 5)/3 + 1

and rewrite to give

OMBmin(c) ≥ (n− 2)/3

As we have NTUmin(c) ≤ 3/2 therefore we can rewrite to give

OMBmin(c)/NTUmin(c) ≥ 2n/9− 2/3

Example 5.13. In this example of a set-system auction we have a parameter ` and a

total of 3`+ 4 agents (A0, . . . , A3`+3). The feasible sets are given as follows.

F = {E \ {A0},
E \ {A1, A2, A4}, E \ {A1, A2, A4+1}, . . . E \ {A1, A2, A4+`−1},
E \ {A2, A3, A4+`}, E \ {A2, A3, A4+`+1}, . . . E \ {A2, A3, A4+2`−1},
E \ {A1, A3, A4+2`}, E \ {A1, A3, A4+2`+1}, . . . E \ {A1, A3, A4+3`−1}}

For each agent e ∈ E the cost value ce is given in Table 5.13, as is a bid value bmin
e

for a NTUmin bid vector and a bid value, bσe , for a minimum Ordered Maximal Bid

vector.

Agent ce bmin
e bσe

A1 0 1/2 1

A2 0 1/2 0

A3 0 1/2 0

A4 0 0 0
... 0 0 0

A4+`−1 0 0 0

A4+` 0 0 1
... 0 0 1

A4+2`−1 0 0 1

A4+2` 0 0 1
... 0 0 1

A4+3`−1 0 0 1

A0 1

Total 3/2 `+ 1

Table 5.13: Ordered Maximal Bid Auction May Be Much Higher than NTUmin

Observe that the winning set S = E \ {A0}.

Chapter 5. Benchmarks and First-Price Auctions 107

A4

A2 A3

A1

A4+-1

A4+...

A4+ A4+2-1

A4++...

A4+2

A4+3-1

A4+2+...

Figure 5.7: Hypergraph Representation of Constraints for Table 5.13

5.9.3 Restricted Setting

We will now consider the special case where every constraint is restricted to a single

value (for simpler notation, we will assume this to be 1, but any other value would be

equivalent by rescaling), and that the cost of the winning agents is cS = 0. We will also

impose an additional restriction that we will only have binary constraints — that is we

will restrict the cardinality of the constraining sets to 2. More formally,

∀T ∈ (F \ {S}), |(S \ T)| = 2.

We will see, later on, that even in this restricted setting, calculating both NTUmin

and OMBmin is NP-hard to calculate, and also NP-hard to approximate within a factor

of n1−ε for any constant ε > 0.

One effect of the restriction to binary constraints is that the hypergraph representa-

tion of the constraints, that was described earlier, will now be a graph. Borrowing from

this graph representation, we will call any two agents i and j ‘neighbours’ if they are

share some common constraint . (i.e., ∃T ∈ F such that S \ T = {i, j}).
Let N(i) be the set of neighbours of agent i. More formally, j ∈ N(i) ⇔ ∃T ∈

F such that S \ T = {i, j}.
In this setting, we will firstly see a lower bound on the ratio between OMBmin and

NTUmin.

Chapter 5. Benchmarks and First-Price Auctions 108

Example 5.14 shows that NTUmin < OMBmin even when the instance is restricted

to binary constraints with a single value. (We will see that this setting is of importance

later on).

Example 5.14. In this auction there are 10 agents, {A1, . . . , A10} with feasible sets as

follows.

F = {{A1, A2, A3, A4, A5, A6, A7, A8, A9}, {A10, A3, A4, A5, A6, A7, A8, A9},
{A10, A2, A4, A5, A6, A7, A8, A9}, {A10, A1, A4, A5, A6, A7, A8, A9},
{A10, A2, A3, A5, A6, A7, A8, A9}, {A10, A2, A3, A4, A6, A7, A8, A9},
{A10, A1, A3, A4, A5, A7, A8, A9}, {A10, A1, A3, A4, A5, A6, A8, A9},
{A10, A1, A2, A4, A5, A6, A7, A9}, {A10, A1, A2, A4, A5, A6, A7, A8}}.

The cost ce for each agent Ae is given in Table 5.14.

Agent ce bmin
e bαe

A1 0 1/2 1

A2 0 1/2 0

A3 0 1/2 0

A4 0 1/2 0

A5 0 1/2 0

A6 0 1/2 1

A7 0 1/2 1

A8 0 1/2 1

A9 0 1/2 1

A10 1

Total 9/2 5

Table 5.14: Ordered Maximal Bid Auction may not equal NTUmin in restricted
setting

Observe that the winning set S = {A1, . . . , A9} and assume an ordering σα =

(A1, A2, A3, A5, A6, A7, A8, A9) resulting in bid vector bαe .

A1

A4 A5

A2

A6

A7 A8

A3

A9

Figure 5.8: Graph Representation of Constraints in Table 5.14

Chapter 5. Benchmarks and First-Price Auctions 109

The bid vector bσ shows the bids of one possible ordering. We will see that there is

no other ordering possible that will give a lower total bid. Firstly, observe that every

ordering σ′ must give bσ
′
e ∈ {0, 1} for all e ∈ S. Secondly, any ordering that gives a

bσ
′

1 = 1 to agent A1 must give bσ
′

2 = bσ
′

3 = 0 (as bσ
′

1 + bσ
′

2 ≤ 1 and bσ
′

1 + bσ
′

3 ≤ 1). In order

to make the bids tight with regard to some constraint, then bσ
′

6 = bσ
′

7 = bσ
′

8 = bσ
′

9 = 1

giving bσ
′
S ≥ 5. The constraint sets are symmetrical, so similar results for bσ

′
2 = 1 and

bσ
′

3 = 1 are easily observed. Alternatively, bσ
′

1 = bσ
′

2 = bσ
′

3 = 0 would clearly give bσ
′
S ≥ 6,

as all other agents would bid 1 to make some constraint tight.

By generalizing Example 5.14 we are able to prove that there exists a class of auctions

for which the ratio between OMBmin and NTUmin can approach 2.

Theorem 5.6. For every small constant 0 < ε < 1, there exists a set-system auction,

which is restricted to binary constraints with a single value, with cost vector c such that

OMBmin(c)/NTUmin(c) ≥ 2− ε.

Proof. Consider Example 5.15, with some integer parameter ` > 0. This is, perhaps,

more easily seen in Figure 5.9. This consists of a central clique, of size `, (Agents

A0,1, . . . , A0,`) and each of these agent shares a constraint with an additional ` agents.

There exists a bid vector, b, when each agent may bid 1/2, giving a total of bσ =

(`2 + `)/2 and hence NTUmin ≤ (`2 + `)/2 — there are ` agents in the central clique,

and ` agents attached to each of them, hence `2 + ` total agents.

We will now examine possible ordered bid vectors, as two cases;

Case 1: There is some i such that b0,i = 1 .

Some agent A0,i in the central clique may bid b0,i = 1, which results in the other `− 1

agents in the clique bidding 0 (b0,j = 0 when i 6= j). As an agent A0,j in the clique

is attached to ` other agents (Aj,1, . . . , Aj,`), by sharing some constraint, there are

`(` − 1) other agents that must bid (bj,1 = 1, . . . , bj,` = 1), and hence `2 − ` + 1 in

total, including the single agent in the clique who bids 1.

Case 2: There is no i such that b0,i = 1 .

As no agent in the central clique bids 1, all `2 outside agents may bid 1, (bx,y = 1

when x ≥ 1,y ≥ 1) hence a total bid of `2.

For a large value of `, both `2 and `2 − ` + 1 will approach `2, and hence the ratio

of OMBmin/NTUmin approaches `2/(`2/2). Therefore, for the small constant ε, there

is some large value of ` such that 2`2−`+1
`2+`

≥ 2− ε.

Example 5.15.

In this example of a set-system auction (with binary, single-valued constraints) we

have a parameter ` and a total of `2 + ` + 1 agents (Ax,y ∈ E for every 0 ≤ x ≤ ` and

1 ≤ y ≤ ` and also agent A0 ∈ E). The feasible sets are given as follows.

Chapter 5. Benchmarks and First-Price Auctions 110

F = {E \ {A0},
E \ {A0,1, A0,1}, . . . , E \ {A0,1, A0,`}

...
. . .

...

E \ {A0,`, A0,1}, . . . , E \ {A0,`, A0,`}
E \ {A0,1, A1,1}, . . . , E \ {A0,1, A1,`}

...
. . .

...

E \ {A0,`, A`,1}, . . . , E \ {A0,`, A`,`}}

The cost ce for each agent e ∈ E is given in Table 5.15, along with a bid value bmin
e for

an NTUmin bid vector and a minimum Ordered Maximal bid value bσe .

Agent ce bmin
e bσe

A0,1 0 1/2 1
... 0 1/2 0

A0,` 0 1/2 0

A1,1 0 1/2 0
... 0 1/2 0

A1,` 0 1/2 0
... 0 1/2 1
... 0 1/2 1
... 0 1/2 1

A`,1 0 1/2 1
... 0 1/2 1

A`,` 0 1/2 1

A0 1

Total (`2 + `)/2 `2 − `+ 1

Table 5.15: OMBmin approaches 2 NTUmin

Chapter 5. Benchmarks and First-Price Auctions 111

A0,1

A0,2

A0,l

A1,1

A1,

A1,...

A2,1

A,

Al,...

A,1

A2,...

A2,

A0,...

A...,

A...,...

A...,1

Figure 5.9: Graph Representation of Constraints in Table 5.15

Single-Commodity Auctions

As we have spent some time studying single-commodity auctions, it might also be in-

teresting to study the ratio between OMBmin and NTUmin in that simple setting. We

show here a lower bound for this ratio, again approaching 2.

Theorem 5.7. For every small constant 0 < ε < 1, there exists a single-commodity

auction with cost vector c such that OMBmin(c)/NTUmin(c) ≥ 2− ε.

Proof. We will consider Example 5.16, with ` as some integer parameter.

Example 5.16. This is a commodity auction with ` + 7 agents to purchase 2` + 7

identical items. Each agent Ae ∈ {A1, . . . , A`+7} has the quantity qe and cost ce given

in Table 5.16.

Chapter 5. Benchmarks and First-Price Auctions 112

Agent qe ce bmin
e bαe bβe

A1 1 0 1/2 0 1

A2 2 1 3/2 2 1

A3 2 1 3/2 1 1

A4 2 0 1/2 1 1
...

...
...

...

A4+` 2 0 1/2 1 1

A5+` 3 2

A6+` 4 3

A7+` 7 4

Total (`+ 8)/2 `+ 4 `+ 4

Table 5.16: OMBmin approaches 2 NTUmin for Single-Commodity Auctions

Observe that the bid vector bmin given is a feasible bid vector, and hence NTUmin(c)

≤ (`+ 8)/2. To verify this satisfies condition (3) in Definition 1.2, let e ∈ {4, . . . , 4 + `}
and let Te = S \{A1, A2, A3, Ae}∪{A7+`}, which gives b{A1,A2,A3,Ae} = 4, so Te satisfies

condition (3) for all A1, . . . , A4+`. Less formally, no agent can raise its bid due to the

constraint implied by a replacement subset of quantity 7, with cost 4.

We consider the ordered maximal bid process on Example 5.16. Let e be the first

agent in the ordering σ, and we will examine this as two cases.

Case 1: qe = 1 .

