
Pattern Classification via Unsupervised Learners

by

Nicholas James Palmer

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

The Department of Computer Science

March 2008

Contents

List of Tables vi

List of Figures vii

Acknowledgments ix

Declarations x

Abstract xi

Abbreviations xii

Chapter 1 Introduction 1

1.1 Learning Frameworks . 2

1.1.1 The PAC-Learning Framework 3

1.1.2 PAC-Learning with Two Unsupervised Learners 4

1.1.3 Agnostic PAC-Learning . 5

1.1.4 Learning Probabilistic Concepts 5

1.2 Learning Problems . 6

1.2.1 Distribution Approximation . 6

1.2.2 PAC-learning via Unsupervised Learners 7

1.2.3 PAC-learning Probabilistic Automata 9

1.2.4 Generative and Discriminative Learning Algorithms 9

1.3 Questions to Consider . 12

1.4 Terms and Definitions . 13

1.4.1 Measurements Between Distributions 13

1.4.2 A Priori and A Posteriori Probabilities 14

1.4.3 Loss/Cost of a Classifier . 14

1.5 Synopsis . 16

iii

Chapter 2 PAC Classification from PAC Estimates of Distributions 19

2.1 The Learning Framework . 21

2.2 Results . 22

2.2.1 Bounds on Regret . 22

2.2.2 Lower Bounds . 25

2.2.3 Learning Near-Optimal Classifiers in the PAC Sense 27

2.2.4 Smoothing from L1 Distance to KL-Divergence 29

Chapter 3 Optical Digit Recognition 31

3.1 Digit Recognition Algorithms . 32

3.1.1 Image Data . 32

3.1.2 Measuring Image Proximity . 34

3.1.3 k-Nearest Neighbours Algorithm 36

3.1.4 Unsupervised Learners Algorithms 36

3.1.5 Results . 38

3.2 Context Sensitivity . 43

3.2.1 Three-Digit Strings Summing to a Multiple of Five 47

3.2.2 Six-Digit Strings Summing to a Multiple of Ten 49

3.2.3 Dictionary of Eight-Digit Strings 50

3.2.4 Conclusions . 52

Chapter 4 Learning Probabilistic Concepts 55

4.1 An Overview of Probabilistic Concepts 55

4.1.1 Comparison of Learning Frameworks 56

4.1.2 The Problem with Estimating Distributions over Class Labels . . 57

4.2 Learning Framework . 57

4.3 Algorithm to Learn p-concepts with k Turning Points 60

4.3.1 Constructing the Learning Agents 63

4.4 Analysis of the Algorithm . 63

4.4.1 Bounds on the Distribution of Observations over an Interval . . 64

4.4.2 Bounds on the Regret Associated with the Classifier Resulting

from the Algorithm . 65

Chapter 5 Learning PDFA 77

5.1 An overview of automata . 77

5.1.1 Related Models . 77

5.1.2 PDFA Results . 78

5.1.3 Significance of Results . 79

5.2 Defining a PDFA . 80

iv

5.3 Constructing the PDFA . 81

5.3.1 Structure of the Hypothesis Graph 82

5.3.2 Mechanics of the Algorithm . 83

5.4 Analysis of PDFA Construction Algorithm 84

5.4.1 Recognition of Known States 85

5.4.2 Ensuring that the DFA is Sufficiently Complete 86

5.5 Finding Transition Probabilities . 88

5.5.1 Correlation Between a Transition’s Usage and the Accuracy of

its Estimated Probability . 90

5.5.2 Proving the Accuracy of the Distribution over Outputs 92

5.5.3 Running Algorithm 8 in log(1/δ′′) rather than poly(1/δ′′) 94

5.6 Main Result . 94

5.7 Smoothing from L1 Distance to KL-Divergence 95

Chapter 6 Conclusion 97

6.1 Summary of Results . 97

6.2 Discussion . 100

Appendix A Optical Digit Recognition 103

A.1 Distance Functions . 103

A.1.1 L2 Distance . 103

A.1.2 Complete Hausdorff Distance 104

A.2 Tables of Results . 104

A.2.1 k Nearest Neighbours Algorithm 104

A.2.2 Unsupervised Learners Algorithms 106

Appendix B Learning PDFA 111

B.1 Necessity of Upper Bound on Expected Length of a String When Learning

Under KL-Divergence . 111

B.2 Smoothing from L1 Distance to KL-Divergence 114

v

List of Tables

3.1 Results of Nearest Neighbour algorithm. 40

3.2 Results of Unsupervised Learners algorithm (using by L2 distance). . . . 40

3.3 Results of Unsupervised Learners algorithm (using Hausdorff distance). . 41

3.4 Results of classifying three-digit strings summing to a multiple of five. . 47

3.5 Results of classifying six-digit strings summing to a multiple of ten. . . 49

3.6 Results of classifying eight-digit strings belonging to a dictionary of ten

thousand strings. 50

3.7 Estimated number of recognition errors over ten thousand tests. 51

A.1 Breakdown of image data sets into digit labels. 103

A.2 1 Nearest Neighbour algorithm – Classification results. 106

A.3 3 Nearest Neighbours algorithm – Classification results. 107

A.4 5 Nearest Neighbours algorithm – Classification results. 107

A.5 Normal Distribution kernels (measured by L2 distance, using standard

deviation of 1000) – Classification results. 108

A.6 Normal Distribution kernels (measured by L2 distance, using standard

deviation of 2000) – Classification results. 108

A.7 Normal Distribution kernels (measured by L2 distance, using standard

deviation of 4000) – Classification results. 109

A.8 Normal Distribution kernels (measured by L2 distance, using standard

deviation of 1000) – Likelihoods of labels. 109

A.9 Normal Distribution kernels (measured by L2 distance, using standard

deviation of 2000) – Likelihoods of labels. 110

A.10 Normal Distribution kernels (measured by L2 distance, using standard

deviation of 4000) – Likelihoods of labels. 110

vi

List of Figures

1.1 L1 distance. 13

3.1 Images 1000-1002 in Training set, with respective labels 6, 0 and 7. . . 33

3.2 Images 2098, 1393 and 2074 in Test set, with respective labels 2, 5 and 4. 33

3.3 L2 distance between two images with label 5. 34

3.4 L2 distance between images with labels 3 and 9. 35

3.5 Hausdorff Distance. 35

3.6 k Nearest Neighbours technique using L2 distance metric. 37

3.7 Algorithm to classify images of digits using a normal distribution as a

Kernel. 39

3.8 Images in Training set, with respective labels 3, 5 and 8. 42

3.9 Images 1242, 4028 and 4009 in Test set, with respective labels 4, 7 and 9. 44

3.10 Algorithm to recognise n-digit strings obeying a contextual rule. 46

3.11 Images 5037, 4016 and 4017 in Test set, with respective labels 2, 9 and 4. 49

4.1 Example Oracle – c(x) has 2 turning points. 58

4.2 D0 and D1 – note that D0(x) = D(x)(1 − c(x)) and D1(x) = D(x)c(x). 59

4.3 The Bayes Optimal Classifier. 61

4.4 Algorithm to learn p-concepts with k turning points. 62

4.5 Case 1 – covering values of x where the value of f̂(x) has little effect on

regret. i1 ∪ i2 ∪ i3 = I1. 66

4.6 Case 1 – Worst Case Scenario. 68

4.7 Case 2 – intervals where it is important that f̂(x) should predict the

same label as f∗(x). I1 = i1 ∪ i2 ∪ i3, I2 = i4 ∪ i5 ∪ i6 ∪ i7, and the

remaining intervals are I3. 69

4.8 Case 3 – I3 = i01 ∪ i11 ∪ i02 ∪ i12 ∪ i03 ∪ i13. The intervals with dark

shading represent values of x for which c(x) < 1
2 − ǫ′, and the lighter

areas represent values of x for which c(x) > 1
2 + ǫ′. 70

5.1 Constructing the underlying graph . 84

vii

5.2 Finding Transition Probabilities . 91

A.1 Algorithm to compute the L2 distance between 2 image vectors. 104

A.2 Algorithm to compute the Hausdorff distance between 2 image vectors. 105

B.1 Target PDFA A. 111

viii

Acknowledgments

I would like to thank Dr. Paul Goldberg for introducing me to the topic of machine

learning and for his supervision, friendship and support throughout the duration of my

PhD.

I would also like to thank Prof. Mike Paterson and Prof. Roland Wilson for their help

and advice throughout my time as a postgraduate.

Finally I thank the EPSRC for grant GR/R86188/01 which helped fund this research.

ix

Declarations

This thesis contains published work and work which has been co-authored. [38] and [39]

were co-authored with Dr. Paul Goldberg of the University of Liverpool. [39] was pub-

lished in the Proceedings of ALT 05 and a revised version has since been published in

“Special Issue of Theoretical Computer Science on ALT 2005” [40]. [38] is Technical

Report 411 of the Department of Computer Science at the University of Warwick, and

has not been published but is available on arXiv. Other than the contents stated below,

the rest of the thesis is the author’s own work.

Material from [38] is included in Chapter 2. Goldberg made the suggestion of

the technique to smooth distributions in Section 2.2.4 and constructed the proof of

Lemma 22. Section 5.7 is also taken from this paper and was written by the author.

Material from [40] is included in Chapter 5. Goldberg contributed Section 5.5.1

based on joint discussions, the basis of the proof in Section 5.5.2 (which has since been

revised) and the idea behind Section 5.5.3.

x

Abstract

We consider classification problems in a variant of the Probably Approximately
Correct (PAC)-learning framework, in which an unsupervised learner creates a discrimi-
nant function over each class and observations are labeled by the learner returning the
highest value associated with that observation. Consideration is given to whether this
approach gains significant advantage over traditional discriminant techniques.

It is shown that PAC-learning distributions over class labels under L1 distance
or KL-divergence implies PAC classification in this framework. We give bounds on
the regret associated with the resulting classifier, taking into account the possibility of
variable misclassification penalties. We demonstrate the advantage of estimating the a
posteriori probability distributions over class labels in the setting of Optical Character
Recognition.

We show that unsupervised learners can be used to learn a class of probabilistic
concepts (stochastic rules denoting the probability that an observation has a positive
label in a 2-class setting). This demonstrates a situation where unsupervised learners
can be used even when it is hard to learn distributions over class labels – in this case
the discriminant functions do not estimate the class probability densities.

We use a standard state-merging technique to PAC-learn a class of probabilistic
automata and show that by learning the distribution over outputs under the weaker
L1 distance rather than KL-divergence we are able to learn without knowledge of the
expected length of an output. It is also shown that for a restricted class of these
automata learning under L1 distance is equivalent to learning under KL-divergence.

xi

Abbreviations

The following general abbreviations and terminology are found throughout the thesis:

α(x, f(x)) – The expected cost associated with classifier f for an observation of

x.

δ – The confidence parameter commonly used in learning frameworks.

ǫ – The accuracy parameter commonly used in learning frameworks.

Dℓ – Distribution D restricted to observations with label ℓ.

DFA – Deterministic finite-state automata.

f∗ – The Bayes optimal classifier.

gℓ – The class prior of label ℓ (or a priori probability of ℓ).

HMM – Hidden Markov model.

I(D||D′) – Kullback-Leibler divergence.

KL-divergence – Kullback-Leibler divergence, I(D||D′).

L1 distance – The variation distance (also rectilinear distance).

L2 distance – The Euclidean distance.

OCR – Optical character recognition.

p-concept – Probabilistic concept, c : X → [0, 1].

PAC – Probably approximately correct.

PDFA – Probabilistic deterministic finite-state automata.

PFA – Probabilistic finite-state automata.

xii

PNFA – Probabilistic nondeterministic finite-state automata.

POMDP – Partially observable Markov decision process.

R(f) – The risk associated with classifier f .

xiii

Chapter 1

Introduction

The area of research classed as machine learning is a subset of the more general topic

of artificial intelligence. Definitions of artificial intelligence vary between texts1 but it is

widely accepted that artificially intelligent systems exhibit one or more of a number of

qualities such as the ability to learn, to respond to stimuli, to demonstrate cognition and

to act in a rational fashion. This usually involves the design of intelligent agents, which

have the ability to perceive their environment and act accordingly to stimuli. In relation

to learning theory this behaviour manifests itself as the ability to respond to input ob-

servations of the state of the environment. In the context of this work, the environment

is usually an arbitrary domain X which can be discrete or continuous depending on the

problem setting. The response of the agent can generally be categorised as one of two

things – a classification of the observed data, or an estimate of the source generating the

observations. The ability to make these responses comes as a consequence of learning

from previously-seen observations.

In the context of this thesis we will generally be concerned with solving classifi-

cation problems. Classification problems involve selecting a label from a predefined set

of class labels and associating one with an observation. The form of the observation

depends on the setting of the problem, but in general the term observation can relate

to any number of measurements or recorded values. For example, in the context of

predicting a weather forecast for tomorrow, “an observation” may consist of a measure-

ment of the temperature, wind direction, cloud cover and movement of local weather

fronts (among many others). In order to make a classification, some mechanism must

be in place for the agent to “learn” how observations should be classified. This can

come in the form of feedback on its performance given by either a trainer or from the

environment or — as is the case in this thesis — the agent is provided with a sample of

data and tasked with identifying patterns in the data from which to draw comparisons

1See [43] for a summary of definitions.

1

with future observations. This form of classification problem is in contrast to the related

topic of regression, where rather than learning to link observations with class labels, the

aim is to find a correlation between observed values and a dependent variable. The

resulting regression curve can be used to estimate the value of the dependent variable

associated with new observations. Note that regression maps the data observations to a

continuous real valued scale rather than the finite set of class labels used in classification

problems.

In some settings it may be necessary to model the observed data rather than

classifying observations. In this case the learner will examine a set of data and then

output some sort of model in an attempt to approximate the way in which the data

is being generated. In order to process complex data structures it is often useful to

define such theoretical models to simulate the way in which data occurs. For example,

natural language processing has sets of rules which define the way in which languages

are generated, and these can be modeled using types of automata. In Chapter 5 we

study a class of probabilistic automata and demonstrate how such a model can be learnt

from positive examples by an unsupervised learner. In addition to automata, models

such as neural networks, Markov models and decision trees are used to allow data to be

modeled in an appropriate manner depending on the application.