Agent A1 may raise first and will be constrained by the bid of A5+` — this can be

written as bσ1 + bσ2 ≤ 2. This gives bσ1 ≤ 2− c2, and as c2 = 1, therefore bσ1 ≤ 1. Once

we have bσ1 = 1, then the same constraint gives bσ1 +bσj ≤ 2 for all j ∈ {2, . . . , 4+`−1},
and all other agents will bid 1. This gives each agent e ∈ S a bid bσe = 1, and therefore

bσS = |S| = `+ 4.

Case 2: qe = 2 .

If the first agent in the ordering e has qe = 2, then this will be constrained by both

A5+` and A6+`. As A5+` gives bσe + bσ1 ≤ 2 , and bσ1 = 0 (as we have bσ1 = c1 until we

reach agent A1 in the ordering) then we have bσe = 2. By the same constraint (from

A5+`), this will give bσ1 = 0. As A6+` will constrain bσe + bσj for all j 6= e, j > 1 we will

have bσj = 1 for all such j. This gives one agent e, a bid of bσe = 2, agent 1 a bid of

bσ1 = 0 and every other agent j has bσj = 1. Therefore we have bσS = |S| = `+ 4.

In Example 5.16, we have seen that every ordered bid vector bσ has bσS = `+ 4, and

we have seen NTUmin(c) ≤ (` + 8)/2. Hence, for any small ε then there is some large

value of ` such that 2(`+4)
`+8 ≥ 2− ε.

Chapter 5. Benchmarks and First-Price Auctions 113

This has shown that single-commodity auctions may give OMBmin(c)

NTUmin(c)
≥ 2 − ε for

some small value of ε < 1. In the general case, we have seen that this ratio is Ω(n),

so it is an obvious open question whether ratios of larger than 2 are possible for single-

commodity auctions.

In Example 5.16, we saw that OMBmin approaches 2×NTUmin for single-commodity

auctions, but we have not seen any instances that must give ratios of larger than 2.

We are, therefore, going to look at some seemingly reasonable approaches to choosing

an ordering in order to determine what ratios they may give with respect to NTUmin.

Example 5.9 shows that choosing a random ordering may give an expected value that is

close to NTUmax, even when this is close to a factor of n larger than NTUmin.

In looking for an ordering that gives OMBmin close to NTUmin, one approach that

may seem reasonable is to partition S into subsets of a given quantity, then choose

the ordering simply based on the cardinality of these partitions. Example 5.17 and

Example 5.18 show that this would be unsuccessful in always finding a bid vector close

to NTUmin. In Example 5.17, a minimum value would be obtained by soliciting bids

from the agents with the lower cardinality first (i.e., there are fewer agents with quantity

`, so they are ordered first). Example 5.18 shows that a minimum value would only

be obtained by soliciting bids from the agents with the higher cardinality first. Both

examples show that choosing the order incorrectly gives a bid vector b that is much

higher than optimal. We have bσS ≥ `− 1 and NTUmin = 1, and as ` = (n/2)− 1 then
bσS

NTUmin ≥ Ω(n).

Example 5.17. This is a single-commodity auction with 2` + 2 agents to purchase

`2 + `+ 1 identical items. Each agent Ae ∈ {A1, . . . , A2`+2} has the quantity qe and cost

ce given in Table 5.17

Agent qe ce bmin
e bσe

A1 ` 0 0 1
...

...
...

...
...

A` ` 0 0 1

A`+1 1 0 1 0
...

...
...

...
...

A2`+1 1 0 0 0

A2`+2 `+ 1 1

Total 1 `− 1

Table 5.17: Ordered Maximal Bid Auction, Lowest Cardinality First

Observe that the winning set S = {A1, . . . , A2`+1} and let σ = (A1, . . . , A2`+1) be a

permutation of S and bσ be the resulting ordered maximal bid vector.

Chapter 5. Benchmarks and First-Price Auctions 114

Example 5.18. This is a commodity auction with 2` + 2 agents to purchase `2 + 1

identical items. Each agent Ae ∈ {A1, . . . , A2`+2} has the quantity qe and cost ce given

in Table 5.18.

Agent qe ce bmin
e bσe

A1 ` 0 0 1
...

...
...

...
...

A`+1 ` 0 0 1

A`+2 1 0 1 0
...

...
...

...
...

A2`+1 1 0 0 0

A2`+2 `+ 1 1

Total 1 `

Table 5.18: Ordered Maximal Bid Auction, Highest Cardinality First

Observe that the winning set S = {A1, . . . , A2`+1} and let σ = (A1, . . . , A2`+1) be a

permutation of S and bσ be the resulting ordered maximal bid vector.

We may also consider choosing the ordering, based on the quantity of items that

each agent has. If we were to choose the agents with the largest quantity first, then we

could see from Example 5.17 again, that
bσS

NTUmin ≥ Ω(n). However, choosing the agents

with the smallest quantity first could also result in a ratio of
bσS

NTUmin ≥ Ω(n). This

can be seen in Example 5.19. Hence, we have seen that the most obvious heuristics for

finding a minimal ordering fail for single-commodity auctions, and we leave as an open

question whether is is even possible to find a minimal ordering in polynomial time for

the special case of single-commodity auctions.

Example 5.19. This is a commodity auction with ` + 3 agents to purchase 2` + 1

identical items. Each agent Ae ∈ {A1, . . . , A`+3} has the quantity qe and cost ce given

in Table 5.19.

Chapter 5. Benchmarks and First-Price Auctions 115

Agent qe ce bmin
e bσe

A1 1 0 0 1

A2 2 0 2 1

A3 2 0 0 1
...

...
...

...
...

A`+1 2 0 0 1

A`+2 4 2

A`+3 1 1

Total 2 `+ 1

Table 5.19: Ordered Maximal Bid Auction, Lowest Quantity First

Observe that the winning set S = {A1, . . . , A`+1} and let σ = (A1, . . . , A`+1) be a

permutation of S and bσ be the resulting ordered maximal bid vector.

5.9.4 Results for |S| ≤ 4

In this subsection, we will see that for any set-system auctions when |S| ≤ 4 we have

OMBmin = NTUmin. This is trivial for |S| = 1, and initially we will see this for |S| = 2,

then |S| = 3 before progressing to the main result. Example 5.11 shows that we may

have OMBmin>NTUmin for |S| = 5, which can easily be applied to all |S| ≥ 5 (e.g. by

substituting agent 1 with k other agents), and so this represents a result for all values of

|S|. (Intuitively, this threshold of 5 agents is reasonably easy to see using Example 5.11

— it takes at least 3 agents, in an odd-length path, such that their OMB bids are less

than the maximum possible. When this triangle bids less than maximum it can, by

sharing a constraint, require other agents to bid more than the minimum. Hence at

least two of these are needed such that their increases outweigh the decreases made by

the agents that are in the triangle.)

As an intermediate step, we will briefly consider a smaller problem, when there are

only 2 agents in S.

Lemma 5.8. Given a set system auction having winning set S and |S| = 2, OMBmin =

NTUmin.

Proof. We will see that all feasible bid vectors have equal value, and as NTUmin and

OMBmin are both feasible bid vectors, it follows that OMBmin = NTUmin.

Assign labels S = {A1, A2} and define some alternative solutions, as follows.

Let X1 = argmin
T∈F and A1 /∈T

cT ,

letX2 = argmin
T∈F and A2 /∈T

cT , and

let XS = argmin
T∈F and S∩T=∅

cT .

Chapter 5. Benchmarks and First-Price Auctions 116

X1 and X2 are the cheapest alternative solutions for agents A1 and A2 respectively,

and are non-empty assuming that the set-system is monopoly-free. XS is the cheapest

alternative solution to both agents in S — and note that there may be no solution to

this. Observe that only the sets meeting these definitions could possibly satisfy condition

(3) in Definition 1.2 and hence determine the bid values.

Case 1: XS exists and cXS\S ≤ cX1\S + cX2\s .

As X1 and X2 must satisfy condition (2) in Definition 1.2, we have b1 ≤ cX1\S and

b2 ≤ cX2\S . However, XS must also satisfy condition (2), which gives bS ≤ cXS .

With the inequality cXS\S ≤ cX1\S + cX2\S , this implies that both X1 and X2 cannot

simultaneously satisfy condition (3) in Definition 1.2. Hence there must be at least

one agent that has condition (3) satisfied by XS — giving bS = cXS for all feasible

bid vectors.

Case 2: XS does not exist or cXS\S > cX1\S + cX2\S .

If XS satisfied condition (3) in Definition 1.2, then we would have bS > cX1\S +

cX2\S hence either b1 > cX1\S or b2 > cX2\S which would violate condition (2) in

Definition 1.2. As XS cannot satisfy condition (3) in Definition 1.2, then both X1 and

X2 must — giving b1 = cX1\S and b2 = cX2\S for all feasible bid vectors.

We now continue by extending this result to winning sets of size 3.

Let S = {A1, A2, A3} and label the bids and costs as b1, b2, b3 and c1, c2, c3 respec-

tively.

We will use the existence of the Te sets (described in (3)) to apply some constraints

to the bids depending on the value of cTe\S for each Te, in the manner described earlier.

Recall that each subset of S may have at most one relevant constraint value. There

are seven non-empty subsets of S, and we will label the values for the constraints as

c̄1, . . . , c̄7. That gives the following possible set of constraints, for any bid vector b.

b1 ≤ c̄1 (5.3)

b2 ≤ c̄2 (5.4)

b3 ≤ c̄3 (5.5)

b1 + b2 ≤ c̄4 (5.6)

b1 + b3 ≤ c̄5 (5.7)

b2 + b3 ≤ c̄6 (5.8)

b1 + b2 + b3 ≤ c̄7 (5.9)

Taking a NTUmin(c) bid vector,bmin, we can examine it in terms of the constraints

given here — for each e ∈ {1, 2, 3} at least one of the constraints including be must be

tight. (in order to satisfy condition (3) in Definition 1.2).

Chapter 5. Benchmarks and First-Price Auctions 117

Lemma 5.9. Given a set system auction having winning set S and |S| = 3, OMBmin =

NTUmin.

Proof. We will see that there is an ordering σ such that the maximal ordered bid vector

bσ, gives bσS =NTUmin(c). There are four possible cases for a set of tight constraints,

and we will now examine those in turn.

Case 1: ∃e ∈ {1, 2, 3}, such that bσe = c̄e.

For e ∈ {1, 2, 3}, where c̄e may be tight (i.e., bσe = c̄e) then an ordered maximal bid

process may firstly raise the bid of e to bσe = c̄e. Then we need only consider how

to get a minimum bid from the two remaining agents, with just the constraints that

apply to them. (bσ2 ≤ c̄2, bσ3 ≤ c̄3, bσ2 + bσ3 ≤ min(c̄6, c̄7 − bσ1)). Lemma 5.8 tells us that

either ordering will give us a minimum bid, and hence bσS =NTUmin(c).

Case 2: bσ1 + bσ2 + bσ3 = c̄7 holds.

Where bσ1 + bσ2 + bσ3 = c̄7 holds in a NTUmin(c) bid vector, then we have NTUmin(c)

= c̄7. As the constraint bσ1 + bσ2 + bσ3 ≤ c̄7 applies to all bid vectors that satisfy (2),

then any such bid vector has bσ1 + bσ2 + bσ3 =NTUmin(c). Observe that the ordered

maximal bid process must give a bid vector that satisfies (1), (2) and (3), hence when

bσ1 +bσ2 +bσ3 ≤ c̄7 may be tight the ordered maximal bid process gives bσS =NTUmin(c).

Case 3: Exactly two of {bσ1 + bσ2 = c̄4, b
σ
1 + bσ3 = c̄5, b

σ
2 + bσ3 = c̄6} hold.