In classification problems it is common to see data sets being represented by

distributions over class labels. In a situation where there are k categories of data spread

over some domain X, it is often the case that these k categories can be modeled by

probability distributions over X (see [17]) – a form of generative learning. Generative

learning can generally be described as generating a discriminant function over the data

of each class label and then using these functions in combination to classify observations.

This typically takes the form of estimating the distributions over each label and then

using a Bayes classifier to select the most likely label for an element in the domain.

An alternative approach is to establish the boundaries lying between the classes of

data. In doing this we fail to retain the information about the spread of the data over

each class, but instead we minimise the amount of data stored. Such a method is the

use of support vector machines, which are a widely studied tool for classification and

regression problems. This approach of finding decision boundaries between classes is

known as discriminative learning and we shall look at the advantages and disadvantages

of both the generative and discriminative methods in Section 1.2.4.

1.1 Learning Frameworks

To study a theoretical machine learning problem it is necessary to define the framework

in which the algorithm is to function. The framework is basically a set of ground rules

2

suitable for a particular learning problem – such as the way in which the data is generated,

the way data is sampled, and restrictions on the distribution over the data, error rate and

confidence parameters. Below we define some of the main learning frameworks relevant

to the area of research. Further definitions or additional restrictions are given in later

chapters as required.

1.1.1 The PAC-Learning Framework

The Probably Approximately Correct (PAC) learning framework was proposed by Valiant [45]

as a way to analyse the complexity of learning algorithms. The emphasis of PAC algo-

rithm design is on the efficiency of the algorithms, which should run in time polynomial

in the accuracy and confidence parameters, ǫ and δ, as described below.

A hypothesis h is a discriminative function over the problem domain, which is

generated in an attempt to minimise the classification error in relation to the hidden

function labelling the data. We refer to the error associated with h as errh, and let

err∗ be the error incurred through the optimal choice of h.

Definition 1 In the PAC-learning framework an algorithm receives labeled samples gen-

erated independently according to distribution D over X, where distribution D is un-

known, and where labels are generated by an unknown function f from a known class of

functions F . In time polynomial in 1/ǫ and 1/δ the algorithm must output a hypothesis

h from class H of hypotheses, such that with probability at least 1− δ, errh ≤ ǫ, where

ǫ and δ are parameters.

Notice that in this setting, if f ∈ H, then err∗ = 0. Another important case

occurs when H = F . In this case we say that F is properly PAC-learnable by the

algorithm (see [26]).

The PAC-learning framework is considered to be rather restrictive for the majority

of machine learning problems. The worst case scenario must always be considered in

which an adversary is choosing the distributions over the data and the class labels. PAC

algorithms must work to the ǫ and δ parameters and always run in polynomial time for

the given classes of labelling functions and any distribution over the data. In practice

these conditions are not generally necessary as some restrictions on the distributions

and functions can be implemented without limiting the usefulness of the algorithms.

Many of the negative results associated with the PAC framework are driven by the

assumption of distribution independence ([35], for example) – where the distribution

of the observations over the domain is independent of the distributions over the class

labels.

A particular issue with the PAC framework is the requirement that the data is

labeled by a function from a known class of functions, which is impractical in most

3

situations. This is due both to the fact that in many practical situations the class of

functions is unknown and also the fact that the target may not be a function at all

(labels may be generated stochastically). These are framework specific problems so

slight relaxations of the framework allow for a wider range of problems to be examined.

1.1.2 PAC-Learning with Two Unsupervised Learners

In [22] Goldberg defines a restriction of the PAC framework in which an unknown function

f : X → {0, 1} labels the data distributed by D over domain X. This data is divided

into subsets f−1(0) and f−1(1), and each learner attempts to construct a discriminant

function over one of these sets. When prompted by the algorithm, each learner returns

the value its function associates with a given value of x ∈ X. To classify an instance

each learner is prompted to return a value associated with the corresponding x, and the

learner returning the higher value labels that instance (it is given the class label of the

data from its learning set). The learners have no knowledge of the label associated with

the data made available to them and no knowledge of the prior probabilities of each

class label2.

Note that the learners can create functions by approximating the distribution over

data of their respective class labels and then returning the probability density associated

with x ∈ X. In this case, if class priors are known, then the algorithm can use a Bayes

classifier to return labels of observations. Note also that the unsupervised learners are

not only denied access to the class labels, but they have no way of measuring the

empirical error of any classifier based on their respective discriminant functions. This is

in contrast to the majority of machine learning algorithms, where the ability to minimise

empirical error may prove to be a useful tool.

Formally, we use the definition of the framework from [23] (Definition 1, p.286),

where data has label ℓ ∈ {0, 1} and Dℓ represents D restricted to f−1(ℓ), which says:

Definition 2 Suppose algorithm A has access to a distribution P over X, and the

output of A is a function f : X → R. Execute A twice, using D1 (respectively D0) for

P . Let f1 and f0 be the functions obtained respectively. For x ∈ X let

h(x) = 1 if f1(x) > f0(x)

h(x) = 0 if f1(x) < f0(x)

h(x) undefined if f1(x) = f0(x)

If A takes time polynomial in 1/ǫ and 1/δ, and h is PAC with respect to ǫ and δ, then

we will say that A PAC-learns via discriminant functions.

2It should be noted that this is equivalent to the case where the learner has access to “positive” and
“negative” oracles with no knowledge of the class priors (as in [27]).

4

Note that “access” to a distribution means that in unit time a sample (an

observation of X, without a label) can be drawn from the distribution.

1.1.3 Agnostic PAC-Learning

A common extension of the PAC framework is the Agnostic learning framework (see [5], [32]

for example), whereby knowledge of the class of target concepts F is not assumed. Since

the hypothesis class H may not contain a function which accurately matches the process

labelling the data, an agnostic PAC algorithm must attempt to minimise misclassifica-

tion error in relation to the optimal hypothesis in H – the aim is to achieve an error no

greater than ǫ above the optimal error given class H.

Definition 3 In the agnostic PAC framework an algorithm receives labeled samples

generated independently according to distribution D over X, where distribution D is

unknown, and where labels are generated by some unknown process. In time polynomial

in 1/ǫ and 1/δ the algorithm must output a hypothesis h from class H of hypotheses,

such that with probability at least 1− δ, errh ≤ err∗+ ǫ, where ǫ and δ are parameters.

Note that the framework still requires the adversarial restraints of complying

with the worst case scenarios.

1.1.4 Learning Probabilistic Concepts

Probabilistic concepts (or p-concepts) are a tool for modeling problems where a stochas-

tic rule, rather than a function, is labelling the data. We use the notation described in

[31], such that X = [0, 1] is the domain, and p-concept c is a function c : X → [0, 1].

The value c(x) is the probability that a point at x ∈ X has label 1 (therefore the

probability of the point having label 0 is equal to 1− c(x)). The framework for learning

p-concepts is similar to the agnostic PAC framework – the difference being that in this

case the data is being labeled by a process from a known class of probabilistic rules,

whereas the agnostic setting assumes no knowledge of the rule labelling the data. The

aim of an algorithm learning within the p-concept framework is to minimise the error of

its associated classifier, and it should be noted that the optimal classifier commonly has

a non-zero error associated with it due to the stochastic nature of the labelling rule.

5

1.2 Learning Problems

Learning theory differentiates between two main types of off-line3 learning problems,

although others do exist. In the context of a classification problem, supervised learning

occurs when data consisting of observations and the corresponding labels is sampled.

The algorithm is trained with this data and there is the potential for data with different

class labels to be treated in different ways (for instance the problem of learning mono-

mials described in [22], where unsupervised learning agents can solve the problem if they

have knowledge of the label associated with the data set they are given4). Classification

problems are learnt by supervised learners as the algorithm must have knowledge of the

labels in the training data in order to be able to output a class label when classifying an

observation.

Unsupervised learning is the setting of learning with a data set containing obser-

vations with no associated labels. Unsupervised learning algorithms typically attempt

to recreate the process from which the data is sampled. An example of such an un-

supervised learning problem is the problem in Chapter 5 of attempting to recreate the

distribution over outputs of the target automaton – the data in this case consists of ele-

ments of the domain. Such distribution approximation is a common task of unsupervised

learning.

A related topic is semi-supervised learning, which will not be covered in any

detail here but is worth mentioning due to current research uses in active fields such

as computer vision. Semi-supervised learning is the process of using both labeled and

unlabeled data to solve classification problems [48]. This will be discussed in the context

of generative and discriminative learning later in this chapter.

1.2.1 Distribution Approximation

In order to analyse how good an approximation of a distribution is, we need a way

to measure the distance between two distributions. We define two such methods in

Section 1.4, namely the variation or L1 distance, and the Kullback-Leibler divergence or

KL-divergence. Both are commonly used measurements. The variation distance is an

intuitive measurement as it represents closeness in a way that can inspected manually

and draws direct comparisons with the related quadratic distance. The KL-divergence

is a widely used measurement as it represents the loss of information associated with

using the estimated distribution instead of the true distribution. It is also the case that

minimising the KL-divergence between a distribution and the empirical distribution of

3Data is sampled and learning takes place prior to the algorithm performing its output functions, as
opposed to online learning where the algorithm receives data observations “on the fly”.

4For instance, the learner given data with label 0 defines a discriminant function f0(x) = 1

2
and the

learner with label 1 returns the value 1 if some criteria is met and 0 otherwise.

6

data leads to the maximisation of the likelihood of the data in the sample [1]. There

have been a variety of settings in which it has been necessary to learn distributions

in the PAC sense of achieving a high accuracy with high confidence, for example [14]

shows how to learn mixtures of Gaussian functions in this way, [13] learns distributions

over outputs of evolutionary trees (a type of Markov model concerning the evolution

of strings), and [30] addresses a number of distribution-learning problems in the PAC

setting.

The technique used to approximate the distributions over labels in Chapter 3

is known as a kernel algorithm. Kernel algorithms are widely used to solve density

estimation problems (see [17] for example). The idea behind kernel estimation is to give

some small probability density weighting to each observation in a data set, and then sum

over all of these weightings to produce a distribution. Given a sample of N observations

we generate N distributions, each one integrating to 1/N and centred at the point of

an observation on the domain. We then sum these densities across the whole domain

and the resulting distribution is likely to be representative of the distribution over the

sample, given certain assumptions about the “smoothness” of the target distribution.

In many cases it can be shown that there is a correlation between L1 distance

and KL-divergence. In [1] it is shown that the learnability of probabilistic concepts (see

Section 1.1.4) with respect to KL-divergence is equivalent to learning with respect to

quadratic distance, and therefore to L1 distance. In a similar sense, Chapter 2 shows

that learning a distribution with respect to L1 distance is equivalent to learning under

KL-divergence for a restricted subset of distributions.

Distributions can also be defined by probabilistic models such as Markov models

and automata. In Chapter 5 we consider the problem of learning probabilistic automata,

where the success of the learning process is judged by the proximity of the probability

distribution over all outputs of the hypothesis automaton to the distribution over outputs

of the target automaton.

1.2.2 PAC-learning via Unsupervised Learners

In [22] a variant of the PAC framework is introduced to allow for PAC-learning classifi-

cation problems to be solved via unsupervised learners, where sampled data is separated

by class label and each subset is learnt by an unsupervised learner5. The framework is

defined in Section 1.1.2, and we shall extend this to the more general case of learning

k classes.

Although the algorithms are supervised learning algorithms as the labels of ob-

servations are present in the training data, the fact that the learning process used by

5This general approach of learning through distributions over classes used in conjunction with a Bayes
Classifier is discussed in [17].

7

each agent is unsupervised leads to the name “classification via unsupervised learners”.

There are several reasons for breaking the problem down in this way and learning each

class separately. First, it seems the natural way to approach many problems, such as the

optical digit recognition in Chapter 3. Finding boundaries between the classes of data

seems to be a less intuitive way of solving the problem. In image recognition, the process

generating a digit will choose a digit and then generate the corresponding symbol rather

than vice versa. In addition to this the process of learning from each class in isolation al-

lows for data from classes to overlap and for this to be reflected by the model. This class

overlap is something which cannot occur under the traditional PAC-learning framework,

which renders the framework too strict for solving most practical learning problems. In

order to compensate for this, it is shown in [22] how to extend the framework to allow

for this type of overlap in a similar way to that of the framework for learning probabilistic

concepts (see Section 1.1 for explanations of all of these frameworks). Also in the case

of a practical problem such as optical character recognition, the fact that each class

has been modeled in isolation means that any additions to or reductions from the set

of class labels is easily implemented. The models would not have to be recalculated –

data from the new class would simply be used to construct an additional class model.

It is also noted that despite the fact that dividing the problem into unsupervised

learning tasks can often make it possible to model the class label distributions, this

is not necessarily the case (as in Chapter 4). The aim of the learners is simply to

produce a set of discriminant functions which work in conjunction with each other

– not necessarily to model the distributions themselves. However, in most situations

the approach of modeling the distributions is likely to be the desired method due to

the benefits described in Section 1.2.4. Other methods of estimating the conditional

probability distribution labels exist, such as the use of neural networks [7] or logistic

regression.

One of the motivations for this topic is the uncertainty of how to learn a multi-

class classification problem with a discriminative function (see [3]). There is no obvious

way of extending many discriminative techniques such as support vector machines to

separate more than two classes. The problem stems from the way that the method finds

a plane of separation between pairs of classes – but where there are more than two

classes to separate, there must be some ordering given to the way in which these planes

are calculated. Whatever order is chosen it must be the case that the classes of data are

being treated differently, whereas when using unsupervised learners to learn each class

no differentiation is made between the classes.

8

1.2.3 PAC-learning Probabilistic Automata

As the other chapters all cover problems associated with learning classifiers which is a

supervised learning problem, Chapter 5 deals with the task of modeling an automaton.

Probabilistic deterministic finite-state automata, or PDFA, are a useful model for many

machine learning problems. Speech recognition and natural language learning can both

be modeled by PDFA, and learning PDFA in the PAC-framework has been shown to

yield useful results in such practical settings ([41] demonstrates algorithms for building

pronunciation models for spoken words and learning joined handwriting).

Expanding on results of [41] for learning acyclic probabilistic automata with a

state-merging method (see [8]), [10] shows that PDFA can be PAC-learnt in terms of

KL-divergence, although this requires that the expected length of an output is known

as a parameter. A further requirement is that the states of the automaton are µ-

distinguishable – that all pairs of states emit at least one suffix string with probabilities

differing by at least µ. In [30] it is shown that PDFA are capable of encoding a noisy

parity function (which it is accepted is not PAC-learnable), and [24] shows that the prob-

lem in [10] can be learnt using a more intuitive definition of distinguishability between

states allowing for more reasonable similarity between states.

We show that by using a weaker measurement of distribution closeness – L1

distance rather than KL-divergence – it is possible to dispense with the parameter of

the expected length of an output. We also give details of a method of smoothing the

distribution (based on observations made in Chapter 2) in order to estimate the target

within the required KL-divergence, although the method for applying this smoothing is

computationally inefficient. Smoothing of distributions and functions has been examined

in [1] where algorithms for smoothing p-concepts are given, and a similar method was

used in [13] over strings of restricted length.

1.2.4 Generative and Discriminative Learning Algorithms

By PAC-learning (see Section 1.2) with two unsupervised learners (see Section 1.2.2) we

aim to construct discriminant functions over the domain for each class label and then

classify data using the functions constructed in correspondence with one another. This

is a generative method of learning. We shall now define this term and introduce new

terms in order to make the distinction between two forms of generative learning, which

we describe as “strong” generative learning and “weak” generative learning, as there is

some variation in the literature as to the precise meaning of the term “generative”.

Definition 4 Generative Learning aims to solve multiclass classification problems by

generating a discriminant function fy(x) : X → R, mapping elements of domain X to

9

real values, over each label y ∈ Y , such that label y maximising fy(x) is given to an

observation x.

Strong generative learning is a specific case of generative learning (widely referred

to as generative learning in the literature), defined as follows.

Definition 5 Strong Generative Learning solves multiclass classification problems of pre-

dicting the class label y ∈ Y from an observation x ∈ X (in other words arg maxy{Pr[y|x]}),
by seeking to find the distribution of Pr[x|y] over each class y, which can then be used

to estimate Pr[x|y].Pr[y].

In other words, strong generative learning estimates the joint probability distri-

bution over X and Y . It is generally assumed that the class prior, or a priori probability

Pr[y] (see Section 1.4.2), is known – or at least that it can be estimated relatively

accurately from a random sample of data – as we are more interested in the process of

estimating the distributions over each label.

Definition 6 Weak Generative Learning is the method of generative learning with a

discriminant function that is not an estimate of the probability density over that class.

In contrast to generative learning, discriminative algorithms consider the data

of all class labels in conjunction with each other, and attempt to find a method of

separating the classes.

Definition 7 Discriminative Learning calculates estimates of class boundaries in a mul-

ticlass classification problem, producing a function to classify data with respect to these

decision boundaries with no reference to the underlying distributions over observations.

Of course, although we have used the term “estimates of class boundaries”, in

practice it is often the case that no such well-defined boundaries exist and that some

overlap occurs between classes. This is one of the weaknesses of discriminant learning,

in that information about the nature of the class overlap in the empirical data is lost.

There is a general question concerning whether there are classes of problems

which can be learnt discriminately but not by generative algorithms. Although dis-

criminative algorithms seem to be theoretically capable of learning a larger class of

problems [35], this is balanced against the fact that creating an approximation of the

process generating the data is often advantageous in terms of the additional knowledge

retained by the learner. We explore this further in Chapter 3, where we demonstrate a

practical application of a generative method. We demonstrate the advantages of esti-

mating the distributions over class labels in the context of optical digit recognition – a

popular machine learning problem.

10

We choose the setting of optical digit recognition due to the availability of a

good data set for which there is a wealth of known results. It is shown that by learning

the distribution representing each of the digits we gain an advantage over standard

methods when extending the problem to learning strings of images given some predefined

contextual rule. For instance, we examine the problem of learning strings of three digits

which must sum to a multiple of ten. The fact that the distributions have been estimated

therefore allows for backtracking in cases where an error has been made, and ultimately

allows a large proportion of mistakes to be corrected.

For the sake of comparison, we test two methods of optical digit recognition.

The method outlined above, estimating the distributions over class labels is a genera-

tive technique. In contrast to this we demonstrate a discriminative algorithm that is

commonly used in practice when solving classification problems. The technique used is

a nonparametric technique known as the k-nearest neighbours algorithm, for which an

observation is compared to the k closest observations in the data sample, and the label

most prolific in those cases is used to label the observation. Despite the simplicity of

this approach it is known to be surprisingly effective.

Strong generative learning is the same as “informative learning” as described

in [42]. In this paper the authors compare the usefulness of the approaches of discrimi-

native and strong generative learning

Semi-supervised learning

As previously mentioned, semi-supervised learning can be used to implement aspects of

both discriminative and generative learning in situations where both labeled and unla-

beled data is observed. In computer vision learning problems (such as object recognition)

it is difficult to rely on supervised learning alone due to the lack of labeled data (the

labelling must be performed by humans or highly specialised agents on the whole). It

is shown in [37] that discriminative algorithms may perform less well on small amounts

of data than generative algorithms (specifically the generative approach of the naive

Bayes model and the discriminative method of using a linear classifier/logistic regres-

sion). A typical method of combining the two varieties of learning is to learn from the

labeled data using a discriminative algorithm, and then apply the resulting classifier to

the unlabeled data. The unlabeled data fitting well within the decision boundaries is

then classified with the appropriate label and then the algorithm is trained again using

this augmented data set. This is known as self-training. Another method, co-training,

is to divide the feature set into two subsets, and learn from the labeled data using two

discriminative algorithms – one using each subset of features. Again, once the classifiers

have been learnt, they are applied to the unlabeled data, and the new data labeled by

each algorithm is used to augment the data set of the algorithm using the other subset

11

of features before the training is repeated. Research into the optimal way of combining

discriminative and generative classification is discussed in recent papers [33] and [16].

1.3 Questions to Consider

A question posed by Goldberg (in [22], [23]) is whether a class of learning problem

exists which is solvable within the PAC-learning framework but not PAC-learnable using

unsupervised learners. More generally we must examine the question of how much

harder it is to learn if we must learn the distributions over classes. This problem is

considered in part in Chapter 2. Here we show that if the distributions over labels

have been PAC-learnt in polynomial time, then we are able to PAC-learn the associated

classifier (of course we are not talking about PAC-learning in the strict sense – rather

in the agnostic setting). However, this leaves open the question in relation to PAC-

learning distributions and whether this is always possible. This problem of learning

distributions has been discussed in 1.2.1 and Chapter 5 is concerned with learning the

class of distributions representing PDFA

In [22] it is speculated that by restricting the distribution over observations to

one belonging to a predefined subset (as was necessary to learn the class of monomials

and rectangles in the plane using unsupervised learners in the same paper), it may

be the case that PAC-learning using unsupervised learners in this restricted setting is

equivalent to strict PAC-learning. In [23] a looser definition of the problems setting

is also stated, where Definition 2 has the additional aspect that the distribution D

over all observations is accessible by the algorithm. This leads to results such as the

learnability of a restricted class of monomials as mentioned above. The equivalence

of PAC-learning via discriminant functions (see Definition 2) to various related forms

of learning framework is shown. It is shown that (under the noisy parity assumption)

learning in this way is distinct from PAC-learning under uniform noise. It follows that

this unsupervised learners framework is less restrictive.

The main questions we consider are the following:

• Are there problems learnable under the standard PAC conditions which are not

learnable with unsupervised learners?

• What advantage is gained by learning with unsupervised learners over a discrimi-

native algorithm?

• How much harder is it to learn with unsupervised learners?

12

X

D D’

Figure 1.1: L1 distance.

1.4 Terms and Definitions

We now define a variety of terminology that is used throughout the thesis. Any symbols

or terms used in the later chapters are generally defined at the time of use, but as there

are common themes running through the research it is useful to define some standard

terms here.

1.4.1 Measurements Between Distributions

Suppose D and D′ are probability distributions over the same domain X. The L1

distance (also referred to as variation distance) between D and D′ is defined as follows.

Definition 8 L1(D,D′) =
∫

X |D(x)−D′(x)| dx.

We usually assume that X is a discrete domain, in which case

L1(D,D′) =
∑

x∈X

|D(x)−D′(x)|.

The L1 distance between distributions D and D′ is illustrated in Figure 1.1. The shaded

region represents the integral between the two curves, or the sum of the differences over

a discrete scale.

The Kullback-Leibler divergence (KL-divergence) between distributions D and

D′ is also known as the relative entropy. It is a measurement commonly associated

with information theoretic settings, where D represents the “true” distribution and D′

represents an approximation of D.

13

Definition 9 I(D||D′) =
∑

x∈X D(x) log
(

D(x)
D′(x)

)

.

Note that the KL-divergence is not symmetric and that its value is always non-

negative. (See Cover and Thomas [12] for further details.)

1.4.2 A Priori and A Posteriori Probabilities

In multiclass classification problems data is generated and labeled by some random

process according to the particular learning problem being studied. The term “a priori

probability” of a data sample having label ℓ is the probability that a randomly generated

point will be given label ℓ by the process labelling the points, prior to the point being

generated. The a priori probability of a label ℓ is also referred to as the class prior of ℓ,

which is denoted gℓ.

Definition 10 gℓ =
∑

x∈X Pr (ℓ|x) .D(x)

The probability of an instance being labeled ℓ given that it occurs at x ∈ X is

known as the “a posteriori probability” of label ℓ, and is denoted Pr (ℓ|x).

It is assumed in Chapter 2 (and a similar assumption is made in Chapter 4) that

the a priori probabilities of the k classes are known. This may or may not be the case

depending on the setting, but it is a reasonable restriction to make on the problem. In

reality these class priors can be estimated within additive error ǫ using standard Chernoff

Bounds, from a sample size polynomial in ǫ, δ and k, with confidence at least 1− δ.

1.4.3 Loss/Cost of a Classifier

The performance of a classifier (or discriminant function) is usually assessed by way of a

loss function (or cost function)6. The most basic loss function is a linear loss function –

the function incurs a unit loss for any misclassification of a data point and a loss of zero

otherwise. In multiclass classification problems a cost matrix may be defined, whereby

the cost of misclassifying data varies according to the label assigned.

Let L be the set of all class labels and let f be a discriminant function defined on

domain X, such that f : X → L. A cost matrix C may be used (it is often unnecessary –

for instance in the case of 2 classes) to specify the cost associated with any classification

– where cij is the cost of classifying a data point which has label i as label j. In the

case of a basic linear loss function the matrix would consist of a grid of 1s with 0s on

the diagonal, with cij = 0 if i = j, and 1 elsewhere.

6The terms loss and cost are used interchangeably in this context.

14

We often use Dℓ to signify the distribution over data with label ℓ in multiclass

classification problems, where D is a mixture of these distributions weighted by their

class priors gℓ, D(x) =
∑

ℓ∈L gℓ.Dℓ(x).

The expected cost, α(x, f(x)), associated with classifier f at a given value x in

the domain is the sum of the cost cℓ f(x) associated with each label ℓ ∈ L, weighted by

the a posteriori probability of that label at x, which is gℓ.Dℓ(x)/D(x).

Definition 11 α(x, f(x)) =
∑

ℓ∈L gℓ.Dℓ(x).D(x)−1.cℓ f(x).

The risk associated with function f is the expectation of the loss incurred by f

when classifying a randomly generated data point. The risk is obtained by averaging

α(x, f(x)) over X.

Definition 12 R(f) =
∫

x∈X D(x).α(x, f(x)) dx =
∫

x∈X

∑

ℓ∈L gℓ.Dℓ(x).cℓ f(x) dx.

Over a discrete domain, this is equivalent to

R(f) =
∑

x∈X

∑

ℓ∈L

gℓ.Dℓ(x).cℓ f(x).

The general aim of a classification algorithm is to output a function which min-

imises its risk. The Bayes classifier associated with two or more probability distributions

is the function that maps an element x of the domain to the label associated with the

probability distribution whose value at x is largest. This is a well-known approach for

classification, see [17]. Given knowledge of the true underlying probability distributions,

the optimal classifier is known as the Bayes optimal classifier.

Definition 13 The Bayes Optimal Classifier, denoted f∗, is the classifier in H minimis-

ing the risk such that:

f∗ = arg min
f

∑

x∈X

∑

ℓ∈L

gℓ.Dℓ(x).cℓ f(x)

over discrete domain X.

In cases where R(f∗) > 0, the goal is still to minimise the risk associated with

the classifier – but since the risk cannot be reduced to 0, the aim is to achieve a risk as

close to R(f∗) as possible. For this purpose the term regret is introduced, where regret

is equal to the risk associated with the classifier in question, minus the risk associated

with the optimal classifier.

Definition 14 Regret(f) = R(f)−R(f∗).

15

1.5 Synopsis

The contents of each chapter are as follows:

Chapter 2 – PAC Classification from PAC Estimates of Distributions

In this chapter we examine the problem of solving multiclass classification tasks in a

variation of the PAC framework allowing for stochastic concepts (including p-concepts)

to be learnt. For the method of learning each class label distribution using unsupervised

learners, we show that if these distributions can be PAC learnt under L1 distance or

KL-divergence then this implies PAC learnability of the classifier by using the Bayes

classifier in conjunction with these estimated distributions. A general smoothing tech-

nique showing the equivalence of learning under L1 distance and KL-divergence for a

restricted class of distributions is described.

Chapter 3 – Optical Digit Recognition

Here we study the practical task of optical character recognition, and use the method of

estimating distributions over each class label (as described in Chapter 2) with unsuper-

vised learners to classify images of handwritten digits. We compare the results obtained

using this method with the results obtained by using a standard discriminative algorithm

– the k nearest neighbour algorithm. Having seen how the algorithms compare for sin-

gle digit recognition, we explore the benefits of the strong generative learning approach

when classifying strings of digits obeying a variety of contextual rules.

Chapter 4 – Learning Probabilistic Concepts

We show that unsupervised learners can be used to solve the problem of learning the

class of p-concepts consisting of functions with at most k turning points, as an extension

to the problem solved in [31] of learning the class of non-decreasing functions.

It should be noted that the algorithm used is not a strong generative algorithm

as the learners do not attempt to model the distributions over the classes. Rather this

demonstrates that a weak generative algorithm can be used in situations where it is hard

to estimate the distributions over labels, and an example is given of why this is the case.

Chapter 5 – Learning PDFA

Probabilistic automata are a widely used model for many sequential learning problems.