Observe that when only 1 may be tight, either Case 1 or Case 2 above must apply,

otherwise there is some e ∈ S that does not have a tight constraint.

Then we can choose an e that occurs most frequently to raise first. We will assume

w.l.o.g. that the two tight constraints are as follows;

bσ1 + bσ2 = c̄4

bσ2 + bσ3 = c̄6

and we can observe that bσS = bσ1 + bσ2 + bσ3 and bσ1 + bσ2 + bσ3 = c̄4 + c̄6 − bσ2 . Hence

when bσ2 is maximized, bσS is minimized, which is proven as follows.

Assume, for contradiction, that there exists a bid vector b′ where b′2 = bσ2 −δ for some

δ > 0 and that b′S < bσS . As both b′1 + b′2 = c̄4 and bσ1 + bσ2 = c̄4 will hold, we can

rearrange to give b′1 = bσ1 + δ. The same applies to bσ2 + bσ3 = c̄6, giving b′3 = bσ3 + δ.

Therefore b′S = bσS − δ + δ + δ, contradicting b′S < bσS .

In order to maximize bσ2 we simply place A2 first in the ordering. We can then consider

only agents 1 and 3, and the constraints that apply to them, and Lemma 5.8 shows

us that we can minimize these bids with an ordered maximal bid.

Case 4: bσ1 + bσ2 = c̄4, b
σ
1 + bσ3 = c̄5 and bσ2 + bσ3 = c̄6 hold.

Chapter 5. Benchmarks and First-Price Auctions 118

This can be rewritten to give 2(bσ1+bσ2+bσ3) = c̄4+c̄5+c̄6, hence NTUmin(c) = 1/2(c̄4+

c̄5 + c̄6). Reverting back to the inequality form of these equations, they represent

upper bounds on any bid that satisfies condition (2) in Definition 1.2. Therefore

we have for any such vector b′, 2(b′σ1 + b′σ2 + b′σ3) ≤ c̄4 + c̄5 + c̄6. As an ordered

maximal bid vector bσ, for any possible order σ, satisfies condition (2) then this gives

2bσS ≤ c̄4 + c̄5 + c̄6 and therefore bσS ≤NTUmin(c). As NTUmin(c) is a minimum, it

follows that bσS ≥NTUmin(c).

Case 1 deals with any case where bσe = c̄e, and Case 2 where bσ1 +bσ2 +bσ3 = c̄7. Hence any

other cases left must only have some subset of {bσ1 + bσ2 = c̄4, b
σ
1 + bσ3 = c̄5, b

σ
2 + bσ3 = c̄6}.

In order for all agents to have some tight constraint, at least two of these must be

tight, and hence Case 3 and Case 4 cover these. Therefore all the possible sets of tight

constraints must be covered by at least one of the 4 cases already outlined.

As we have now seen that all possible cases have an ordering σ which will give

the value bσS =NTUmin(c), the claim that there always exists an ordering σ giving

bσS =NTUmin(c) is proven.

Now we will consider when |S| = 4; firstly we note (in the same way as before) that

we can use the fact that there is a ‘locally optimal’ solution for any three of the agents.

Theorem 5.10. Given a set-system auction, having the winning set S with |S| ≤ 4 then

OMBmin = NTUmin.

Proof. Let bmin be a NTUmin bid vector.

When |S| = 4, there are a small number of configurations for the tight constraints.

Firstly, we can assume that the tight constraints make a single connected component. If

not, then the components can be ordered separately, and each component (of size ≤ 3)

has an ordering that gives a minimum value, from Lemma 5.8 and Lemma 5.9.

We saw in Lemma 5.8 that when we have only 2 agents, then either ordering gives

the same value, hence the minimum and maximum are equal. We can now consider the

different ways that a set of size 4 can have tight constraints.

Case 1: All tight constraints are of size 2.

Firstly; we will consider only those that do not have a tight constraint of size 3; hence

all the tight constraints are of size 2. We will do this as sub-cases.

Case 1.1: There is no odd-length cycle of tight constraints.

When there is no odd-length cycle (i.e., no triangle) then the resulting tight con-

straints can be represented as a bipartite graph. W.l.o.g. assume that we have

partitions S1 = {A1, A3}, S2 = {A2, A4} such that these two partitions are bipar-

tite; i.e., ∀k ∈ {1, 2}, i ∈ Ak ⇔ N(i) /∈ Ak. We can observe that increasing the

bid of some agent in S1 would then reduce the bid of at least one agent in S2 by

the same amount (as they share a tight constraint). When increasing the bid of

one agent in S1 would reduce the bids of both agents in S2 (this must be by the

Chapter 5. Benchmarks and First-Price Auctions 119

same amount), then the other agent in S1 will be sharing a tight constraint with

one agent in S2, and hence it will be able to increase its bid by the same amount.

This shows that increasing a bid to its maximum possible value will have no effect

on the overall bid. Therefore, by taking a NTUmin bid, it would be trivial to assign

any ordering to the bids which may ‘amend’ the individual bids as described, but

would still produce an equal sum, and hence NTUmin(c).

Case 1.2: There is an odd-length cycle of tight constraints.

Where there exists an odd-length cycle of tight constraints, then we have a tri-

angle of tight constraints, along with one other tight constraint attached to one

of the nodes of the triangle. Hence, there is some agent (A1) that shares a tight

constraint with 3 neighbours. Therefore, any minimum bid vector must maximize

bmin
1 . Assume, for contradiction, that bmin is a minimum bid vector, but bmin

1 is not

maximized — hence by the tight constraints, there exists some b′ when b′1 = bmin
1 +ε

then b′2 = bmin
2 − ε, b′3 = bmin

3 − ε and b′4 = bmin
4 − ε, giving b′S < bmin

S contradicting

bmin being a minimum. As bmin
1 may be maximized by choosing it first in any or-

dering, there exists an ordered maximal bid vector bσ when bσ1 is maximum. When

bσ1 is maximum, then the bids of all other agents can be raised in any order, as each

shares a tight constraint with A1; thus showing that when bσ1 is maximized, then

bσS is minimized, and we have bσS =NTUmin(c).

Case 2: We have some tight constraint of size 3.

We will also examine this as sub-cases.

Case 2.1: There are two sets of tight constraints, both of size 3.

There are two agents that exist in both these sets of tight constraints. Ordering

these two agents first, in either order, will result in a maximum for the sum of their

bids. (This follows from Lemma 5.8. When these two agents have raised their bids,

the other two agents can raise theirs, in either order, to make the constraints tight.

Case 2.2: There are at least three sets of tight constraints of size 3.

As there is at least one agent that is in all sets of tight constraints, then clearly

the bid for this agent must be maximized. By ordering this agent first, its bid is

maximized and hence the other three agents can be raised in order to make the

constraints tight.

Case 2.3: There is one set of tight constraints of size 3.

Case 2.3.1: There is one set of tight constraints of size 2 and one set of tight

constraints of size 3.

In order for all agents to be involved in a tight constraint, there is at least one

constraint of size 2. When there is only one constraint of size 2, there is one agent

that appears in both sets of tight constraints, let us assume that this is agent A1.

Chapter 5. Benchmarks and First-Price Auctions 120

Let c̄1 and c̄2 be the values of the constraints, and the sum of the bids will equal

c̄1 + c̄2 − bσ1 . Hence if we order this agent first, its bid is maximized and the sum

of bids is minimized; then the other three agents can be raised in order to make

the constraints tight.

Case 2.3.2: There are two sets of tight constraints of size 2 and one set of tight

constraints of size 3.

When there are two constraint of size 2, there are three agents that appear in

these two sets of tight constraints, let us assume that they are agents A1,A2,A3.

Let c̄1, c̄2 and c̄3 be the values of the constraints, and the sum of the bids will

equal c̄1 + c̄2 + c̄3 − bσ1 − bσ2 − bσ3 . Hence if we order agent A4 last, its bid is

minimized and the sum of bids is minimized.

Case 2.3.3: There are three sets of tight constraints of size 2 and one set of tight

constraints of size 3.

As all agents are covered by tight constraints of size 2, case 1 above applies, and

shows that an optimal ordering σ gives bσS =NTUmin(c).

5.9.5 Upper Bound for Restricted Settings

We will now return to the special case described in Section 5.9.3. Recall that, in this

setting every constraint is restricted to a single value (we assume this to be 1), the cost

of the winning set is cS = 0 and that the constraints are binary — every constraining

set (T \ S) has a cardinality of 2.

Recall Example 5.14, where we saw that even in this restricted setting, NTUmin(c)

may not be achievable with a maximal ordered bid vector. However, our examples have

only shown a ratio of OMBmin(c)/NTUmin(c) ≤ 2, while for ternary constraints in

Example 5.13 we saw ratios larger than any constant OMBmin(c)/NTUmin(c) = 2n/9.

So, we may ask the question, what is the largest ratio possible between the OMBmin

and NTUmin(c) in this restricted setting? We will see that OMBmin(c) is always within

a factor of 2 of NTUmin(c).

We will firstly show how to convert a NTUmin bid vector bmin, into another bid

vector b, where bS = bmin
S , and b satisfies some additional properties on the bid values.

We will then use these properties to compare b with an OMBmin bid vector bσ.

Lemma 5.11. For an instance of a set-system auction with binary single-value con-

straints, a given winning set S such that cS = 0 and a given NTUmin bid vector bmin,

a bid vector b exists such that bmin
S = bS and ∀e ∈ S, be ∈ {0, 1/2, 1}.

Proof. Consider a NTUmin bid vector bmin, we will show how to create some bid vector,

b such that bmin
S = bS and ∀e ∈ S, be ∈ {0, 1/2, 1}.

Chapter 5. Benchmarks and First-Price Auctions 121

Let d ∈ [1/2, 1) be a bid value, and partition S into subsets for each distinct value

of d.

Let Sd+ =
⋃

e∈S,bmin
e =d

{e}.

Let Sd− =
⋃

e∈S,bmin
e =1−d

{e}.

(i.e., if d = be ∈ [1/2, 1) then e ∈ Sd+ and if d = be /∈ [1/2, 1) then e ∈ Sd−). Now

fix d as some bid value, such that Sd+ 6= ∅. We can observe that every e ∈ Sd− has a

neighbour j ∈ N(e) such that j ∈ Sd+ (If no such neighbour exists, then there is no

tight constraint that would give bmin
e + bmin

j = 1 contradicting e being in Sd−). Similarly

every e ∈ Sd+ has a neighbour j ∈ N(e) such that j ∈ Sd−. When bmin
S is optimal, this

implies that |Sd+| = |Sd−|, as follows;

Assume, for contradiction, that |Sd+| 6= |Sd−| and bmin
S is a minimum. If |Sd+| >

|Sd−|, then choosing some small ε, there exists a bid vector b where e ∈ Sd+ ⇔ be =

bmin
e − ε and e ∈ Sd− ⇔ be = bmin

e + ε. For all e /∈ (Sd+ ∪ Sd−) let be = bmin
e . The only

agents that share a tight constraint with agents in Sd+ must be present in Sd−, and

vice-versa. Let ε be small enough such that no other constraint may become tight in b

that was not tight in bmin. As this would now allow more agents to decrease by ε than

increase by ε this contradicts bmin
S being a minimum. Similarly, if |Sd−| > |Sd+| there

exists a bid vector b′ where e ∈ Sd+ ⇔ b′e = bmin
e + ε and e ∈ Sd− → b′e = bmin

e − ε. This

would also allow more agents to decrease by ε than increase by ε, which contradicts bmin
S

being a minimum.