As probabilistic automata define probability density functions over their outputs they

are also useful in conjunction with the methods of Chapter 2. We learn a class of

probabilistic automata with respect to L1 distance, using a variation of an established

16

state-merging algorithm, and show that the use of this distance metric allows us to

dispense with the need for the parameter of expected string length (as is necessary

when learning with respect to KL-divergence as shown in [10]). We demonstrate that

the method of smoothing from L1 distance to KL-divergence in Chapter 2 can be used in

relation to a restricted class of probabilistic automaton, which shows that for this class,

learning under L1 distance is equivalent to learning under KL-divergence (although this

is far from efficient).

Chapter 6 – Conclusion

Finally we draw conclusions about the respective benefits and drawbacks of performing

classification using unsupervised learners. We discuss the benefits of the generative

learning approach and the implications of applying such techniques to practical problems.

17

Chapter 2

PAC Classification from PAC

Estimates of Distributions

In this chapter we consider a general approach to pattern classification in which elements

of each class are first used to train a probabilistic model via some unsupervised learning

method. The resulting models for each class are then used to assign discriminant scores

to an unlabeled instance, and a label is chosen to be the one associated with the model

giving the highest score. This approach is used in Chapter 3 where learners give scores

corresponding to the digit they have been trained on to images of digits, and [6] uses this

approach to classify protein sequences by training a probabilistic suffix tree model (of

Ron et al. [41]) on each sequence class. Even where an unsupervised technique is mainly

being used to gain insight into the process that generated two or more data sets, it is

still sometimes instructive to try out the associated classifier, since the misclassification

rate provides a quantitative measure of the accuracy of the estimated distributions.

The work of [41] has led to further related algorithms for learning classes of

probabilistic finite state automata (PDFAs) in which the objective of learning has been

formalised as the estimation of a true underlying distribution over strings output by

the target PDFA with a distribution represented by a hypothesis PDFA. The natural

discriminant score to assign to a string is the probability that the hypothesis would

generate that string at random. As one might expect, the better one’s estimates of label

class distributions (the class-conditional densities), the better the associated classifier

should be. The aim of this chapter is to make precise that observation. Bounds are

given on the risk of the associated Bayes classifier (see Section 1.4.3) in terms of the

quality of the estimated distributions.

These results are partly motivated by an interest in the relative merits of esti-

mating a class-conditional distribution using the variation distance, as opposed to the

KL-divergence. In [10] it has been shown how to learn a class of PDFAs using KL-

19

divergence, in time polynomial in a set of parameters that includes the expected length

of strings output by the automaton. In Chapter 5 we examine how this class can be

learnt with respect to variation distance, with a polynomial sample-size bound that is

independent of the length of output strings. Furthermore, it can be shown that it is

necessary to switch to the weaker criterion of variation distance in order to achieve this.

We show here that this leads to a different—but still useful—performance guarantee for

the Bayes classifier.

Abe and Warmuth [2] study the problem of learning probability distributions using

the KL-divergence via classes of probabilistic automata. Their criterion for learnability

is that—for an unrestricted input distribution D—the hypothesis PDFA should be as

close as possible to D (i.e. within ǫ). Abe et al. [1] study the negative log-likelihood loss

function in the context of learning stochastic rules, i.e. rules that associate an element

of the domain X to a probability distribution over the range Y of class labels. We

show here that if two or more label class distributions are learnable in the sense of [2],

then the resulting stochastic rule (the conditional distribution over Y given x ∈ X) is

learnable in the sense of [1].

If the label class distributions are well estimated using the variation distance,

then the associated classifier may not have a good negative log-likelihood risk, but will

have a misclassification rate that is close to optimal. This result is for general k-class

classification, where distributions may overlap (i.e. the optimum misclassification rate

may be positive). We also incorporate variable misclassification penalties (sometimes

one might wish a false negative to cost more than a false positive – consider, for example,

the case of medical diagnosis from image analysis), and show that this more general loss

function is still approximately minimised provided that discriminant likelihood scores are

rescaled appropriately.

As a result we show that PAC-learnability and more formally, p-concept learn-

ability (defined in Section 1.1 – see Chapter 4 for further explanation), follows from

the ability to learn class distributions in the setting of Kearns et al. [30]. Papers such

as [13, 20, 36] study the problem of learning various classes of probability distributions

with respect to KL-divergence and variation distance, in this setting.

It is well-known (noted in [31]) that learnability with respect to KL-divergence

is stronger than learnability with respect to variation distance. Furthermore, the KL-

divergence is usually used (for example in [10, 29]) due to the property that when

minimised with respect to a sample, the empirical likelihood of that sample is maximised.

It appears that Theorem 16 is essentially a generalisation of Exercise 2.10 of

Devroye et al’s textbook [15], from 2 class to multiple classes, and in addition we show

here that variable misclassification costs can be incorporated. This is the closest thing

that has been found to this Theorem which has already appeared but it is suspected

20

that other related results may have appeared. Theorem 17 is another result which may

be known, but likewise no statement of it has been found.

2.1 The Learning Framework

We consider a k-class classification setting, where labeled instances are generated by

distribution D over X × {1, ..., k}. The aim is to predict the label ℓ associated with

x ∈ X, where x is generated by the marginal distribution of D on X, D|X . A non-

negative cost is incurred for each classification, based either on a cost matrix (where

the cost depends upon both the hypothesised label and the true label) or the negative

log-likelihood of the true label being assigned. The aim is to optimise the expected cost,

or risk, associated with the occurrence of a randomly generated example.

Let Dℓ be D restricted to points (x, ℓ), ℓ = {1, ..., k}. D is a mixture
∑k

ℓ=1 gℓDℓ,

where
∑k

i=1 gi = 1, and gℓ is the a priori probability of class ℓ.

The PAC-learning framework described previously is unsuitable for learning stochas-

tic models such as the one described in this chapter. Note that PAC-learning requires

the concept labelling data to belong to a known class of functions, and in this case a

stochastic process is generating labels. Instead we use a variation on the framework

used in [31] for learning p-concepts – as described in Section 1.1 – which adopts per-

formance measures from the PAC model, extending this to learn stochastic rules with k

classes. Rather than having a function c : X → [0, 1] mapping members of the domain

to probabilities (such that c(x) represents the a posteriori probability of an instance at

x having label 1), we have k classes so the equivalent function would map elements of

X to a k-tuplet of real values summing to 1, representing the a posteriori probabilities

of the k labels for any x ∈ X.

Our notion of learning distributions is similar to that of Kearns et al. [30].

Definition 15 Let Dn be a class of distributions over n labels across domain X. Dn

is said to be efficiently learnable if an algorithm A exists such that given ǫ > 0 and

δ > 0, and access to randomly drawn examples (see below) from any unknown target

distribution D ∈ Dn, A runs in time polynomial in 1/ǫ, 1/δ and n and returns a

probability distribution D′ that with probability at least 1 − δ is within ǫ L1 distance

(alternatively KL-divergence) of D.

The following results show that if estimates of the distributions over each class

label are known (to an accuracy in terms of ǫ, with confidence in terms of δ), then

the discriminative function optimised on these estimated distributions is such that the

function operates within ǫ accuracy of the optimal classifier, with confidence at least

1− δ from a sample size polynomial in these parameters.

21

2.2 Results

In Section 2.2.1 we give bounds on the risk associated with a hypothesis, with respect to

the accuracy of the approximation of the underlying distribution generating the instances.

In Section 2.2.2 we show that these bounds are close to optimal, and in Section 2.2.3

we give corollaries showing what these bounds mean for PAC learnability.

We define the accuracy of an approximate distribution in terms of L1 distance

and KL-divergence. It is assumed that the class priors of each class label are known.

2.2.1 Bounds on Regret

In terms of L1 distance

First we examine the case where the accuracy of the hypothesis distribution is such that

the distribution for each class label is within ǫ L1 distance of the true distribution for

that label, for some 0 ≤ ǫ ≤ 1. Cost matrix C specifies the cost associated with any

classification, where cij ≥ 0. It is usually the case that cij = 0 for i = j.

The risk associated with classifier f over discrete domain X, f : X → {1, ..., k},
is given by R(f) =

∑

x∈X

∑k
i=1 cif(x).gi.Di(x) (as defined in Definition 12).

Let f∗ be the Bayes optimal classifier, and let f ′(x) be the function with optimal

expected cost with respect to alternative distributions D′
i, i ∈ {1, ..., k}. For x ∈ X,

f∗(x) = arg minj
∑k

i=1 cij .gi.Di(x), and

f ′(x) = arg minj
∑k

i=1 cij .gi.D
′
i(x).

Recall that “regret” is defined in Definition 14 such that Regret(f ′) = R(f ′)−
R(f∗).

Theorem 16 Let f∗ be the Bayes optimal classifier and let f ′ be the classifier associated

with estimated distributions D′
i. Suppose that for each label i ∈ {1, ..., k}, L1(Di,D

′
i) ≤

ǫ/gi. Then Regret(f ′) ≤ ǫ.k.maxij{cij}.

Proof: Let Rf (x) be the contribution from x ∈ X towards the total expected cost

associated with classifier f . For f such that f(x) = j,

Rf (x) =

k
∑

i=1

cij .gi.Di(x).

Let τℓ′−ℓ(x) be the increase in risk for labelling x as ℓ′ instead of ℓ, so that

τℓ′−ℓ(x) =
∑k

i=1 ciℓ′ .gi.Di(x)−∑k
i=1 ciℓ.gi.Di(x)

=
∑k

i=1(ciℓ′ − ciℓ).gi.Di(x).
(2.1)

22

Note that due to the optimality of f∗ on Di, ∀x ∈ X : τf ′(x)−f∗(x)(x) ≥ 0. In a similar

way, the expected contribution to the total cost of f ′ from x must be less than or equal

to that of f∗ with respect to D′
i – given that f ′ is chosen to be optimal on the D′

i

values. We have
∑k

i=1 cif ′(x).gi.D
′
i(x) ≤ ∑k

i=1 cif∗(x).gi.D
′
i(x). Rearranging this, we

get
k
∑

i=1

D′
i(x).gi.

(

cif∗(x) − cif ′(x)

)

≥ 0. (2.2)

From Equations 2.1 and 2.2 it can be seen that

τf ′(x)−f∗(x)(x) ≤∑k
i=1 (Di(x)−D′

i(x)) .gi.
(

cif ′(x) − cif∗(x)

)

≤∑k
i=1 |(Di(x)−D′

i(x))| .gi.
∣

∣

(

cif ′(x) − cif∗(x)

)∣

∣ .

Let di(x) be the difference between the probability densities of Di and D′
i at

x ∈ X, di(x) = |Di(x)−D′
i(x)|. Therefore,

τf ′(x)−f∗(x)(x) ≤
k
∑

i=1

|cif ′(x) − cif∗(x)|.gi.di(x)

≤
k
∑

i=1

max
j
{cij}.gi.di(x).

In order to bound the expected cost, it is necessary to sum over X.

∑

x∈X

τf ′(x)−f∗(x)(x) ≤
∑

x∈X

k
∑

i=1

max
j
{cij}.gi.di(x) =

k
∑

i=1

max
j
{cij}.gi.

∑

x∈X

di(x). (2.3)

Since L1(Di,D
′
i) ≤ ǫ/gi for all i, ie.

∑

x∈X di(x) ≤ ǫ/gi, it follows from

Equation 2.3 that
∑

x∈X τ(x) ≤ ∑k
i=1 maxj{cij}.gi.

(

ǫ
gi

)

. This expression gives an

upper bound on expected cost for labelling x as f ′(x) instead of f∗(x). By definition,
∑

x∈X τ(x) = R(f ′)−R(f∗) = Regret(f ′). Therefore it has been shown that

R(f ′) ≤ R(f∗) + ǫ.
k
∑

i=1

max
j
{cij} ≤ R(f∗) + ǫ.k.max

ij
{cij},

and consequently that Regret(f ′) ≤ ǫ.k.maxij{cij}. 2

In terms of KL-divergence

We next prove a corresponding result in terms of KL-divergence, for which we use the

negative log-likelihood of the correct label as the cost function. We define Pri(x) to be

23

the probability that a data point at x has label i (the a posteriori probability of i given

x), such that Pri(x) = gi.Di(x)
(

∑k
j=1 gj .Dj(x)

)−1
. We define f : X → R

k, where

f(x) is an estimation of the a posteriori probabilities of each label i ∈ {1, ..., k} given

x ∈ X, and let fi(x) represent f ’s estimate of the a posteriori probability of the i’th

label at x, such that
∑k

i=1 fi(x) = 1. The risk associated with f can be expressed as

R(f) =
∑

x∈X

D(x)

k
∑

i=1

− log(fi(x)).Pri(x). (2.4)

Let f∗ : X → R
k output the true class label distribution for an element of X.

From Equation 2.4 it can be seen that

R(f∗) =
∑

x∈X

D(x)

k
∑

i=1

− log(Pri(x)).Pri(x). (2.5)

Theorem 17 For f : X → R
k suppose that R(f) is given by Equation 2.4. If for each

label i ∈ {1, ..., k}, I(Di||D′
i) ≤ ǫ/gi, then Regret(f ′) ≤ kǫ.

Proof: Let Rf (x) be the contribution at x ∈ X to the risk associated with classifier

f , Rf (x) =
∑k

i=1− log(fi(x)).Pri(x). Therefore R(f ′) =
∑

x∈X D(x).Rf ′(x).

We define Pr′i(x) to be the estimated probability that a data point at x ∈ X has

label i ∈ {1, ..., k}, from distributions D′
i, such that Pr′i(x) = gi.D

′
i

(

∑k
j=1 gj .D

′
j(x)

)−1
.

It is the case that

Rf ′(x) = D(x).

k
∑

i=1

− log
(

Pr′i(x)
)

.Pri(x).

Let ξ(x) denote the contribution to additional risk incurred from using f ′ as

opposed to f∗ at x ∈ X.1 We define D′ such that D′(x) =
∑k

i=1 gi.D
′
i(x) (and of

1The contribution towards Regret(f ′).

24

course D(x) =
∑k

i=1 gi.Di(x)). From Equation 2.5 it can be seen that

ξ(x) = Rf ′(x)−D(x).
k
∑

i=1

− log (Pri(x)) .Pri(x)

= D(x).

k
∑

i=1

Pri(x).
(

log (Pri(x))− log
(

Pr′i(x)
))

= D(x).

k
∑

i=1

(

gi.Di(x)

D(x)

)(

log

(

gi.Di(x)

D(x)

)

− log

(

gi.D
′
i(x)

D′(x)

))

= D(x).

k
∑

i=1

((

gi.Di(x)

D(x)

)

.