We have seen that each agent e ∈ Sd+, there exists at least one neighbour j ∈ N(e)

such that bmin
e + bmin

j = 1, and hence that bmin
j = 1 − bmin

e . For each d, when Sd+ 6= ∅,
for each e ∈ Sd+ let be = 1, and for each e ∈ Sd− let be = 0. As, in each turn, we have

added 1− d to the bid of elements in Sd+ and subtracted 1− d from the bid of elements

in Sd− , we will have bSd+ = bmin
Sd+

+ |Sd+ |d and bSd− = bmin
Sd−
− |Sd− |d. As we have seen

that |Sd+ | = |Sd− |, this gives bSd+∪Sd− = bmin
Sd+∪Sd− and, summing over all d, we have

bS = bmin
S .

This has shown that b exists such that ∀e ∈ S, be ∈ {0, 1/2, 1} and that bS = bmin
S ,

therefore there exists some bid vector b such that bS =NTUmin(c) and ∀e ∈ S, be ∈
{0, 1/2, 1} which satisfies the lemma.

Now that we have seen the existence of a NTUmin bid vector b′min with this property

(∀e ∈ S, be ∈ {0, 1/2, 1}) on the bid values, we will see how an ordering σ can be derived

such that bσS ≤ 2b′min
S .

Theorem 5.12. Let I be an an instance of a set-system auction having binary single-

value constraints and a winning set S such that cS = 0. Then there exists an ordering

σ such that the resulting bid vector bσ has bσS ≤ 2NTUmin(c).

Chapter 5. Benchmarks and First-Price Auctions 122

Proof. Let bmin be a NTUmin bid vector, satisfying the property that for all e ∈ S, bmin
e ∈

{0, 1/2, 1}. Lemma 5.11 has shown that such a bid vector exists for any instance I of a

set-system auction with binary single-value constraints.

Let σ be an ordering of S in decreasing order, according to an agents bid in bmin.

More formally, σ is an ordering of S such that ∀(i, j) ∈ S, σi < σj ⇔ bmin
i ≥ bmin

j . (That

is, if an agent i appears before agent j in the ordering σ, then agent i did not bid less

than agent j in the NTUmin bid vector bmin). Partition S into S0, S1/2, S1, based on

the bids in bmin, i.e., ∀i ∈ Sx, bmin
i = x.

Now we claim that every agent i ∈ S1 will bid bσi = 1. For any agent i when bmin
i = 1

there is no neighbour j ∈ N(i) such that bmin
j > 0 or bmin would violate a shared

constraint (recall that being neighbours implies bmin
i + bmin

j ≤ 1). As the ordering σ

will require that i is raised before all of its neighbours, then we will have bσi = 1 and

∀j ∈ N(i), bσj = 0. Equally, to show that ∀i ∈ S0 then bσi = 0, then i must have some

neighbour j ∈ N(i) that has bmin
j = 1, (or else i has no tight constraint). As, we have

seen that bσj = 1 will already be set when we reach agent i in σ, then we must have

bσi = 0 or else we would have bσi + bσj > 1, violating the shared constraint.

It is trivial to observe that no agent i ∈ S may bid more than 1, as every agent has

some constraint, so it follows that ∀i ∈ S1/2, b
min
i ≤ 1. We can write the sum of bid

vector bmin, as follows

bmin
S = |S1|+ (1/2)|S1/2|

and similarly we can upper bound the bid vector bσS using the results we have just seen

on individual bids.

bσS ≤ |S1|+ 2|S1/2|

rewrite to give an upper bound

bσS ≤ 2(|S1|+ |S1/2|)

and as bmin
S = |S1|+ (1/2)|S1/2| then bmin

S ≤ |S1|+ |S1/2| and by substitution, we have

bσS ≤ 2(bmin
S)

As we have assumed that bmin
S = NTUmin(c), this shows that for the ordering σ defined

earlier, we will get an ordered maximal bid vector bσ such that bσS ≤ 2 NTUmin(c), as

claimed.

5.9.6 Hardness and Approximation Results

We will firstly see a straightforward reduction from the MINIMUM INDEPENDENT

DOMINATING SET problem on a graph G, to finding OMBmin(c) on a set system

derived from G. We will use this fact to show that finding OMBmin(c) is NP-hard to

even approximate.

Chapter 5. Benchmarks and First-Price Auctions 123

We now give the definition of a known problem, Problem 5.

Name MINIMUM INDEPENDENT DOMINATING SET (MIN-IDS)

Instance Graph G = (V,E).

Output Cardinality of a minimum independent dominating set for G, i.e., |V ′| for a

subset V ′ ⊆ V such that for all u ∈ V − V ′ there is a v ∈ V ′ for which (u, v) ∈ E,

and such that no two vertices in V ′ are joined by an edge in E.

Problem 5: MINIMUM INDEPENDENT DOMINATING SET

The decision version of Problem 5 is well-known to be NP-complete [14].

Lemma 5.13. For any graph G, there exists a polynomial-time reduction to a set-

system auction with cost vector c such that OMBmin(c) equals the size of a minimum

independent dominating set of G.

Proof. Taking a graph G = (V,E), create a set-system auction I as follows.

Copy the vertices with cost 0.

E = {A1, . . . , An} = {V1, . . . , Vn}

c1, . . . , cn = 0

Create a new agent, A0, with cost 1.

E = E ∪ {A0}

c0 = 1

Note the winning set S.

S = {A1, . . . , An}

Create feasible sets for every edge e ∈ E, with endpoints Vi, Vj

∀e ∈ E , Te = S \ {Ai, Aj} ∪A0

Define the feasible sets.

F = S ∪
⋃
e∈E

Te

Observe that there are at most n+ 1 agents in I, hence I can be created from G in

polynomial time. Let bσ be the Ordered Maximal bid vector, for the optimal ordering

σ (i.e., bσS =OMBmin), and let M be a minimum independent dominating set of G.

There exists a constraint, on each edge e ∈ E such that agents at the two end

points Vi and Vj may not bid such that bσi + bσj > 1 (or else feasible set Te would give

bσS\Te > cTe\S showing that bσ does not satisfy condition (2) in Definition 1.2).

Chapter 5. Benchmarks and First-Price Auctions 124

Observe that ∀e ∈ S, bσe ∈ {0, 1}, as each bid starts at 0, and then takes the form

bσe = 1−maxj∈N(e) b
σ
j . We partition the agents into S0 and S1, depending on their bid,

as follows. Let Sx ⊆ S be a set such that ∀e ∈ Sx, bσe = x. Recall that N(e) is the set of

neighbours of agent e; the constraint property of condition (2) in Definition 1.2 implies

that ∀e ∈ S1, N(e) /∈ S1 — i.e., that no two neighbours may bid one. This implies that

S1 is an independent set in G. The ‘tightness’ property of condition (3) in Definition 1.2

requires that ∀e ∈ S, ({e}∪N(e))∩S1 6= ∅— if an agent bids zero, one of its neighbours

must bid one. This implies that S1 is a dominating set in G.

Therefore, the set S1 is an independent dominating set in G, and is at least as large

as M , by definition. As OMBmin(c) = |S1|, from the definition of S0 and S1, this shows

that OMBmin ≥ |M |.
For the other direction, let σ be an ordering such that every agent in M appears

before all agents not in M . As M is an independent set, each agent in M can raise its

bid to 1 while its neighbours still bid 0. As M is dominating, no agent outside M will

then be able to bid more than 0 due to the presence of a neighbour in M already bidding

1. Hence bσS = |M |, and OMBmin ≤ |M |.
This shows that computing OMBmin(c) gives the size of the minimum independent

dominating set.

As we have seen a proof that computing OMBmin can be used to compute the size of

a minimum independent dominating set of a graph, this is sufficient for an approximation

hardness result.

Theorem 5.14. For any set-system auction I, having cost vector c, there is no constant

ε > 0 for which OMBmin(c) can be approximated within a factor of n1−ε in polynomial

time, unless P=NP.

Proof. From Lemma 5.13 we see that for any graph, G, the size of the minimum indepen-

dent dominating set can be calculated by determining OMBmin(c) for instance I (which

is derived from G in polynomial time). Therefore, if OMBmin(c) could be approximated

within n1−ε for instance I, this would imply a polynomial-time approximation within a

factor of n1−ε for the minimum independent dominating set of G, and [19] shows that

this would imply P=NP.

We will firstly see a technical theorem, that shows for particular (bipartite) restricted

set systems, that there exists a NTUmin bid vector such that all agents bid either 0 or 1.

We will use this fact to show that, for these cases, NTUmin(c) is equal to OMBmin(c).

We can then leverage the result of Theorem 5.14 to apply to computing NTUmin(c),

showing that NTUmin(c) is similarly hard to approximate.

Considering the hypergraph representation of set-system constraints described in

Section 5.2, we are interested in those set-systems that result in a bipartite graph.

Recall that each constraint imposed by the set-system must have cardinality 2, (i.e.,

Chapter 5. Benchmarks and First-Price Auctions 125

∀T ∈ F \ {S}, |S \ T | = 2) which can be represented by an edge in a graph. We will

be interested in auction instances such that this resulting constraint graph is bipartite,

and will refer to these as ‘bipartite’ constraint sets.

Theorem 5.15. For any set-system auction I, having cost vector c, there is no constant

ε > 0 for which NTUmin(c) can be approximated within a factor of n1−ε in polynomial

time, unless P=NP.

Proof. We will firstly show that, for any instance I with binary and bipartite constraint

sets, a given winning set S such that cS = 0 and a given NTUmin bid vector bmin then

a vector b exists such that bS = bmin
S =NTUmin and ∀e ∈ S, bσe ∈ {0, 1}.

Let bmin be NTUmin bid vector bmin such that ∀e ∈ S, bmin
e ∈ {0, 1/2, 1}, Lemma 5.11

shows that such a bid vector exists. We know that every agent e with bmin
e = 1/2

has at least one neighbour, y with bmin
y = 1/2. Let Sh be a subset of S such that

∀e ∈ Sh, bmin
e = 1/2.

For all e ∈ S \ Sh let be = bmin
e .

Divide Sh into two partitions, Sh1 and Sh2, such that ∀e ∈ Sh1, there does not exist

a y such that (y ∈ (N(e))) and (y ∈ Sh1) (there are no edges between vertices that are

in the same partition). This is possible only because we require the constraint set to be

bipartite.

No agent in Sh has a neighbour outside Sh with a non-zero bid; as any such agent e

would have a neighbour j with bmin
j = 1 and hence bmin

e + bmin
j > 1 violating their shared

constraint. As all agents in Sh1 have neighbours in Sh2 and vice-versa (or else we do not

have any e, j such that bmin
e + bmin

j = 1), then we can choose new bid values of 0 and 1.

More formally we have e ∈ Sh1 if and only if be = 1 and e ∈ Sh2 if and only if be = 0.

If |Sh1| = |Sh2| then we have bmin
Sh

= bSh . Clearly we may not have |Sh1| < |Sh2| as this

would give bS < bmin
S contradicting bmin

S being a minimum vector. Simply swapping the

labels for sets Sh1 and Sh2 would equally imply that |Sh1| > |Sh2| is not possible.

As this shows we have bmin
Sh

= bSh , and we have assigned bids such that ∀e ∈ S, be ∈
{0, 1}, it implies that any such restricted system with bipartite constraint sets has a

NTUmin bid vector with ∀e ∈ S, be ∈ {0, 1}. We can observe that any ordering σ gives

an ordered maximal bid vector bσ such that ∀e ∈ S, bσe ∈ {0, 1}. Let σ be an ordering

such that all agents with a bid bid of 1 in b appear before any agent that bids 0, which

gives an ordered maximal bid vector of bσ = b. Therefore, when the set system has

binary and bipartite constraint sets, we have NTUmin(c)= bσS , for a minimum ordering

σ, therefore NTUmin(c)=OMBmin(c).