(

log

(

gi.Di(x)

gi.D′
i(x)

)

− log

(

D(x)

D′(x)

)))

=
k
∑

i=1

(

gi.Di(x) log

(

Di(x)

D′
i(x)

))

−D(x) log

(

D(x)

D′(x)

)

.

We define I(D||D′)(x) to be the contribution at x ∈ X to the KL-divergence,

such that I(D||D′)(x) = D(x) log (D(x)/D′(x)). It follows that

∑

x∈X

ξ(x) =

k
∑

i=1

(

gi.I(Di||D′
i)
)

− I(D||D′). (2.6)

We know that the KL-divergence between Di and D′
i is bounded by ǫ/gi for

each label i ∈ {1, ..., k}, so Equation 2.6 can be rewritten as

∑

x∈X

ξ(x) ≤
k
∑

i=1

(

gi.

(

ǫ

gi

))

− I(D||D′) ≤ k.ǫ− I(D||D′).

Due to the fact that the KL-divergence between two distributions is non-negative,

an upper bound on the cost can be obtained by letting I(D||D′) = 0, so R(f ′)−R(f∗) ≤
kǫ. Therefore it has been proved that Regret(f ′) ≤ kǫ. 2

2.2.2 Lower Bounds

In this section we give lower bounds corresponding to the two upper bounds given in

Section 2.2.

Example 18 Consider a distribution D over domain X = {x0, x1}, from which data

is generated with labels 0 and 1 and there is an equal probability of each label being

generated (g0 = g1 = 1
2). Di(x) denotes the probability that a point is generated at

25

x ∈ X given that it has label i. D0 and D1 are distributions over X, such that at

x ∈ X, D(x) = 1
2(D0(x) + D1(x)).

Suppose that D′
0 and D′

1 are approximations of D0 and D1, and that L1(D0,D
′
0) =

ǫ
g0

= 2ǫ and L1(D1,D
′
1) = ǫ

g1
= 2ǫ, where ǫ = ǫ′ + γ (and γ is an arbitrarily small

constant).

Given the following distributions, assuming that a misclassification results in

a cost of 1 and that a correct classification results in no cost, it can be seen that

R(f∗) = 1
2 − ǫ′:

D0(x0) =
1

2
+ ǫ′,D0(x1) =

1

2
− ǫ′,

D1(x0) =
1

2
− ǫ′,D1(x1) =

1

2
+ ǫ′.

Now if we have approximations D′
0 and D′

1 as shown below, it can be seen that

f ′ will misclassify for every value of x ∈ X:

D′
0(x0) =

1

2
− γ,D′

0(x1) =
1

2
+ γ,

D′
1(x0) =

1

2
+ γ,D′

1(x1) =
1

2
− γ.

This results in R(f ′) = 1
2+ǫ′. Therefore R(f ′) = R(f∗)+2ǫ′ = R(f∗)+2(ǫ−γ).

In this example the regret is only 2γ lower than R(f∗) + ǫ.k.maxj{cij}, since

k = 2. A similar example can be used to give lower bounds corresponding to the upper

bound given in Theorem 17.

Example 19 Consider distributions D0, D1, D′
0 and D′

1 over domain X = {x0, x1}
as defined in Example 18. It can be seen that the KL-divergence between each label’s

distribution and its approximated distribution is

I(D0||D′
0) = I(D1||D′

1) =

(

1

2
+ ǫ′

)

log

(

1
2 + ǫ′

1
2 − γ

)

+

(

1

2
− ǫ′

)

log

(

1
2 − ǫ′

1
2 + γ

)

.

The optimal risk, measured in terms of negative log-likelihood, can be expressed

as R(f∗) = −
(

1
2 + ǫ′

)

log
(

1
2 + ǫ′

)

−
(

1
2 − ǫ′

)

log
(

1
2 − ǫ′

)

. The risk incurred by using f ′

as the discriminant function is R(f ′) = −
(

1
2 + ǫ′

)

log
(

1
2 − γ

)

−
(

1
2 − ǫ′

)

log
(

1
2 + γ

)

.

Hence as γ approaches zero,

R(f ′) = R(f∗) +

(

1

2
+ ǫ′

)

log

(

1
2 + ǫ′

1
2 − γ

)

+

(

1

2
− ǫ′

)

log

(

1
2 − ǫ′

1
2 + γ

)

= R(f∗) + ǫ.

26

2.2.3 Learning Near-Optimal Classifiers in the PAC Sense

We show that the results of Section 2.2.1 imply learnability within the framework defined

in Section 2.1.

The following corollaries refer to algorithms Aclass and Aclass′ . These algorithms

generate classifier functions f ′ : X → {1, 2, . . . , k}, which label data in a k-label clas-

sification problem, using L1 distance and KL-divergence respectively as measurements

of accuracy.

Corollary 20 shows (using Theorem 16) that a near-optimal classifier can be con-

structed given that an algorithm exists which approximates a distribution over positive

data in polynomial time. We are given cost matrix C, and assume knowledge of the

class priors gi.

Corollary 20 If an algorithm AL1
approximates distributions within L1 distance ǫ′ with

probability at least 1 − δ′, in time polynomial in 1/ǫ′ and 1/δ′, then an algorithm

Aclass exists which (with probability 1− δ) generates a discriminant function f ′ with an

associated risk of at most R(f∗) + ǫ, and Aclass is polynomial in 1/δ and 1/ǫ.

Proof: Aclass is a classification algorithm which uses unsupervised learners to fit a

distribution to each label i ∈ {1, ..., k}, and then uses the Bayes classifier with respect

to these estimated distributions, to label data.

AL1
is a PAC algorithm which learns from a sample of positive data to estimate

a distribution over that data. Aclass generates a sample N of data, and divides N into

sets {N1, ..., Nk}, such that Ni contains all members of N with label i. Note that for

all labels i, |Ni| ≈ gi.|N |.
With a probability of at least 1− 1

2(δ/k), AL1
generates an estimate D′ of the

distribution Di over label i, such that L1(Di,D
′) ≤ ǫ (gi.k.maxij{cij})−1. Therefore

the size of the sample |Ni| must be polynomial in gi.k.maxij{cij}/ǫ and k/δ. For all

i ∈ {1, ..., k} gi ≤ 1, so |Ni| is polynomial in maxij{cij}, k, 1/ǫ and 1/δ.

When Aclass combines the distributions returned by the k iterations of AL1
, there

is a probability of at least 1−δ/2 that all of the distributions are within ǫ (gi.k.maxij{cij})−1

L1 distance of the true distributions (given that each iteration received a sufficiently large

sample). We allow a probability of δ/2 that the initial sample N did not contain a good

representation of all labels (¬∀i ∈ {1, ...k} : |Ni| ≈ gi.|N |), and as such – one or

more iteration of AL1
may not have received a sufficiently large sample to learn the

distribution accurately.

Therefore with probability at least 1−δ, all approximated distributions are within

ǫ(gi.k.maxij{cij})−1 L1 distance of the true distributions. If we use the classifier which

is optimal on these approximated distributions, f ′, then the increase in risk associated

with using f ′ instead of the Bayes Optimal Classifier, f∗, is at most ǫ. It has been

27

shown that AL1
requires a sample of size polynomial in 1/ǫ, 1/δ, k and maxij{cij}. It

follows that

|N | =
k
∑

i=1

|Ni| =
k
∑

i=1

p

(

1

ǫ
,
1

δ
, k,max

ij
{cij}

)

∈ O

(

p

(

1

ǫ
,
1

δ
, k,max

ij
{cij}

))

.

2

Corollary 21 shows (using Theorem 17) how a near-optimal classifier can be con-

structed given that an algorithm exists which approximates a distribution over positive

data in polynomial time.

Corollary 21 If an algorithm AKL has a probability of at least 1 − δ of approximat-

ing distributions within ǫ KL-divergence, in time polynomial in 1/ǫ and 1/δ, then an

algorithm Aclass′ exists which (with probability 1 − δ) generates a function f ′ that

maps x ∈ X to a conditional distribution over class labels of x, with an associated

log-likelihood risk of at most R(f∗) + ǫ, and Aclass′ is polynomial in 1/δ and 1/ǫ.

Proof: Aclass′ is a classification algorithm using the same method as Aclass in Corol-

lary 20, whereby a sample N is divided into sets {N1, ..., Nk}, and each set is passed to

algorithm AKL where a distribution is estimated over the data in the set.

With a probability of at least 1− 1
2 (δ/k), AKL generates an estimate D′ of the

distribution Di over label i, such that I(Di||D′) ≤ ǫ(gi.k)−1. Therefore the size of the

sample |Ni| must be polynomial in gi.k/ǫ and k/δ. Since gi ≤ 1, |Ni| is polynomial in

k/ǫ and k/δ.

When Aclass′ combines the distributions returned by the k iterations of AKL,

there is a probability of at least 1− δ/2 that all of the distributions are within ǫ(gi.k)−1

KL-divergence of the true distributions. We allow a probability of δ/2 that the initial

sample N did not contain a good representation of all labels (¬∀i ∈ {1, ...k} : |Ni| ≈
gi.|N |).

Therefore with probability at least 1−δ, all approximated distributions are within

ǫ(gi.k)−1 KL-divergence of the true distributions. If we use the classifier which is optimal

on these approximated distributions, f ′, then the increase in risk associated with using

f ′ instead of the Bayes Optimal Classifier f∗, is at most ǫ. It has been shown that AKL

requires a sample of size polynomial in 1/ǫ, 1/δ and k. Let p(1/ǫ, 1/δ) be an upper

bound on the time and sample size used by AKL. It follows that

|N | =
k
∑

i=1

|Ni| =
k
∑

i=1

p

(

1

ǫ
,
1

δ

)

∈ O

(

k.p

(

1

ǫ
,
1

δ

))

.

2

28

2.2.4 Smoothing from L1 Distance to KL-Divergence

Given a distribution that has accuracy ǫ under the L1 distance, is there a generic way

to “smooth” it so that it has similar accuracy under the KL-divergence? From [13] this

can be done for X = {0, 1}n, if we are interested in algorithms that are polynomial

in n in addition to other parameters. Suppose however that the domain is bit strings

of unlimited length. Here we give a related but weaker result in terms of bit strings

that are used to represent distributions, as opposed to members of the domain. We

define class D of distributions specified by bit strings, such that each member of D is a

distribution on discrete domain X, represented by a discrete probability scale. Let LD

be the length of the bit string describing distribution D. Note that there are at most

2LD distributions in D represented by strings of length LD.

Lemma 22 Suppose D ∈ D is learnable under L1 distance in time polynomial in δ, ǫ

and LD. Then D is learnable under KL-divergence, with polynomial sample size.

Proof: Let D be a member of class D, represented by a bit string of length LD, and

let algorithm A be an algorithm which takes an input set S (where |S| is polynomial in

ǫ, δ and LD) of samples generated i.i.d. from distribution D, and with probability at

least 1− δ returns a distribution DL1
, such that L1(D,DL1

) ≤ ǫ.

Let ξ = 1
12

(

ǫ2/LD

)

. We define algorithm A′ such that with probability at least

1 − δ, A′ returns distribution D′
L1

, where L1(D,D′
L1

) ≤ ξ. Algorithm A′ runs A with

sample S′, where |S′| is polynomial in ξ, δ and LD (and it should be noted that |S′| is
polynomial in ǫ, δ and LD).

We define DLD
to be the unweighted mixture of all distributions in D represented

by length LD bit strings, DLD
(x) = 2−LD

∑

D∈D D(x). We now define distribution

D′
KL such that D′

KL(x) = (1− ξ)D′
L1

(x) + ξ.DLD
(x).

By the definition of D′
KL, L1(D

′
L1

,D′
KL) ≤ 2ξ. With probability at least 1− δ,

L1(D,D′
L1) ≤ ξ, and therefore with probability at least 1− δ, L1(D,D′

KL) ≤ 3ξ.

We define X< = {x ∈ X|D′
KL(x) < D(x)}. Members of X< contribute

positively to I(D||D′
KL). Therefore

I(D||D′
KL) ≤ ∑

x∈X<
D(x) log

(

D(x)
D′

KL
(x)

)

=
∑

x∈X<
(D(x)−D′

KL(x)) log
(

D(x)
D′

KL
(x)

)

+
∑

x∈X<
D′

KL(x) log
(

D(x)
D′

KL
(x)

)

.

(2.7)

We have shown that L1(D,D′
KL) ≤ 3ξ, so

∑

x∈X<
(D(x) − D′

KL(x)) ≤ 3ξ.

Analysing the first term in Equation 2.7,

∑

x∈X<

(D(x)−D′
KL(x)) log

(

D(x)

D′
KL(x)

)

≤ 3ξ max
x∈X<

{

log

(

D(x)

D′
KL(x)

)}

.

29

Note that for all x ∈ X, D′
KL(x) ≥ ξ.2−LD . It follows that

max
x∈X<

{

log

(

D(x)

D′
KL(x)

)}

≤ log(2LD/ξ) = LD − log(ξ).

Examining the second term in Equation 2.7,

∑

x∈X<

D′
KL(x) log

(

D(x)

D′
KL(x)

)

=
∑

x∈X<

D′
KL(x) log

(

D′
KL(x) + hx

D′
KL(x)

)

,

where hx = D(x) −D′
KL(x), which is a positive quantity for all x ∈ X<. Due to the

concavity of the logarithm function, it follows that

∑

x∈X<
D′

KL(x) log
(

D′
KL

(x)+hx

D′
KL

(x)

)

≤ ∑

x∈X<
D′

KL(x)hx

[

d
dy (log(y))

]

y=D′
KL

(x)

=
∑

x∈X<
hx ≤ 3ξ.

Therefore, I(D||D′
KL) ≤ 3ξ(1 + LD − log(ξ)). For values of ξ ≤ 1

12

(

ǫ2/LD

)

,

it can be seen that I(D||D′
KL) ≤ ǫ. 2

We have shown a close relationship between the error of an estimated input

distribution (as measured by L1 distance or KL-divergence) and the error rate of the

resulting classifier. In situations where we believe that input distributions may be accu-

rately estimated, the resulting information about the data may be more useful than just

a near-optimal classifier.

30

Chapter 3

Optical Digit Recognition

Much of the research in the field of pattern recognition focuses on bounding the con-

fidence and accuracy parameters of algorithms within learning frameworks such as the

variants of the PAC framework. These frameworks are typically abstracted from the

reality of practical recognition problems and tend to rely on restrictive conditions being

adhered to, such as the PAC restriction that the algorithm must work for a distribution

over observations selected by an adversary. In practice, there is generally some indication

of the kind of distribution that will be encountered, with distributions over observations

from a class typically being smooth to some degree. In order to demonstrate that the

method of solving classification problems using unsupervised learners is a viable method

in practice, we apply this method to a practical problem – that of optical character

recognition (OCR).

The premise behind OCR is to compute labels corresponding to images of char-

acters. There are three main stages involved in this process. Firstly a device must

convert the sheet of text into an image – this may be a digital camera or scanner, for

instance. The image may then undergo preprocessing in order to convert the image to

a state in which it can most easily be identified. Finally the image is processed by a

recognition algorithm which outputs the corresponding label or sequence of labels.

This chapter looks at the problem of processing images of handwritten digits

and outputting corresponding labels or sequences of labels, and does not look at the

stage of creating the initial images or that of preprocessing. The initial stages are

image processing issues and have been widely researched for use in OCR software. The

techniques involved are relevant to applications such as medical imaging, and are not

specific to character recognition. However, the algorithms used to identify the labels

from the images are what we are concerned with here as this is where we can implement

the technique of using unsupervised learners to learn the class distributions. The results

of others (as covered in later results sections) show that by applying preprocessing to

31

the images, the error rates can be roughly halved.

The topic of digit recognition is appealing for a number of reasons, the most

important of which is that image data is readily available. In addition to this the field has

a wealth of results with which ours can be compared, without the problem having been

“solved”. The accurate recognition of most forms of printed script is now considered

to be a solved problem, although the problems of recognising handwritten text and

particularly the recognition of such text in real time is an actively researched topic.

Although we are examining digit recognition the algorithms used can be applied

to a wide range of other problems – a straightforward extension would be to any arbitrary

alphabet, although the ideas behind the algorithms could be used for many multi-class

classification problems. In most pattern recognition problems, knowledge specific to the

problem can be used to gain a great advantage in recognition success rates. For example,

bar codes obey a checksum1 property in order to test whether the data from the bar

code has been correctly identified by the scanner. If the code has been incorrectly read,

there is a high probability that this will be identified by the algorithms used and as such

the classification of the code is declared null.

In the testing carried out, we sample not only single digits but also strings of

digits which obey some contextual rule – a checksum rule for example. This allows us

to see the benefit of retaining the additional information of the a posteriori probabilities

by using unsupervised learners to solve classification problems as opposed to alternative

techniques such as the k-nearest neighbour algorithm (as described below).

3.1 Digit Recognition Algorithms

3.1.1 Image Data

The tests performed on the algorithms utilised two sets of data (available for download

from [11]) – a training set consisting of sixty thousand images, and a test set consisting

of ten thousand images. Each image is represented by a 28 by 28 array of bytes, with

each byte representing a colour in grey scale – 0 being white, and 255 being black. The

images depict black digits on a white background, and the images have been enlarged

and centred from their original 20 by 20 binary pixel format. Some degree of grey scale

has been introduced by the normalising algorithm as it performed this enlargement.

Figure 3.1 shows three of the digits from the set of training images.

The images are of handwritten digits collected from Census Bureau employees

and high-school students. The sets of people writing the digits for the training data

1Checksum rules are a form of redundancy check which guard against the misreading of data. When
a checksum rule is referred to in this chapter, it means that the sum of the string of digits must divide
by some integer with zero remainder (where the integer is context specific).

32

Figure 3.1: Images 1000-1002 in Training set, with respective labels 6, 0 and 7.

and test data sets are known to be disjoint, with half of the digits in each set coming

from Census Bureau employees and half from the high-school students. The sets do not

contain an equal proportion of images with each label – the precise numbers of each

digit can be seen in Table A.1 of Appendix A. It should be noted that some underlying

degree of error should be expected when classifying the images, as some images in the

data set are almost impossible to label on inspection – an algorithm cannot be expected

to label a 7 correctly when the image of the digit looks more like a 1 than a 7. This is a

problem inherent in any pattern recognition system. Three examples of such confusing

images (taken from the set of Test data – therefore not seen in the learning sample) are

shown in Figure 3.2.

Figure 3.2: Images 2098, 1393 and 2074 in Test set, with respective labels 2, 5 and 4.

For further detail of the data sets and basic pre-processing performed on the

images, see [11]. Here we are not concerned with pre-processing techniques, as these

will be specific to the particular demands of OCR, and this is a general case study into

the performance of algorithms based on the use of unsupervised learners to perform

general classification tasks – not necessarily specific to OCR.

33

3.1.2 Measuring Image Proximity

Two measurements of the “closeness” of images are used – the L2 distance and the

complete Hausdorff distance.

L2 distance

When we talk about the L2 distance between two images, we treat the images as

vectors of bytes where each pixel is represented in one dimension. Therefore we compute

the distance between two 282 dimensional vectors. It is generally good practice in

image processing to reduce the dimensionality of the data through feature selection or

extraction before making comparisons between samples as this reduces the impact of

anomalies in the data and may allow for patterns in the data to be better distinguished2.

However in this case it was decided that dimension reduction is unnecessary since it is just

another form of preprocessing and we are more interested in observing the performance

benefits when introducing contextual information over the performance on single digit

recognition, than in trying to optimise the performance on single digits.

Figure 3.3: L2 distance between two images with label 5.

The L2 distance between two images can be illustrated by superimposing one

image over the other, and taking the difference of the shades at each pixel. Figure 3.3

shows the difference between two images of the digit 5. The amount of shading on the

image represents the distance between the two image vectors.

By contrast, Figure 3.4 shows the distance between images with labels 3 and 9.

It is apparent that this image has far more shading than the difference in Figure 3.3 –

and as such the distance between the images is far greater.

2See [21] for information on dimension reduction techniques.

34

Figure 3.4: L2 distance between images with labels 3 and 9.

Complete Hausdorff distance

In order to explain the concept of the Hausdorff distance between two images, we must

view the images as sets of points, where the sets comprise all shaded elements of each

array. In practice the algorithms based on Hausdorff measurements use a threshold value

of 5 to convert the bytes into bits - with values greater than 5 being seen as shaded.

A

B

Figure 3.5: Hausdorff Distance.

Figure 3.5 illustrates the Hausdorff distance from A to B, and also from B to

A. Formally, the Hausdorff distance from A to B is

h(A,B) = max
a∈A

{

min
b∈B
{L2(a, b)}

}

.

This is shown by the left-most dotted line on the diagram – the point in A fur-

thest from B, to the closest point in B. Similarly, the right-most dotted line shows

h(B,A). Notice that h(A,B) 6= h(B,A) in this instance, and as such the Haus-

dorff distance is not a metric. However, we shall use the complete Hausdorff distance,

H(A,B) = max {h(A,B), h(B,A)}, which is a metric due to its symmetry. Note that

the algorithms view the images as sets of points rather than geometric shapes, but for

simplicity the illustration shows rectangles rather than sets of individual pixels.

35

3.1.3 k-Nearest Neighbours Algorithm

A standard algorithm for performing digit recognition – and one for which results are

known (see [34], for example) – is the k-nearest neighbour algorithm. This simple

algorithm performs reasonably well in many pattern classification settings and has the

beneficial property that no training time is required as the algorithm compares the image

to be classified with each image in the training set at run-time. Note that this is of no

particular significance in this setting, as the algorithms have all been designed to work

in this way3.

Figure 3.6 shows the k-nearest neighbours algorithm. The algorithm finds the k

images in the set of training data lying closest (in terms of L2 distance) to image I – the

image to be classified. The labels and proximities of the k images closest to I from the

images observed to date are recorded in array N . Once all of the training data has been

examined, the labels of these k images are then compared and the predominant label

is chosen to label the unclassified image. In the case where the k-nearest neighbours

include equal numbers of two or more different labels, one can be arbitrarily chosen (we

choose the lowest label).

The algorithm takes k as an input, and an image from the set of test data.

The algorithm has access to the set of sixty thousand training images, as well as the

corresponding labels. The distance L2(a, b) between two images is simply the Euclidean

distance between the two vectors in n dimensional space – where the dimension of the

space is equal to the number of pixels in the images – such that

L2(a,b) =

√

√

√

√

n
∑

i=1

(ai − bi)2 .

3.1.4 Unsupervised Learners Algorithms

The method of using unsupervised learning agents to classify images requires the training

data set to be partitioned into ten subsets – one for each label – such that the subset

corresponding to label ℓ contains every image in the training data set with label ℓ. Each

subset is passed to one of ten unsupervised learning agents. The agent uses a kernel

based density estimation algorithm to estimate the probability density function over all

images in its subset.

Kernel density estimation algorithms are a commonly used non-parametric tech-

nique for approximating distributions (see [17]). The kernel used by our algorithm is

a normal distribution with a standard deviation specified by the user, centred at the

3To achieve a reduction in complexity when using the method involving unsupervised learners, it is
necessary to perform a training pass over the data to estimate the a posteriori probabilities prior to
performing recognition.

36

Algorithm 1

input: k, image I

let N [] be an array of k pairs (xi, ℓi)
for i = 0 to k − 1

N [i] = (∞, 0)

for each image J in the training set (with label ℓJ)

d = L2(I, J)
if d < xk−1

N [k − 1] = (d, ℓJ)
Sort N by increasing values of x

let ℓ be the label occurring with greatest frequency in N
(or the lowest such value)

return ℓ

Figure 3.6: k Nearest Neighbours technique using L2 distance metric.

coordinate represented by the image in 282 dimensional vector space. The learner con-

structs a distribution over the data set by summing all of these normal distributions,

such that the value at any point in the domain receives at least some small contribution

from each of the distributions, but a far greater contribution from those centred nearby.

This distribution is then scaled by the number of samples in the subset to achieve the

probability density distribution.

Once we have ten such distributions we can classify an image by passing its vector

to the learners, each of which returns the probability density for its associated label at

that coordinate. The algorithm then selects the label with the highest corresponding

probability density, and an estimate of the “likelihood” (or the a posteriori probability)

attributed to this label can be calculated by normalising these probability densities.

Figure 3.7 shows this algorithm.

Note that σ is the standard deviation. Note also that although the algorithm

returns only the estimation of the label corresponding to the image being classified, the

values of Z[] represent estimates of the a posteriori probabilities of the labels 0 through

37

9. This algorithm uses a function, distance(a, b), to gauge the distance between two

images. As previously mentioned, both the L2 distance and the Complete Hausdorff

distance were used in the experiments, and as such the “distance” function can refer

to either measurement as required. Note that the relevant functions for these two

measurements are provided in Section A.1 of Appendix A.

For the purpose of this work it is unnecessary to explicitly estimate the ten indi-

vidual probability density functions – rather we can compare the image being classified

with each image in the training data as we did in Figure 3.6. The distance between the

pairs is then used to calculate the a posteriori probabilities using normal distributions

with the standard deviation value declared as a parameter. This simplification will give

identical results and is more convenient at this scale. If using this technique on larger

amounts of data then for a finite domain (which invariably OCR is confined to) it is

possible to make a pass through the training set and create the distributions representing

each digit, and this would considerably speed up the classification process4.

3.1.5 Results

During testing the algorithms were run on all images in the set of test data, and were

trained on all images in the set of training data.

k-nearest neighbours

The tables in Section A.2.1 (Appendix A) show the true labels of the test digits in the

rows, and the columns represent the output classifications per thousand tests. As one

might expect, the diagonals corresponding to correct classifications (where an image

with label i is classified with label i) contain the highest values.

Tests were conducted using values of k equal to 1, 3 and 5, and the corresponding

results can be found in Tables A.2, A.3 and A.4. A summary of the results is given in

Table 3.1.

The results show that the nearest neighbour algorithm gives quite reasonably

accurate labels considering its simplicity, attaining an error rate just below 4%.

Unsupervised learners

In order to make a direct comparison, the same tests were conducted (using L2 distance)

as for the k-nearest neighbours algorithm above, with different values being substituted

4An important advantage of using this generative approach, where the distributions are pre-computed,
is that the set of classes being modeled can be augmented or diminished relatively easily. To remove a
class label the algorithm can simply ignore the corresponding distribution for that label, and to add a
symbol to the alphabet of labels, the algorithm can make a pass through the training data with that
label and construct a corresponding distribution – leaving the other distributions unchanged.

38

Algorithm 2

input: image I

let Z[] be an array of ten real numbers

for i = 0 to 9
Z[i] = 0

for each image J in the training set (with label ℓJ)

d = distance(I, J)

Z[ℓJ] = Z[ℓJ] + (σ
√

2π)−1 exp(− d2

2σ2)

for i = 0 to 9
let ni be the number of images in the training set with label i
Z[i] = Z[i]/ni

normalise elements of Z[] such that
∑9

i=0 Z[i] = 1

return arg maxi{Z[i]}

Figure 3.7: Algorithm to classify images of digits using a normal distribution as a Kernel.

for the standard deviation of the normal distribution. The results in Section A.2.2

(summarised in Table 3.2) show that for standard deviations of 1000, 2000 and 4000,

the overall misclassification rates were 3.7%, 3.8% and 5.7% error rates. Referring back

to the results for the k-nearest neighbours algorithms, we see that the error rates for

the algorithms using standard deviations of 1000 and 2000 are virtually identical, which

illustrates that the algorithm using unsupervised learners has the potential to work at

least as well as the more commonly used k-nearest neighbours algorithm.

Tables A.8, A.9 and A.10 show the average likelihoods associated with each of

the ten labels (the a posteriori distributions) when classifying images of each digit in

the data set. In other words, the value uij is the average a posteriori probability (over

the test data set) assigned to label j (represented by Z[j] in the algorithm) having been

given an image of digit i as input.

These tables also state the average negative log-likelihood associated with the

algorithm for each value of σ. The negative log-likelihood for any given input is the

39

Average misclassification error
k per 1000 images

1 39
3 37
5 38

Table 3.1: Results of Nearest Neighbour algorithm.