If we take a bipartite input graph, G, then from Lemma 5.13 this would give the

size of the minimum independent dominating set on G. Similarly to Theorem 5.14,

if we could approximate NTUmin(c) within n1−ε for instance I, this would imply a

polynomial-time approximation within n1−ε for the minimum independent dominating

set of the bipartite graph G, and [7], shows that this would imply P=NP.

Chapter 5. Benchmarks and First-Price Auctions 126

As finding NTUmin (or OMBmin) involves firstly finding the lowest-cost solution to

a possibly inapproximable problem, an approximation hardness result may appear to

be trivial. However, it is also easy to see that these approximation hardness results for

NTUmin and OMBmin can be applied even when the underlying problem is polynomial-

time computable. One such example is a problem based on MINIMUM WEIGHT EDGE

COVER.

Name MINIMUM WEIGHT EDGE COVER

Instance A graph G = V,E and an edge-weight function w(e) for e ∈ E).

Output A set of edges S ⊆ E such that every vertex v ∈ V is incident to an edge e in
S and

∑
e∈S w(e) is minimized.

Problem 6: MINIMUM WEIGHT EDGE COVER

MINIMUM WEIGHT EDGE COVER is known to be polynomial-time solvable [32].

It was shown in [11] that NTUmin(c) is NP-hard to calculate exactly, even when the

problem of finding the minimum-cost solution is polynomial-time solvable.

Given an arbitrary bipartite input graph G = (V,E), assuming at least one edge in

E, define an instance of WEIGHTED EDGE COVER as follows.

Let V ′ = V ∪ {A0}.

let E′ = E ∪
⋃
v∈V
{{v,A0}}.

let w′(e) =

0, if A0 ∈ e

1, otherwise.

From this instance of MINIMUM WEIGHT EDGE COVER, we create a set-system

auction, with the feasible sets as the valid solutions to the edge cover problem, as follows.

Let E = E′, Let F = {T : ∀v ∈ V ′, ∃D ∈ T such that v ∈ D}, and let ce = w′(e) for all

e ∈ E .

Observe that the set S =
⋃
v∈V {{v,A0}} covers all vertices in V ′ and has weight 0

(and hence cost 0), so may be chosen as a winning set.

We define a subset of the feasible sets that differ from the winning set by only one

‘edge’.

Let F1 =

S, ⋃
(u,v)∈E

S \ {{u,A0}, {v,A0}} ∪ {u, v}

 .

Observe that F1 ⊆ F (every feasible set T ∈ F1 has w(T) ≤ 1, and every feasible

set T ′ /∈ F1 has w(T ′) > 1).

Chapter 5. Benchmarks and First-Price Auctions 127

Consider that every feasible set T ∈ (F1 \ {S}) gives S \ T = {u, v} for some

(u, v) ∈ E and cT\S = 1. This shows that the constraint implied by condition (2)

in Definition 1.2 on any NTUmin bid vector bmin may be given by bmin
u + bmin

v ≤ 1,

hence we can observe that the constraints for this set-system mirror the input graph G.

(We can ignore the constraints with values greater than 1, as they would imply some

agent bidding more than 1, which would already violate an ‘edge’ constraint). NTUmin

must allocate bids such that every two neighbours (u, v) ∈ E must bid bmin
u + bmin

v ≤ 1

(from condition (2)) and that ∀u ∈ V,∃(u, v) ∈ E such that bmin
u + bmin

v = 1 (from

condition (3) in Definition 1.2), and hence NTUmin gives exactly the size of a minimum

independent dominating set in graph G. Hence, there are auctions based on instances

of the polynomial-time solvable problem MINIMUM WEIGHT EDGE COVER where

it is hard to even approximate NTUmin.

Chapter 6

Benchmarks for Forward Auctions

6.1 Overview

Our area of study has been, thus far, that of procurement auctions, where some central

authority is distributing revenue in return for some service. In this chapter we take the

natural step of considering the opposite approach, where the central authority may be

distributing services in return for revenue.

The set-system auctions of Karlin et al. [24] that we have been studying are often

referred to as an auction for ‘hiring a team’ (e.g. [4, 36, 24, 11]); they nicely characterize

the concept. We may like to consider a forward set-system auction as one of ‘providing

a service’ and we give a definition of such an auction here. In these auctions we assume

that we have a single seller that is able to provide services, and that there are various

buyers that would wish to purchase these services — but that it may only be possible

for certain subsets of buyers to receive these services simultaneously. As the seller must

choose which subsets he will provide to, we will consider that those who receive a service

as ‘winners’, and those that do not as ‘losers’.

As we have been interested in frugality for set-system auctions, we would like to

consider the same concept for these ‘providing a service’ auctions. In order to do that

we will need to consider what we might use as a benchmark figure, a question which this

chapter aims to go some way to addressing.

We will firstly see a definition for a forward set-system auction, and show some

comparison with the more commonly studied combinatorial auction. We then examine

some possibilities for computing a reasonable benchmark figure, and compare it with the

benchmarks that are already used for the unit-demand special-case of the combinatorial

auction.

6.2 Definitions

In these auctions we assume that the seller can perform some service and that there are

also ‘feasible sets’ of buyers who could be served.

128

Chapter 6. Benchmarks for Forward Auctions 129

We define a forward set-system auction analogously to the set-system auction de-

scribed in Section 1.4.1.

Let a set system (E ,F) be specified by a set E of n elements, each representing an

agent, and a collection F ⊆ 2E of feasible sets; these are the subsets of agents that make

a possible solution for the seller (i.e., for all T ∈ F then every agent e ∈ T can be served

simultaneously).

Let the valuation vector v = (v1, . . . , vn) represents the (private) valuation ve that

each agent e will place on being chosen at the auction. For ease of notation, let vW =∑
e∈W ve be an aggregate function.

Each buyer e then makes a bid be to the mechanism. The mechanism may then

choose a ‘winning’ set S of agents to serve, and ask that each agent e ∈ S will pay some

price pe ∈ [0, ve] for the service provided and agents that are not in the winning set

do not pay, ∀e /∈ S, pe = 0. These are the commonly-made assumptions of ‘no positive

transfers’ and ‘voluntary participation’ (see, e.g., [35]).

Unlike some other forms of auction, we only consider that agents are ‘winning’ (in

the chosen solution) or ‘losing’ (not in the chosen solution). We do not consider that

an agent could receive more than one service or that the agent may value the services

differently.

Raising revenue by auction has often been studied in the literature, as Combinatorial

Auctions (e.g. [38, 35]). We now consider the similarities between these combinatorial

auctions and the set-system auctions proposed.

6.3 Comparison with Combinatorial Auctions

In order to provide some context for a comparison, we begin with a commonly-used

description of a Combinatorial Auction.

6.3.1 Definitions

There is a set of m indivisible items and a set of n bidders that each wish to purchase

some combination(s) of these items. Every bidder e has a valuation function ve, which

specifies the value that bidder e has for each subset (or bundle) of items. We assume

that these valuations are monotonic — that S ⊆ T → ve(S) ≤ ve(T) and that ve(∅) = 0.

A solution to a combinatorial auction is an allocation of the items (A1, . . . , An) to the

bidders, when Ae is the set of items allocated to agent e, such that no item is allocated

to more than one bidder. Each bidder pays some price pe, depending on the allocation

the bidder receives. (We assume that if ve(Ae) = 0 then pe = 0, that any agent does

not pay if he does not receive a bundle that he was interested in). Let A be the set of

all possible allocations.

There are different ways of looking at the effectiveness of Combinatorial Auctions,

such as maximizing the social welfare (i.e.,
∑

e∈{1,...,n} ve(Ae)), but as our interest is with

Chapter 6. Benchmarks for Forward Auctions 130

the payment bounds, we will be concerned with the total revenue raised by the auction

(i.e.,
∑

e∈{1,...,n} pe).

6.3.2 Comparison of Set-System Auctions and Combinatorial Auctions

Both standard combinatorial auctions and our forward set-system auctions deal with

the same scenario — when bids are invited, by some authority, for the purchase of goods

or services. We will briefly look at some of the differences between the two settings.

Very often, combinatorial auctions are considered with free-disposal — that not all

items must be allocated. This is also generally assumed in the case of reverse set-system

auctions, as there is never any benefit in making payments to more agents than are

strictly necessary.

The value of this assumption is not so obvious for a forward set-system auction, as

it may actually raise more revenue by choosing to sell to fewer agents, so the difference

between the two settings (of having open or closed sets) may be pertinent. For example,

consider that a truthful mechanism wishes to sell two items to more than three buyers.

However, only two of the buyers have a non-zero valuation for the items. A truthful

mechanism could sell two items, at a price of zero, or possibly actually just sell one item

at the second-highest price, and gain some revenue. Therefore, it may be advantageous

to allow winning sets that are subsets of other feasible sets. Clearly in a procurement

auction, it is never advantageous to buy more items than needed. If a mechanism were

satisfied with buying one item, at the second-lowest price, then buying two items instead

would result in paying the third-lowest price for both of them. Hence there is never an

advantage to have winning sets that are supersets of other feasible sets.

In some cases we may wish to have only an open set of feasible solutions. By way of

example, consider an auction of radio services to subscribers. It may be that, in order

to reach some particular set of subscribers, that a particular transmitter would need to

be activated — but that this transmitter may also inevitably reach some other set of

subscribers, who can then also receive the service.

We will briefly take a look at comparing the expressivity of forward set-system auc-

tions and combinatorial auctions. In order to do this, we will assume that set-systems

are closed downwards, and that combinatorial auctions allow free disposal so that the

two settings are similar.

We see that the special-case of single-minded combinatorial auctions (when each

agent values exactly one bundle) are not expressive enough to describe all set-system

auctions, and that set-system auctions are trivially not expressive enough to describe

all general combinatorial auctions. (It seems likely that set-system auctions lie strictly

between single-minded and general combinatorial auctions, in terms of expressivity, but

no proof is shown here).

Proposition 6.1. There exists a forward set-system auction that may not be described

by a single-minded combinatorial auction.

Chapter 6. Benchmarks for Forward Auctions 131

Proof. The proof consists of a short example, as follows

Let E = {1, 2, 3}

Let F = {{1, 2}, {1, 3}, {2, 3}}

Let v1 = v2 = v3 = 1

That is, there are three agents who wish to buy some service, but only (any) two

may be served simultaneously. In a single-minded combinatorial auction, each agent

may value only one bundle of items; hence if two agents share a common item in their

bundle, they may not both be selected. Clearly, if this allows the feasible sets given

({1, 2}, {1, 3}, {2, 3}) then none of the agents may share a common item and all three

agents could be allocated items simultaneously — giving a possible solution ({1, 2, 3})
which is not one of the feasible sets. This set-system auction can, therefore, not be

properly described by a single-minded combinatorial auction.

We also observe that general combinatorial auctions can express auctions that for-

ward set-system auctions cannot, as follows.

Consider any auction where one agent values two items with different, but non-

zero, valuations in a combinatorial auction. A set-system auction allows an agent to

be selected, or not, but does not allow a choice of valuations for any agent, so trivially

cannot describe a combinatorial auction that allows a choice of valuations.

6.4 Benchmarks

We will now consider the problem of benchmarking forward set-system auctions, in

order to be able to provide a reasonable way of measuring the performance of truthful

mechanisms, in terms of payments.

6.4.1 Optimal Solution as a Benchmark

As we saw in Chapter 1 for reverse auctions, perhaps the first approach to look for

a benchmark would be to take the value of OPT - an optimal solution that may be

obtained by an omniscient mechanism,

OPT = max
S∈F

∑
e∈S

ve.

However it is well-known, and easy to observe, that attaining even close to an optimal

solution may not be possible in the realm of truthful mechanisms. An illustration of

this can be seen when only one of the bidders e has a non-zero valuation ve > 0 for

some service. An optimal mechanism may be able to offer the service for a fixed price

Chapter 6. Benchmarks for Forward Auctions 132

of ve and agent e may accept, raising revenue ve. Truthful mechanisms are known to be

bid-independent (see, e.g., [16]), hence if agent e wins in a truthful mechanism he will be

expected to pay some amount relating to the bids of the competing agents — hence no

more than zero. (Observe that this property is satisfied by threshold payments.) Being

bid-independent means that the particular payment to some agent must not depend on

the value of that agent’s bid (or else, given two possible winning bids of b and b′ and

respective payments p, p′ then when p′ > p an agent with valuation b may falsely declare

b′ and strictly increase utility, hence the mechanism could not be truthful). With all

other bids being fixed, any variance in one agent’s bid may decide if it is chosen in the

winning set, or not, but not the payment value that is received if it is chosen. So no

truthful mechanism will obtain any revenue for this auction.

As it seems that OPT would be hard to attain, or even approximate, for truthful

mechanisms it seems that we need some less demanding benchmark. We will firstly

try the relatively naive approach of simply mirroring the NTUmin definition to give

F1NTUmax (and observe that 0 ≤ F1NTUmax ≤OPT). We will also try another obvious

variant, F2NTUmax, before settling on a third, which we will denote FNTUmax.

6.4.2 Considering F1NTUmax as a Benchmark

As we are looking for a benchmark for selling items, rather than buying, it is reason-

able to choose some maximum value rather than the minimum that we used in reverse

auctions. Let F1NTUmax (for Forward Non-Transferable Utility max) be defined as

follows.

For a given set-system (E ,F), let n = |E| and suppose there is a valuation vector

v = (v1, . . . , vn). For an instance I = (E ,F ,v) of the problem, define F1NTUmax(I) as

F1NTUmax(I) = B when B is the solution to the following problem.

Let S ∈ argmaxS∈F vS and maximize B =
∑

e∈S be subject to

(1′) be ≤ ve for all e ∈ S

(2′)
∑

e∈S\T be ≥
∑

e∈T\S ve for all T ∈ F

(3′) for every e ∈ S, there is Te ∈ F such that e /∈ Te and
∑

e′∈S\Te be′ =
∑

e′∈Te\S ve′

Now consider Example 6.1 below as a setting for an auction, which shows F1NTUmax

may be arbitrarily lower than the revenue obtained by VCG.

Example 6.1.

Let there be Q identical items to be sold amongst n = Q+ 1 (unit-demand) bidders.

Each competing agent would like to be served, with some valuation for the service, but

only Q agents may be served simultaneously. (This is obviously comparable with the

single-commodity auctions that were presented in Chapter 3 for the reverse setting.)

Let the valuation vector be

v = (1, . . . , 1, 0)

Chapter 6. Benchmarks for Forward Auctions 133

(i.e., only the final agent n values an item at 0, all other agents value an item at 1).

Choosing S optimally gives S = {1, . . . , n− 1}, and as maxe/∈S ve = 0 in order to satisfy

condition (3′) we will have be = 0 for all e ∈ S and hence F1NTUmax= 0. Observe

that we could use the VCG mechanism for this auction, and could sell Q items with the

VCG payment being the same for all agents, the (Q+ 1)st highest valuation.

However, now let us assume that we have an auction where the auctioneer may

choose to leave some agents unserved (or some items unsold — this is comparable to

the notion of ‘free-disposal’ in combinatorial auctions). Considering Example 6.1 again,

perhaps the mechanism will have chosen, in advance, to implement a k-item Vickrey

auction with k = Q − 1. A k−item Vickrey auction is a single-price auction that sells

k items to the k highest bidders at the price equal to the k + 1st highest bid (see [37]).

In this case, each of the Q− 1 agents chosen would pay a threshold value of 1 (as there

is some agent not selected with valuation 1), and the total revenue obtained would be

Q− 1.

It is important to discuss how the mechanism would choose how many items to

sell. If the mechanism were to examine the bids first, and then choose k accordingly to

optimize revenue then this mechanism would not be truthful.

To illustrate this, consider an example with 2 identical items for sale, to be sold

amongst 3 bidders who each value either item equally. Let the valuation vector be

v = (8, 5, 2). If all agents bid truthfully, then the mechanism chooses k = 1 to sell 1

item to agent 1 at price p1 = 5, and agent 2 has utility u2 = 0. Alternatively, agent 2

may bid b2 = 3. Now it is optimal for the mechanism to sell 2 items to agents 1 and

2 at price p1 = p2 = 2; and agent 2 will receive utility u2 = v2 − p2 = 3. Therefore,

agent 2 has strictly increased utility from 0 to 3 by submitting some bid other than the

valuation; which proves that this mechanism is not truthful.

Randomized Mechanisms

If we consider Example 6.1 again, we can propose a randomized mechanism that will

choose the number of items k to be sold uniformly at random from {1, . . . , Q} and then

proceed with a k-item Vickrey auction. For a randomized mechanism, there is more than

one meaning for truthfulness (see,e.g., [2]) — a mechanism that is truthful in expectation

means that no agent will be benefit, on average, by submitting an untruthful bid, but it is

possible that there are occasions when an agent may gain greater utility by submitting an

untruthful bid, depending on the choices made by the randomized mechanism. However,

there is also a stronger notion of truthfulness — that of being universally truthful, which

is when, no matter what decisions are made by the randomized algorithm, an agent

always maximizes its utility by submitting truthful bids.

Here, we can see that this mechanism is not only truthful in expectation, but also

universally truthful, as follows. No bid can affect the choice of k and, given that k has

been decided, the k-item Vickrey auction is known to be truthful.

Chapter 6. Benchmarks for Forward Auctions 134

The expected revenue of this mechanism on Example 6.1 is easy to compute, when

k = Q then the mechanism obtains revenue 0 and when k 6= Q then the mechanism

obtains revenue k. Hence this randomized mechanism will achieve revenue of approxi-

mately Q/2 in expectation, yet our benchmark figure F1NTUmax would suggest a value

of zero, as it has assumed k = Q being the optimal choice of winning set. This suggests

that F1NTUmax may be too weak to use as a benchmark, certainly for measuring the

payments of randomized mechanisms.

As randomized mechanisms are commonly studied in the literature, (e.g. the Random

Sampling Optimal Price (RSOP) auctions and Sampling Cost Sharing (SCS) auctions

of Goldberg et al. in [17, 16, 1, 28]) then it would seem prudent to require that any

reasonable benchmark should not be arbitrarily smaller than the expected revenue of a

truthful randomized mechanism.

Non-Optimal choices of winning set

In the procurement auction the goal of the auctioneer was to minimize the payment. As

a consequence of this, it is reasonable to always choose a minimal feasible set — adding

superfluous agents to a winning set is undesirable as it will both increase the number

of agents that need to be paid and increase the bid values that are considered (as we

assume that lowest-bidding agents are more preferred agents and will be chosen first).

However, this coincident behaviour is not maintained when we consider forward

auctions. While our auctioneer would like the winning set to be large, to sell as many

items as possible, this comes at the cost of decreasing prices (again, we assume that the

highest-bidding agents are more preferred and will be chosen first).

As we have seen that truthful mechanisms are bid-independent, we can see that it

may certainly be beneficial to sell only a smaller number of items in order to optimize

the revenue obtained, as was shown in Example 6.1.

We can observe from condition (3) of the NTUmin definition (Definition 1.2) that

the ‘bid’ value allocated to any agent will be determined by the bids of ‘losing’ agents.

Therefore, when we consider a similar benchmark for forward auctions, we must in-

evitably conclude that always choosing the revenue-maximizing winning set will give an

unreliable benchmark, as it may overly restrict the values of the losing agents. Therefore

choosing an optimal winning set may give a value that is arbitrarily lower than some

reasonable truthful (possibly randomized) mechanism may be expected to achieve, as

can be demonstrated with Example 6.1.

As randomized mechanisms are well-used it seems reasonable to strengthen the

benchmark. We may initially attempt this strengthening by giving a choice of winning

set rather than only allowing the optimal.

Chapter 6. Benchmarks for Forward Auctions 135

6.4.3 Considering F2NTUmax as a Benchmark

We may first attempt to strengthen the benchmark by considering every possible feasible

set as a candidate, and choosing the largest of the resulting values for a benchmark, which

we define as F2NTUmax as follows.

F2NTUmax(I) = maxS∈F BS when BS is defined by the solution to the following

problem.

maximize BS =
∑

e∈S be subject to

(1′′) be ≤ ve for all e ∈ S

(2′′)
∑

e∈S\T be ≥
∑

e∈T\S ve for all T ∈ F

(3′′) for every e ∈ S, there is Te ∈ F such that e /∈ Te and
∑

e′∈S\Te be′ =
∑

e′∈Te\S ve′

However, it quickly becomes obvious that such an approach may lead to set-systems

for which this value cannot be defined. For example, let E = {1, 2}, let F = {{1}, {2}},
let v1 = 1 and let v2 = 0. If we allowed arbitrary choices of S, we could have S = {2}
and in order to satisfy condition (2′′) (for set T2 = {1}) we would have b2 ≥ v1 giving

b2 ≥ 1. However condition (1′′) requires b2 ≤ 0, hence the benchmark could not be

defined for this set-system as we cannot satisfy the constraints.

In order to avoid this problem, we consider a third approach - by enumerating the

proposed benchmark (FNTUmax) over all possible sizes of the winning set, and choosing

the largest value. For each possible size, we consider the optimal winning set of that size,

and then choose the size, and hence winning set, to be the one that gives the largest

value. We can see that, by choosing an optimal winning set for its size, then we do

not have the same problem with an undefined benchmark, yet we also get a stronger

approach than F1NTUmax.

6.4.4 Considering FNTUmax as a Benchmark

We now define the benchmark FNTUmax as follows;

FNTUmax(I) = max1≤k<nBk when Bk is defined by the solution to the following

problem.

Let Sk ∈ argmaxSk∈F :|Sk|=k vSk and maximize Bk =
∑

e∈Sk be subject to

(1+) be ≤ ve for all e ∈ S

(2+)
∑

e∈S\T be ≥
∑

e∈T\S ve for all T ∈ F

(3+) for every e ∈ S, there is Te ∈ F such that e /∈ Te and
∑

e′∈S\Te be′ =
∑

e′∈Te\S ve′

Observe that, in Example 6.1 we have FNTUmax= Q− 1 (as k = Q− 2 is optimal) and

recall that the randomized k-item Vickrey auction suggested gives an expected revenue

of approximately Q/2, which shows that FNTUmax is at least strong enough to be a

reasonable benchmark for this example.

Chapter 6. Benchmarks for Forward Auctions 136

6.4.5 Benchmarks for Unit Demand Auctions

We now consider the special-case of unit-demand combinatorial auctions. These are

analogous to the single-commodity auction discussed in Chapter 3, in the forward setting,

but further restricted so that each agent only wishes to purchase one item.