Standard Average misclassification error Average Negative
Deviation per 1000 images Log-Likelihood

1000 37 0.743
2000 38 0.203
4000 57 0.188

Table 3.2: Results of Unsupervised Learners algorithm (using by L2 distance).

negative log of the a posteriori probability assigned to the correct label of the input

image. For instance, if an algorithm classifies an image of the digit 7 correctly, let’s

say with an estimated a posteriori probability of 0.9, then the negative log of 0.9 is

the negative log-likelihood of the correct label (0.046 – a small value). However, if the

algorithm classified the image as a 1, then the estimated a posteriori probability of a 7 is

likely to be much lower, say 0.4, in which case the negative log-likelihood of the correct

label is the negative log of 0.4 (0.444 – a far larger value). It follows that the average

negative log-likelihood associated with an algorithm is an assessment of how certain the

classifications are. If the value is low, then it suggests that the algorithm consistently

assigns a reasonably large probability to the correct label.

Table 3.2 gives the average negative log-likelihoods corresponding to each of the

standard deviations tested. Even though the error rate is lower when using a smaller

standard deviation, the negative log-likelihood is substantially greater. This suggests

that the greater smoothing effect of using normal distributions with a large standard

deviation as a kernel allows for an averaging to occur when an image is on the borderline

between two possible labels. If an image of a 7 looks quite like an image of a 1, then

a large standard deviation means that images with label 7 and 1 from the training set

will have a more balanced influence on the relative probabilities than if the standard

deviation is lower, in which case only the images in close proximity will have much

effect – possibly all 1s in this case. As a result, although the use of a low standard

deviation scores a lower error rate, the algorithm can be mislead by erroneous images

40

due to this overfitting. In contrast to this, the higher standard deviation classifies fewer

images correctly, but in the case of a misclassification, a reasonably high probability is

still assigned to the correct label.

Tests were performed on Algorithm 2 using the Hausdorff distance rather than

L2 distance. Four different values were used for the standard deviation of the kernels,

and the average misclassification rate and average negative log-likelihood of the correct

labels are recorded in Table 3.3.

Standard Average misclassification error Average Negative
Deviation per 1000 images Log-Likelihood

0.4 39.5 0.198
0.45 40.4 0.171
0.5 40.7 0.154
1.0 78.2 0.303

Table 3.3: Results of Unsupervised Learners algorithm (using Hausdorff distance).

It can be seen that the performance of the algorithm using the complete Haus-

dorff metric, in terms of misclassification errors, is comparable to the algorithms observed

so far. The algorithm can achieve error rates as low as 4.0% – which is only 0.3% higher

than the best rates observed when using L2 distance or the k-nearest neighbours algo-

rithm as seen above.

The advantage of using the complete Hausdorff distance is seen in the figures for

the average negative log-likelihood. When comparing the two measurements, it appears

that the algorithm using the complete Hausdorff distance and normal distributions with

standard deviations of 0.5 performs the best in terms of negative log-likelihood, and

also have relatively low error rates, making them a good proposition for use in a context

sensitive setting as described in Section 3.2.

Conclusions

In order to assess the significance of these results we look at the reasons why the

algorithms misclassify images, and examine the results in the context of other known

results.

As mentioned above, there is an underlying error rate inherent in the data set

due to the handwriting seen in some of the images. Examples of the vagueness of images

can be seen in Figure 3.2. These images may be so far removed from any of the images

in the training data that it is difficult to see how any algorithm could classify them –

other than perhaps more advanced algorithms using feature extraction to recognise the

41

Figure 3.8: Images in Training set, with respective labels 3, 5 and 8.

construction of the handwritten digits.

Aside from these erroneous images, there are images which are ambiguous due

to their similarity to other digits. Figure 3.8 shows three examples of misleading images.

As these three images appear in the training data set, they can cause problems with the

recognition of other digits. For example, the image of an 8 looks remarkably like a 9,

and it is likely to have a very small L2 and complete Hausdorff distance to many images

with label 9. When studying the tables of results showing the classifications made by

the algorithms, it is clear that there are pairs of digits which are commonly mistaken for

each other. In the examples shown, the digits are written poorly and do not look how

they are supposed to, but in fact there are inherent similarities between several pairs of

digits – 4s and 9s for example can be written in a similar way, as can 1s and 7s, and in

some cases 2s and 7s.

Comparing the results in this section with results published elsewhere, we see that

our results fit in roughly as expected. Lecun et al. ([34]) give the error rates associated

with a number of different learning algorithms including a k-nearest neighbour algorithm

and various neural networks. The nearest neighbour algorithm in their paper achieves a

5% error rate, which is slightly higher than the rate achieved here. By preprocessing the

images using a deslanting technique, the same algorithm achieves a rate of just 2.4% –

less than half of the initial rate. According to [11], Kenneth Wilder at the University of

Chicago achieved an error rate of 3.09% using a k-nearest neighbours algorithm based

on L2 distance, and this was further reduced to 1.8% after preprocessing the images

(by de-skewing, blurring, and performing some form of noise removal).

The best result achieved in [34] was an error rate of 0.7% by a boosted neural

network performing on a data set augmented with artificially distorted samples. Since

then, a rate of 0.4% has been achieved on the data set by Simard et al. in [44], using a

technique known as convolution nets, with much preprocessing performed on the data.

This shows that by performing preprocessing on the data before applying the

algorithms, far lower error rates can be achieved. However, we are not concerned with

42

achieving low error rates using these simplistic algorithms – they are merely a benchmark

to show the advantages of using the unsupervised learners in context sensitive settings

as illustrated in the following sections.

3.2 Context Sensitivity

When talking about context sensitivity, we mean any setting making use of the additional

information retained by a generative algorithm over a discriminative one – the a posteriori

probabilities of each label for a given image. In this section we study an algorithm that

classifies strings of digits rather than individual digits. In each case there is some

predefined contextual rule defining the subset of strings from which the target string is

drawn. An example of this is a checksum rule where the string of digits must sum to a

multiple of ten.

If it is known that the string of digits belongs to a specific subset of possible

strings, then once the initial recognition has taken place for each of the images it may

be apparent that a mistake has been made if the string of corresponding labels does

not belong to the subset. In this case it is beneficial for the algorithm to have some

mechanism for backtracking and finding the likely root of the error. For this to happen

the algorithm needs to have some measure of certainty linked to each classification. In

the case of the unsupervised learners algorithm in the previous section, this measure of

certainty is the a posteriori probability of the label chosen. Rather than discarding the a

posteriori probabilities of each label, which have been calculated by the algorithm, they

can be used to judge whether a mistake may have occurred in the recognition process.

As an example, imagine that the algorithm in Figure 3.7 is classifying the first of

the three digits in Figure 3.8, given access to some arbitrary training set. Consider that

for the labels from 0 to 10, the corresponding estimated a posteriori probabilities are

0.01, 0.03, 0.50, 0.37, 0.01, 0.02, 0.01, 0.01, 0.03, and 0.01. The algorithm has assigned

the highest likelihood to label 2, and as such the image is given label 2. However – if we

are now told that the label cannot be 2, we have a record of the likelihoods associated

with each of the other labels, so we can simply find the label with the highest probability

from the subset of labels which are allowed. In this case, the next highest likelihood is

associated with the label 3.

Note that discriminative algorithms do not have estimates of the estimated a

posteriori probabilities associated with each label, and would therefore need to be arti-

ficially altered in some way as to choose an alternative label.

Now let us examine a situation where rather than identifying a single image, we

are now presented with a string of three digits. Figure 3.9 shows three images, as well

as a possible set of likelihoods generated by an algorithm.

43

Three Most Likely Labels (with associated likelihoods)

9 (0.53) 7 (0.84) 9 (0.76)
4 (0.42) 2 (0.08) 4 (0.19)
1 (0.03) 9 (0.02) 7 (0.03)

Figure 3.9: Images 1242, 4028 and 4009 in Test set, with respective labels 4, 7 and 9.

If we take the label with the highest likelihood for each of the images, we output

the string 979. Now if we introduce a contextual rule to define the subset of strings to

which these images must belong, we can analyse the way in which an algorithm might

correct itself. Consider the rule where the digits of the string must sum to a multiple of

ten. If this is the case, then the string 979 cannot be correct, as these digits sum to 25.

In order to find the most likely string belonging to the subset of strings which

fit the rule, we can consider each string in descending value of likelihood until a string

belonging to the subset is found. The likelihood associated with a string is the product

of the likelihoods assigned to each individual digit in the string. In this case, the first

few strings to consider in order of likelihood are 979 (0.338), 479 (0.268), 974 (0.085),

and 474 (0.067). Of these strings, 479 and 974 both fit the rule (their digits sum to

a multiple of ten), so we output 479 as this is the string with the highest associated

likelihood which also fits the rule.

If a discriminative algorithm was faced with the same problem, then it is likely

that a correct classification would not be made. One way of attempting to correct the

problem would be to pick one of the three digits at random and alter the label of that

digit in such a way as to make the three digits sum to a multiple of ten. In the example

given, this would result in a classification of either 479, 929, or 974 – leading to a one

in three chance of correcting the initial mistake accurately.

For this type of context sensitive classification task it can be beneficial to use an

algorithm which sacrifices some degree of classification success rate in favour of having

a lower negative log-likelihood. This results in smoother distributions being created by

the unsupervised learners, which are less prone to overfitting5.

5Overfitting is a problem commonly associated with machine learning, where the predictive model is

44

We study the application of the unsupervised learners method to three context

sensitive learning problems. As suggested above, the complete Hausdorff distance is the

better of the two metrics to use judging from the results in Section A.2.2, given that it

demonstrates a relatively low negative log-likelihood.

The algorithm in Figure 3.10 takes n images of digits, and returns the string

of digits most likely to be represented by those images – subject to the string fitting

a specific contextual rule. The distance function can be whichever measurement is

required, as in previous algorithms, but in this section the Hausdorff distance has been

used as explained above. Three context rules were used and the details of each are in

the following sections. To understand the working of the algorithm it is sufficient to

know that rule(s) returns a boolean value determined by whether string s belongs to

the subset of all possible strings as defined by the rule in question.

Testing procedure

It should be noted that the testing procedure used in this section was as follows. All tests

were performed on randomly chosen images from the set of all images with appropriate

labels in the test data set. For example – if a test was carried out on a string of three

digits summing to a multiple of five, then the first two digits were selected randomly

from the set of ten thousand test digits. After this, the third image was randomly

selected from the remaining subset of available images. So if, for instance, a 5 and an

8 had been chosen (summing to 13), then the final digit was selected at random from

the set of all digits with label 2 or label 7 in the test data set.

When carrying out tests with a specified set of parameters, each test was gen-

erated independently. If 300 tests were performed on strings of three digits, with a

specified standard deviation, then each string of digits was generated at the time of the

test. As such, it is possible (but highly unlikely) that all 300 tests could be performed

on not only the same string of digits, but on the same images representing those digits.

I have not calculated the probability of such an event occurring but needless to say it is

not substantial enough to adversely affect the results.

As the testing was carried out, the parameters used were adjusted according to

patterns in the results – the standard deviation values used were not predetermined. As

a result, the intervals between test sets are not always regular, but this was necessary to

get both a decent span of values in order to see overall patterns in the results, as well

as trying to home in on the best classification rates and correction rates.

fitted too closely to the training data resulting in the model being tailored to this specific data set and
any random features of this data.

45

Algorithm 3

input: images I0,...,In−1

let px
ℓ represent the likelihood of digit x having label ℓ

for each ℓ ∈ {0, ..., 9}, x ∈ {0, ..., n − 1}
px

ℓ = 0

for x = 0 to n− 1
for each image J in the training set (with label ℓJ)

d = distance(Ix, J)

px
ℓJ

= px
ℓJ

+ (σ
√

2π)−1 exp(− d2

2σ2)

for i = 0 to 9
let ni be the number of images in the training set with label i
px

i = px
i /ni

normalise elements px
ℓ such that

∑9
i=0 px

i = 1

let s∗ represent the most likely string of digit labels and

ls∗ represent its associated likelihood

for d0 = 0 to 9
...

for dn−1 = 0 to 9
let s be the string of digits d0d1...dn−1

let ls = Πn−1
x=0p

x
dx

if((ls > ls∗)
∧

rule(s))
s∗ = s and ls∗ = ls

return s∗

Figure 3.10: Algorithm to recognise n-digit strings obeying a contextual rule.

46

3.2.1 Three-Digit Strings Summing to a Multiple of Five

The first test involves strings of three digits, which must sum to a multiple of five.

Formally, the digits d0, d1, d2 must obey the following rule:

∃k ∈ N ∪ {0};
2
∑

i=0

di = 5k.

To analyse the performance of the algorithm, three hundred tests were performed

using each of six values of standard deviation: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.

Standard No. of Strings Strings Correct
Deviation Tests Recognised % Corrected % Classifications %

0.5 300 266 88.7 19 55.9 285 95.0
0.6 300 258 86.0 26 61.9 284 94.7
0.7 300 247 82.3 34 64.2 281 93.7
0.8 300 255 86.3 31 68.9 286 95.3
0.9 300 250 83.3 32 64.0 282 94.0
1.0 300 229 76.3 47 66.2 276 92.0

Table 3.4: Results of classifying three-digit strings summing to a multiple of five.

The results can be viewed in Table 3.4, correct to 3 significant figures. A string

recognition success is achieved when the algorithm associates the highest likelihood with

the correct label for each of the three digits – therefore suggesting the correct labels and

as a result producing a correct classification. A string correction is achieved when the

algorithm has failed to recognise at least one of the digits, but then due to the resulting

3 digits not fitting the checksum rule the algorithm finds the error(s) and classifies

the string correctly. Note that the percentage for string corrections is calculated as a

proportion of those strings which were originally recognised incorrectly by the algorithm.

Finally, the correct classification column records the total number of strings which were

either recognised correctly at the outset, or were corrected accurately by the algorithm

– thereby classifying the string correctly.

The table of results shows three records – the number and percentage of strings

correctly recognised by the algorithm, the number and percentage of strings corrected,

and the number and percentage of strings correctly classified. The algorithm is said to

have recognised a string correctly if the correct labels of the three digits each received

the highest estimated a posteriori probability – these are the strings that would have

been classified correctly without the knowledge of the contextual information that the

digits must sum to a multiple of 5. The string is corrected by the algorithm if the initial

47

recognition of the string is incorrect (the estimated a posteriori probabilities indicate an

incorrect label for at least one of the three digits), but the algorithm returns the correct

string having used the checksum rule to show that an error has been made and found

the most likely string of digits to fit the rule. Finally, a string is correctly classified so

long as the right digits are returned by the algorithm, regardless of how these digits were

arrived at.