In this setting, we have some quantity Q of homogeneous items for sale. There are

n agents, each of whom would like to purchase one of these items, and each agent e has

some private valuation ve that he places on receiving the item. Each agent submits one

sealed bid be and the auctioneer will allocate the Q items (or less), one to each bidder,

to give a winning set S ⊆ {1, . . . , n}. We assume that each agent e ∈ S then pays some

price pe ∈ [0, be] for purchasing the item and agents that are not allocated an item do not

pay, ∀e /∈ S, pe = 0 (i.e., we assume ‘no positive transfers’ and ‘voluntary participation’).

This unit-demand auction has been studied previously, notably by Goldberg et al. [16]

which examines competitive mechanisms for these goods auction, also with unlimited

supply, such as digital goods. In order to establish what they call a competitive frame-

work (this is the same notion of bounding payments that we have referred to as ‘frugal-

ity’) they also require some sort of benchmark figure for their auctions and we reproduce

the definition here.

F (2) is defined as follows: Let b be a bid vector and let ve be the e-th largest bid in

the vector b. Auction F (2) on input b determines the value k such that k ≥ 2 and kvk

is maximized. All bidders with be ≥ vk win at price vk; all remaining bidders lose. The

profit of F (2) on input b is thus

F (2)(b) = max
2≤k≤n

kvk

We will now see how this benchmark value F (2) is closely related to our FNTUmax,

in the special case of unit demand auctions.

Lemma 6.2. For a unit-demand auction having valuations v1 ≥ . . . ≥ vn, the inequality

FNTUmax ≥ max1≤k≤n kvk+1 holds .

Proof. Let Sk be the highest-valuation feasible set that contains k agents. For each agent

e ∈ Sk, let j be the agent in E \Sk with the highest valuation. Let Te = Sk \{e}∪{j} be

a feasible set (where j replaces e). Condition (2+) tells us that bSk\Te ≥ vTe\Sk , which

is simplified to be ≥ vj .

Let Sk = (1, . . . , k) (recall the agents are sorted into decreasing order of valuation,

v1 ≥ . . . ≥ vn), then let j = k + 1 and we have ∀e ≤ k, be ≥ vk+1.

Therefore, when computing over size k, we have bSk ≥ kvk+1. As FNTUmax maxi-

mizes over all 1 ≤ k ≤ n, then it follows that FNTUmax ≥ max1≤k≤n kvk+1,

We can now compare this lower bound for FNTUmax with F (2) and see that the

ratio between them is bounded by a factor of 2.

Chapter 6. Benchmarks for Forward Auctions 137

Lemma 6.3. For unit-demand forward auctions, F(2)

FNTUmax ≤ 2.

Proof. We have seen the definition that F (2)(b) = max2≤k≤n kvk

and Lemma 6.2 which shows FNTUmax ≥ max1≤k≤n kvk+1 . Fixing the k which max-

imizes F (2), let k′ = k − 1. We saw in the proof of Lemma 6.2 that bSk′ ≥ k′vk′+1 and

hence FNTUmax ≥ k′vk′+1. We can rewrite this (substituting k − 1 = k′) as

FNTUmax ≥ (k − 1)vk,

and, as we have fixed k to be the maximum, from its definition we have

F (2) = kvk.

Hence doing the division gives

F (2)

FNTUmax
≤ k

k − 1
,

and as k ≥ 2, from the definition of F (2), this can be simplified to

F (2)

FNTUmax
≤ 2

1

Now Lemma 6.3 allows us to leverage the results from [16], to show that no de-

terministic mechanism can be competitive with respect to FNTUmax. Their theorem

statement is reproduced here.

Theorem 4.1 Let Af be any symmetric deterministic auction defined by bid-independent

function f . Then Af is not competitive: For any 1 ≤ m ≤ n there exists a bid vector

b of length n such that the profit of Af on b is at most F (m)(b)mn

Using Lemma 6.3 we can fix m = 2 to give a similar result for FNTUmax.

Corollary 6.4. Let Af be any symmetric deterministic auction defined by bid-independent

function f . Then there exists a bid vector b of length n such that the profit of Af on b

is at most FNTUmax(b) 4
n .

6.4.6 Considering Alternatives to FNTUmax

As we have noted that NTUmax can be used as an alternative benchmark to NTUmin,

and is in some ways more desirable, we could consider using FNTUmin rather than

FNTUmax. If we minimize over the choice of the size parameter, k, then the auction

given in Example 6.1 (with valuations (1, 1, ε, . . . , ε, 0)) will result in a benchmark value

of 0, which is unrealistically low (by choosing k = Q). Hence we must still maximize

Chapter 6. Benchmarks for Forward Auctions 138

over the size parameter k, yet we will minimize the value given by a fixed winning set,

as follows.

Define FNTUmin(I) = max1≤k<nBk when Bk is defined by the solution to the

following problem.

Let Sk ∈ argmaxSk∈F :|Sk|=k vSk and minimize Bk =
∑

e∈Sk be subject to (1+),(2+)

and (3+).

It is worth observing that in the case of the unit-demand auctions discussed earlier,

that we will always have FNTUmin = FNTUmax; the bid of each agent e ∈ S is defined

by the feasible set Te = S \ {e} ∪ {j} (i.e., be = vj) when j is the item in E \ S with

the largest valuation. This means that each bid is defined by the valuation of a single

agent and there is no variation in the bids, hence the minimum and maximum values

are equal.

Chapter 7

Conclusion and Discussion

7.1 Conclusion

To conclude, for each of the chapters, we will examine the main results, give a discussion

on the impact of these results and consider the main questions that have been left open

by this work.

7.1.1 Discussion and Summary of Main Results

Chapter 2

Chapter 2 gives a result for the frugality of VCG that seems to be reasonably obvious,

but not specifically documented elsewhere. The result for the frugality of monotonic

approximation mechanisms, in general, is an extension of this. Again, this result does

not appear to be documented elsewhere and is a more generalized version of Theorem

18 in [11]. Showing that only minimal winning sets need be considered with regard to

tie-breaking (for VCG) is, likewise, fairly obvious but has been documented for com-

pleteness.

Chapter 3

We introduced a very natural single-commodity auction. We show that even in a very

limited special case where only {1, 2} quantities are permitted, VCG has poor frugality

(with respect to NTUmin). We gave a mechanism that greatly improves the frugality in

this special case. This result is within a constant factor of optimal for similar types of

mechanism, but we have not shown that it is close to optimal for all truthful mechanisms

(although it does seem likely). We have also shown a lower bound for the general case

which shows that a blind-scaling mechanism of the same type will only be able to achieve

relatively small gains in frugality. We conjecture that there is some scaling mechanism

that may gain an improvement in frugality, by preferring agents with larger quantities

over smaller ones, but have been unable to provide any proof, and confirming this remains

an open question.

139

Chapter 7. Conclusion and Discussion 140

One obvious open question for both these cases is whether the scaling mechanism

could do better. There may be other types of (non-linear) scaling mechanism that have

better frugality, which has not been addressed here. Perhaps allowing a mechanism more

information about the instance, before it decides on scaling (or other) factors, would

help. If more information helps lower frugality, then the question arises of exactly which

information about the instance a mechanism would need in order to improve frugality,

yet could still do so truthfully. Rather than the lower bound we have, restricted to a

class of ‘blind-scaling’ mechanisms, one goal would be to find a lower bound on frugality

for all truthful mechanisms.

We could extend the scope of this chapter to relax the requirement that quantities are

integer, and examine the frugality of the mechanisms in that setting. It seems unlikely

that a simple blind-scaling mechanism will achieve better frugality than VCG, as the

range of quantities in the instances can vary arbitrarily.

Chapter 4

The generalization of path-auctions given in Chapter 4, which assumes that agents may

sell bundles of edges, appears to have some reasonable motivation, although we show

that finding an exact solution is NP-hard. The polynomial-time mechanism shown for it

has an unsatisfactorily large frugality ratio (due to only a naive approximation algorithm

being used). The best approximation ratio we have is k (the number of edges owned

by each agent), but we do not have an inapproximability result showing that it would

be hard to do better, so this remains an obvious open question. Scaling approaches for

path-auctions have been shown to work well (e.g. [24, 39], and we have seen mechanisms

proposed recently ([5] and [25]) that give a better frugality ratio than VCG for some

problems, mostly related to vertex covers.

It is a natural question to ask if similar approaches could improve frugality for

this auction (even for the NP-hard exact solution). An interesting direction for future

research would be to look for a truthful mechanism that can implement a better ap-

proximation algorithm (if it can be shown that one exists) and that can also improve

frugality by scaling. By doing this, it may be possible to create a genuinely practical

auction — that is both tractable and has good frugality.

Chapter 5

Chapter 5 examines a number of methods of obtaining prices through first-price auc-

tions which could be considered as possible alternatives to NTUmin as benchmarks for

measuring frugality. We initially described a way to look at finding feasible first-price

bids on set-system auctions as a hypergraph of constraint sets.

Recently the focus has been more on using NTUmax as a benchmark rather than

NTUmin (e.g. [5, 25]). As we show that NTUmin may be hard to approximate, this is a

reason for intuitively believing that it may be unrealistically low for use as a benchmark.

Chapter 7. Conclusion and Discussion 141

The uniformly rising first-price auction that was proposed seems to be a good way

of producing a reasonable single solution but it may prove to be difficult to analyse.

We considered the process of taking maximal bids from agents in some order and

saw that this ordering always produces a range of values between NTUmin(c) and

NTUmax(c) and that certain instances allow both extremes to be reached with the

appropriate ordering. This is another good way to produce some feasible solution (e.g.

with a random ordering), but this still possibly leaves a large range of values to choose

from and finding the ordering that gives a minimum is hard to approximate. We also

showed that NTUmin may be hard to approximate even where calculating NTUmax is

tractable (such as for edge cover auctions).

In the general case, even with just ternary constraint sets, we have seen examples that

the minimum ordering value, OMBmin(c), may be significantly higher than NTUmin(c)

(i.e., OMBmin(c) ≥ 2n(NTUmin(c)/9), as well as an example where OMBmax(c) may

be lower than NTUmax(c). Where the size of the winning set S is restricted to |S| ≤ 4,

we saw that OMBmin(c) = NTUmin(c), but that this does not hold where |S| ≥ 5.

In the restricted case of binary-single value constraints, we saw a proof that that

OMBmin(c)≤ NTUmin(c)/2 and a class of examples for which OMBmin(c) / NTUmin(c)

approaches 2, matching the lower bound. Even in this restricted setting, we saw that

approximating either NTUmin(c) or OMBmin(c) to within a factor of n1−ε for any ε > 0

is NP-hard.

In the case of single-commodity auctions we saw that OMBmin(c) may be greater

than NTUmin(c) by up to a factor of 2, but we do not currently know of any upper

bound for this ratio (other than the trivial |S|). It remains an open question whether it

would always be possible to find an ordering σ such that bσS ≤ 2NTUmin(c). However,

we have seen that a number of reasonable heuristics for creating an ordering σ give

bσS >2 NTUmin(c) for some examples.

Chapter 6

Chapter 6 considered possible benchmark values for forward auctions. We saw that

the definitions used in the reverse auctions can not immediately be adapted, but that

by expanding the scope we can give a possible candidate, which at least seems to be

adequate for unit-demand auctions.

We saw that the problems of defining a benchmark for forward and reverse auctions

are fundamentally quite different and that in the forward setting we cannot reasonably

hope to use a benchmark that is simply based upon choosing a single, optimal, feasible

set, as was the case for reverse auctions.

We have proposed an auction framework for forward auctions based on the set-system

idea used in procurement auctions. While we did not give many details of the expressivity

of this auction, it seems likely that it lies strictly between single-minded combinatorial

auctions and general combinatorial auctions, so finding an exact characterization may

be an interesting problem left open.

Chapter 7. Conclusion and Discussion 142

We have proposed a benchmark, FNTUmax, based on the definitions used for NTU-

min in procurement auctions, that can be applied to all forward set-system auctions.

As this involves computing over all possible sizes of feasible sets and not just minimal

feasible sets as in procurement auctions, it is likely to be harder to analyse. However, we

have seen that in the special case of unit-demand auctions, it is close to a previously-used

benchmark, F (2), which suggests that it may have some potential.

It remains to be seen if this FNTUmax value could be used as a benchmark figure

for more expressive auctions, such as general combinatorial auctions. Due to the nature

of counting over all sizes of feasible sets, it is possible that this will prove too strong

a benchmark such that not even randomized mechanisms will be able to give some

performance guarantee with respect to FNTUmax, this is an area that has not yet been

addressed.

Bibliography

[1] Alaei, S., Malekian, A., Srinivasan, A.: On random sampling auctions for digital

goods. In: Proceedings of the 10th ACM conference on Electronic commerce. pp.

187–196 (2009)

[2] Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truthful

mechanism for combinatorial auctions with single parameter agents. In: Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 205–

214 (2003)

[3] Archer, A., Tardos, E.: Truthful mechanisms for one-parameter agents. In: Pro-

ceedings of the 42nd IEEE symposium on Foundations of Computer Science. pp.

482– (2001)

[4] Archer, A., Tardos, E.: Frugal path mechanisms. In: ACM Trans. Algorithms.

vol. 3, pp. 3:1–3:22 (Feb 2007)

[5] Chen, N., Elkind, E., Gravin, N., Petrov, F.: Frugal mechanism design via spectral

techniques. In: Foundations of Computer Science, Annual IEEE Symposium on.

pp. 755–764 (2010)

[6] Clarke, E.H.: Multipart pricing of public goods. In: Public Choice. vol. 11 (Septem-

ber 1971)

[7] Damian-Iordache, M., Pemmaraju, S.V.: Hardness of approximating independent

domination in circle graphs. In: Proceedings of the 10th International Symposium

on Algorithms and Computation. pp. 56–69 (1999)

[8] Demange, G., Gale, D., M.Sotomayor: Multi-item auctions. In: Journal of Political

Economy. vol. 94, pp. 863–872 (1986)

[9] Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische

Mathematik. vol. 1, pp. 269–271 (1959)

[10] Du, Y., Sami, R., Shi, Y.: Path auctions with multiple edge ownership. In: Theo-

retical Computer Science. vol. 411, pp. 293 – 300 (2010)

143

Bibliography 144

[11] Elkind, E., Goldberg, L., Goldberg, P.: Frugality ratios and improved truthful

mechanisms for vertex cover. In: Proceedings of the 8th ACM Conference on Elec-

tronic Commerce. pp. 336–345 (2007)

[12] Elkind, E., Sahai, A., Steiglitz, K.: Frugality in path auctions. In: Proceedings of

the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 701–709

(2004)

[13] Feige, U.: A threshold of lnn for approximating set cover. In: Journal of the ACM.

vol. 45, pp. 314–318 (1998)

[14] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness (1979)

[15] Garfinkel, R.S., Nemhauser, G.L.: Integer programming. Wiley-Interscience (1972)

[16] Goldberg, A.V., Hartline, J.D., Karlin, A.R., Saks, M., Wright, A.: Competitive

auctions. In: Games and Economic Behavior. vol. 55, pp. 242 – 269 (2006), mini

Special Issue: Electronic Market Design

[17] Goldberg, A.V., Hartline, J.D., Wright, A.: Competitive auctions and digital goods.

In: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-

rithms. pp. 735–744 (2001)

[18] Groves, T.: Incentives in teams. In: Econometrica. vol. 41, pp. 617–31 (July 1973)

[19] Halldórsson, M.M.: Approximating the minimum maximal independence number.

In: Information Processing Letters. vol. 46, pp. 169 – 172 (1993)

[20] Hassin, R., Levin, A.: A better-than-greedy approximation algorithm for the min-

imum set cover problem. In: SIAM J. Comput. vol. 35, pp. 189–200 (Jul 2005)

[21] Herodotus, Dewald, C., Waterfield, R.: The Histories. Oxford Paperbacks (2008)

[22] Immorlica, N., Nikolova, E., Karger, D., Sami, R.: First-price path auctions. In:

Proc. 7th ACM Conf. on Electronic Commerce. pp. 203–212 (2005)

[23] Iwasaki, A., Kempe, D., Saito, Y., Salek, M., Yokoo, M.: False-name-proof mech-

anisms for hiring a team. In: Proceedings of the 3rd international conference on

Internet and network economics. pp. 245–256 (2007)

[24] Karlin, A.R., Kempe, D., Tamir, T.: Beyond VCG: Frugality of truthful mecha-

nisms. In: FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on Foun-

dations of Computer Science. pp. 615–626 (2005)

[25] Kempe, D., Salek, M., Moore, C.: Frugal and truthful auctions for vertex covers,

flows and cuts. In: Foundations of Computer Science, Annual IEEE Symposium

on. pp. 745–754 (2010)

Bibliography 145

[26] Khachiyan, L.: A polynomial algorithm in linear programming. Soviet Mathematics

Doklady 20, 191–194 (1979), (English Translation)

[27] Korte, B.H.: Combinatorial Optimization : Theory and Algorithms. Springer-

Verlag (2006)

[28] Koutsoupias, E., Pierrakos, G.: On the competitive ratio of online sampling auc-

tions. In: Proceedings of the 6th international conference on Internet and network

economics. pp. 327–338 (2010)

[29] Lusht, K.M.: A comparison of prices brought by English auctions and private

negotiations. In: Real Estate Economics. vol. 24, pp. 517–530 (1996)

[30] Southern Railway: DaySave Information (2012 – accessed May 31, 2012), http:

//www.southernrailwaytickets.com/daysave.php

[31] Merseytravel: Saveaway Ticket Information (2012 – accessed May 31, 2012), http:

//www.merseytravel.gov.uk/information_tickets_saveaway.asp

[32] Murty, K.G., Perin, C.: A 1-matching blossom-type algorithm for edge covering

problems. In: Networks. vol. 12, pp. 379–391 (1982)

[33] Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Pro-

ceedings of the Thirty-first Annual ACM Symposium on Theory Of Computing.

pp. 129–140 (1999)

[34] Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. In: Proceedings

of the 2nd ACM conference on Electronic commerce. pp. 242–252 (2000)

[35] Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.

Cambridge University Press (2007)

[36] Talwar, K.: The price of truth: Frugality in truthful mechanisms. In: Proceedings

of the 20th Annual Symposium on Theoretical Aspects of Computer Science. pp.

608–619 (2003)

[37] Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. In:

The Journal of Finance. vol. 16, pp. 8–37 (1961)

[38] de Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. In: INFORMS Journal

on Computing. pp. 284–309. No. 3 (2003)

[39] Yan, Q.: On the price of truthfulness in path auctions. In: Proceedings of the 3rd

international conference on Internet and network economics. pp. 584–589 (2007)

http://www.southernrailwaytickets.com/daysave.php
http://www.southernrailwaytickets.com/daysave.php
http://www.merseytravel.gov.uk/information_tickets_saveaway.asp
http://www.merseytravel.gov.uk/information_tickets_saveaway.asp

	Notations
	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 History
	1.1.1 Auction Mechanisms
	1.1.2 Example of a Vickrey Auction
	Truthfulness of Vickrey Auction
	Notation

	1.2 Procurement Auctions
	1.2.1 Set-System Auctions

	1.3 Truthful Strategies
	1.3.1 The Vickrey-Clarke-Groves (VCG) Mechanism
	1.3.2 VCG Example

	1.4 Frugality
	1.4.1 Frugality Definitions
	1.4.2 Benchmarks
	1.4.3 Feasible Bid Vectors and Nash Equilibrium

	1.5 Special Cases of Set-Systems
	1.5.1 Path Auctions
	1.5.2 Commodity Auctions

	1.6 Thesis Outline
	1.6.1 Chapter 2
	1.6.2 Chapter 3
	1.6.3 Chapter 4
	1.6.4 Chapter 5
	1.6.5 Chapter 6
	1.6.6 Chapter 7

	2 Frugality in General Set-System Auctions
	2.1 Introduction
	2.2 Frugality of VCG
	2.3 Frugality of Approximation Algorithms
	2.3.1 Considering the Minimal Winning Sets

	3 The Single-Commodity Auction
	3.1 Overview
	3.2 Definitions
	3.3 The {1,2} Single-Commodity Auction
	3.3.1 Auction Definition
	3.3.2 The M Mechanism
	3.3.3 Computing NTUmin for the {1,2} Single-Commodity Auction
	Preliminaries
	Describing the NTUmin bids.
	Computing the NTUmin bid values
	Simplifying lower bounds for NTUmin

	3.4 The M mechanism
	3.4.1 Frugality results for the M mechanism
	3.4.2 A lower bound on frugality with the M mechanism
	Calculation of a lower bound

	3.5 The Unrestricted Integer Single-Commodity Auction
	3.5.1 A lower bound on frugality for all Scaling Mechanisms
	Preliminaries
	Proof of lower bound

	4 Shortest Path with k-sets
	4.1 Overview
	4.2 Problem Definitions and Examples
	4.2.1 Problem Definitions
	4.2.2 Example

	4.3 Hardness results
	4.3.1 SHORTEST PATH WITH 3-SETS
	4.3.2 SHORTEST PATH WITH 2-SETS

	4.4 Auction Design
	4.4.1 Using VCG
	4.4.2 Mechanism MP
	4.4.3 Frugality Results for MP
	Lower bounds for MP

	4.4.4 Inapproximability Results

	5 Benchmarks and First-Price Auctions
	5.1 Overview
	5.2 Hypergraph Representation of Constraints
	5.3 Descending Price Auction
	5.4 Uniformly Descending Price Auction
	5.5 Ascending Price Auction
	5.6 Ascending from Zero Auction
	5.7 Uniformly Ascending Auctions
	5.8 Path Auctions
	5.9 Ordered Maximal Bidding
	5.9.1 Definitions
	5.9.2 Examples
	Random Orderings
	Bounds for Values Achievable with Ordered Bidding

	5.9.3 Restricted Setting
	Single-Commodity Auctions

	5.9.4 Results for |S|4
	5.9.5 Upper Bound for Restricted Settings
	5.9.6 Hardness and Approximation Results

	6 Benchmarks for Forward Auctions
	6.1 Overview
	6.2 Definitions
	6.3 Comparison with Combinatorial Auctions
	6.3.1 Definitions
	6.3.2 Comparison of Set-System Auctions and Combinatorial Auctions

	6.4 Benchmarks
	6.4.1 Optimal Solution as a Benchmark
	6.4.2 Considering F1NTUmax as a Benchmark
	Randomized Mechanisms
	Non-Optimal choices of winning set

	6.4.3 Considering F2NTUmax as a Benchmark
	6.4.4 Considering FNTUmax as a Benchmark
	6.4.5 Benchmarks for Unit Demand Auctions
	6.4.6 Considering Alternatives to FNTUmax

	7 Conclusion and Discussion
	7.1 Conclusion
	7.1.1 Discussion and Summary of Main Results

	Bibliography