It is reasonable to expect that a lower standard deviation would result in a higher

rate of recognition based on the findings of the tests on single digits, and indeed this

appears to fit the overall trend shown in the results. It is also intuitive to assume that

perhaps the average negative log-likelihood of the correct label has some bearing on the

percentage of strings corrected by the algorithm. However, the results show that the

percentage of strings corrected is higher when using a standard deviation of 1.0 than it

is when using 0.5, despite Table 3.3 showing that the corresponding average negative

log-likelihoods being 0.303 and 0.154. This may be an anomaly in the results – although

there is an upward trend in the percentage of corrected strings as the standard deviation

rises, there is a local maxima at σ = 0.8, and the result for σ = 1.0 may be misleadingly

high. Looking at Table 3.3 it appears that the average negative log-likelihood is likely

to be at its lowest somewhere between σ = 0.5 and σ = 1.0, so it could be expected

that the percentage of strings corrected should peak between these values.

The overall classification rates show that the optimum classification rate occurs

at σ = 0.8 which seems to be the point at which the increased correction rate begins

to outweigh the drop in recognition rate as the standard deviation increases.

Interpretation of results

It would be misleading to draw any firm conclusions from this testing since the tests

were performed on randomly selected images from the data set, and some images are

harder to identify than others. Another feature of this particular test is the nature of the

checksum rule – three digits must sum to a multiple of five. This contextual knowledge

will not help the algorithm to correct mistakes when an image of a 2 is mistaken for 7

or vice versa. Similarly, 4s and 9s, and 8s and 3s can be mislabeled without the rule

spotting that a mistake in recognition has occurred. This is demonstrated in Figure 3.11,

where the third digit could be classified as a 4 or a 9 and the sum of the digits would be

either 15 or 20 – both accepted values as they fit the rule. By examining the tables in

Section A.2.2 it can be seen that these are all common mislabellings for the algorithm

using L2 distance, and it is likely to apply in the same way to the algorithm using the

complete Hausdorff distance.

48

Figure 3.11: Images 5037, 4016 and 4017 in Test set, with respective labels 2, 9 and 4.

3.2.2 Six-Digit Strings Summing to a Multiple of Ten

This test involves strings of six digits, which must sum to a multiple of ten, such that

∃k ∈ N ∪ {0};
5
∑

i=0

di = 10k.

With a longer string there is likely to be a higher error rate in recognising the

images – it is less likely that the algorithm will assign the highest a posteriori probabilities

to the correct labels for six out of six images than in three out of three. This is borne out

by the figures in Table 3.5, which show that the rate of recognition is about 10% lower

on average than the results for tests using equivalent standard deviations in Table 3.4.

However, the results also show a marked improvement in the correction ability of the

algorithm when used on six digits as opposed to three. Correction rates as high as 80.7%

were observed – on average roughly 15% higher than the results for three digit strings.

Standard No. of Strings Strings Correct
Deviation Tests Recognised % Corrected % Classifications %

0.4 250 198 79.2 35 67.3 233 93.2
0.5 250 186 74.4 47 69.1 233 93.2
0.55 250 193 77.2 46 80.7 239 95.6
0.6 250 178 71.2 55 76.4 233 93.2
0.7 250 181 72.4 54 78.3 235 94.0

Table 3.5: Results of classifying six-digit strings summing to a multiple of ten.

Interpretation of results

Again there seems to be a peak in standard deviation at which the correction process

is performed optimally. For lower values it is likely that the peaks of the normal distri-

49

butions are narrow, leading to only the nearby images being influenced and this in turn

leads to a lack of useful information when a choice must be made as to which digit

to correct, and the additional decision on how it should be corrected. In the case of a

higher standard deviation, the smoothing of the distributions may be too great, lead-

ing to the estimated a posteriori probabilities being closer together, and being overly

affected by misleading images in the training data. This is fine when only one digit

has been incorrectly recognised, since it is likely that the correction can be made, but

if more than one digit needs correcting there may be several ways to change the digits

whilst still obeying the checksum rule.

For instance, imagine the case where the string 477039 has been recognised as

127034. Three digits have been recognised incorrectly in this instance. It happens to

be the case that if the initial 1 is corrected to a 4, the string 427034 obeys the rule that

the digits must sum to a multiple of ten, so it is quite possible that the algorithm will

give a higher probability to the string being 427034 than 477039, and as a result the

string is misclassified.

3.2.3 Dictionary of Eight-Digit Strings

Having looked at strings obeying a checksum rule, we now examine a similar setting in

which a random string is selected from a set of ten thousand strings of eight digits, and

eight images with labels corresponding to these digits are passed to the algorithm for

classification. The algorithm has access to the “dictionary” of ten thousand strings, and

aims to return the appropriate string from the dictionary corresponding to the sequence

of strings passed to it.

In each test a string was selected at random from the dictionary and for each

digit in the string an image with the corresponding label was selected at random from

the set of test data. The standard deviation used in the testing was 0.55, as this gave

the best performance on the classification of 6-digit strings – in particular it produced

the highest correct rate for strings recognised incorrectly. It should be noted that the

strings in the dictionary are all different, and were generated at random from a uniform

distribution over the set of all eight digit strings.

Standard No. of Strings Strings Correct
Deviation Tests Recognised Corrected % Classifications

0.55 10000 5801 4194 99.9 9995

Table 3.6: Results of classifying eight-digit strings belonging to a dictionary of ten
thousand strings.

50

The results from the tests are displayed in Table 3.6. Of the ten thousand tests,

5801 of the strings were correctly recognised. This result is rather low, and equates to a

recognition rate of 0.934 for a single digit, to 3 decimal places. However, the algorithm

corrected 4194 of the 4199 strings incorrectly recognised (roughly 99.9%), giving an

overall classification rate of 99.95%.

Interpretation of results

This result shows the power of the unsupervised learners algorithm in being able to

correct misclassifications in a setting where the data is drawn from a relatively sparse

set. The set itself contains ten thousand strings, out of a domain of 108 possible strings.

In this setting it is reasonable to assume that a discriminative algorithm could be altered

in some way so as to find the “closest” string in the dictionary to the string recognised,

if this string is not itself in the dictionary. For instance, where only a single mistake has

been made in the recognition of a string, it is likely that only one string in the dictionary

is reasonably close to the recognised string – so it is not hard to correct the mistake

manually.

However, the overall classification rate of 99.95% is equivalent to a recognition

rate of at least 99.994% if correction is not taken into account, which shows that the

method of using the a posteriori probabilities to predict string classifications is a powerful

tool when compared to even the best single digit recognition algorithms.

If we analyse this result further, then the single digit recognition rate of 0.934

can be used to estimate roughly how many strings were recognised with 1 error, how

many with 2 errors, etc. Figure 3.7 shows these estimated numbers. Note that the

estimated number of strings does not sum to exactly ten thousand due to rounding.

No. of Recognition Errors Estimated no. of strings

0 5801 (known)
1 3269
2 806
3 114
4 10
5 1
6+ 0

Table 3.7: Estimated number of recognition errors over ten thousand tests.

As mentioned previously, the domain is quite sparse – containing 104 strings out

of a possible 108 eight-digit strings. This means that if a string has a small number

51

of digits with recognition errors, there is likely to be only one string in the dictionary

near to it in the state space. Therefore in these cases it would be relatively simple to

manually correct the recognition errors. With this in mind, it is likely that a discriminative

algorithm with a low error rate could achieve good results with a simple adjustment to

correct strings with recognition errors.

However, in cases where 3 or more errors occur there may be more difficulty in

spotting the mistakes. If 4 or more mistakes have been made in recognition then it is

likely that the recognised string lies closer in the state space to some other string in

the dictionary, and as a result a misclassification is likely to occur. Given the number

of misleading images in the test data set (likely to number around seventy out of ten

thousand on anecdotal evidence6) it is reasonable to presume that in at least 5% of

strings tested, even the most accurate classifier would struggle to classify all eight digits

correctly.

3.2.4 Conclusions

The nature of the testing for the context sensitive algorithms means that firm conclusions

cannot be drawn from these results in terms of the error rates achieved, but the tests

serve a good way of demonstrating the way in which string correction works. The

results show that the algorithms using unsupervised learners can obtain good rates of

correction, which is the main advantage of this technique over existing techniques. With

further structured testing where images are chosen in a more predetermined manner, it

would be possible to find out the precise effects of altering the standard deviation on

the negative log-likelihood and on the error rates.

As discussed above, it would be possible to extend a discriminative algorithm so

that it is able to estimate where errors have occurred in classification and in some way

correct these errors. An algorithm such as the k nearest neighbours algorithm could be

used with an additional rule to change an arbitrary digit to make the recognised string fit

a checksum rule if it does not do so already – but this could only be expected to achieve a

1/n success rate when applied to strings of n digits under the condition of digits summing

to a multiple of ten, and a one in 1/2n success rate when applied to the condition of

digits summing to a multiple of five. There are ways of estimating a posteriori probability

distributions from algorithms like the k nearest neighbours algorithm, but these can

be computationally expensive to use, and seem somewhat artificial in comparison to

estimating the true probability distributions of the labels over the domain. Once a

discriminative algorithm has been modified in such a way, it is effectively performing the

6The best recorded performance of a single digit classifier recorded on [11] was an error rate of 0.7%
which leads me to believe the number of misleading digits must be roughly this proportion of the data
set.

52

same task as a generative algorithm so there can be little benefit to pursue this route.

While it is quite possible to imagine a corrective technique being applied to a

basically discriminative algorithm when considering a sparse state space, it seems logical

that with a more densely populated space, the unsupervised learners algorithm would

perform relatively well in comparison. The more densely populated the state space,

the less likely it is that an algorithm could correct an incorrect recognition of digits by

“guesswork” alone – but having knowledge of the a posteriori probabilities would put

the unsupervised learners algorithm at a great advantage.

53

Chapter 4

Learning Probabilistic Concepts

Probabilistic concept (or p-concept) learning is fundamentally a 2-class classification

problem. Unlike traditional PAC-learning problems, the classes involved in the p-concept

setting may exhibit some overlap over elements of the domain due to the stochastic na-

ture of the model. In other words, over a domain X each x ∈ X has some associated (a

posteriori) probability distribution over the two class labels. The notion of a probabilistic

concept was introduced by Kearns and Schapire in [31], and is defined in Section 1.1.4.

As this is a 2-class probabilistic model, it follows that rather than visualising the

distributions over the two classes as separate curves with associated a priori probabilities,

we can instead model the a posteriori probabilities of one of the classes from which the

other can be inferred, and a probability density function representing the distribution of

data over the domain. So, for class labels 0 and 1, the data is distributed over domain

X according to D, with function c(x) representing the probability of an observation at

x ∈ X belonging to the class with label 1.

4.1 An Overview of Probabilistic Concepts

In essence, a p-concept represents the probability of an event of “class 1” occurring given

observation x. [31] uses examples of predicting whether rainfall will occur tomorrow

given observations such as temperature and wind speed, and of whether a student will

be admitted to a particular college based on their past record, to illustrate possible uses

of the framework. The result of each of these events is basically a boolean function;

either it does rain or it doesn’t, there is no in between. However, the chance of either

event can be modeled using observations, leading to a rule equivalent to c(x) for the

observed values x which is a probability of the event occurring.

It is noted that these examples exhibit three particular traits which fit with

the p-concept setting. Firstly, there is an element of probabilistic behaviour involved

55

– whether it be caused by a truly random event, by a deterministic process where

observations cannot be measured to a high enough accuracy to predict the outcome, or

that insufficient is understood about the process to make an assured prediction either

way.

Another important point is that although there may be some underlying proba-

bility of either event occurring, only the outcome of one event or the other is observed.

Therefore the observer makes no measurement of the probability of that event from a

single observation, and it may be the case that each observation x is so rare that no

estimate of c(x) can possibly be made no matter how large a sample has been taken.

Finally, it is pointed out that despite the probabilistic nature of the problem, there

is an underlying structure to the events being predicted – the event is closely linked to

the observations being made – the events are not independent. This is in contrast to

models involving noise, where the concept being modeled is in fact deterministic and

the problem involves filtering out the noise.

4.1.1 Comparison of Learning Frameworks

The framework for learning probabilistic concepts is similar in many respects to the

traditional PAC-learning framework. However, following from the fact that the model is

stochastic and therefore an overlap exists between the class distributions, the error rate

in unlikely to converge to zero – there is some minimum error rate to which an algorithm

can converge. Thus instead of aiming to upper bound the error rate of an algorithm

within the standard parameter ǫ with high probability, as in the PAC framework, we

must aim to upper bound the regret by ǫ instead, where the regret is the difference

between the risk (or error rate in this case) associated with a classifier, and the optimal

risk (see Section 1.4.3).

In some ways, learning p-concepts is similar to agnostic learning, which is less

restrictive than PAC learning and allows stochastic rules to be learnt. However, in

agnostic learning no assumptions are made about the class of mechanism generating

the data. Within the p-concept framework the assumption is made that the concept

being learnt belongs to a known class of concepts – in relation to this chapter we are

learning the class of p-concepts which are functions with at most k turning points.

Agnostic learning is further explained in Section 1.1.3.

In [31] an algorithm is given which efficiently learns p-concepts from the class

of non-decreasing functions on real numbers. The p-concepts learnt by the algorithm

described in this chapter are from the class of concepts with at most k turning points

(maxima and minima) over real numbers. The distribution over the observations is

unknown, and may be chosen by an adversary trying to minimise the success of the

algorithm (as in the classic PAC setting). We separate the sampled data by class label

56

and pass each subset of the data to an unsupervised learner. An observation is then

classified by asking each learner to return a value associated with the observation, and the

label associated with the learner returning the higher value is given to the observation.

Note that the unsupervised learners have no knowledge of the label associated with the

data they receive.

Abe et al. (in [1]) extend the work of [31] to show that learning p-concepts in

polynomial time with respect to quadratic distance (as in [31]) is equivalent to learning

them in polynomial time in terms of KL-divergence1.

4.1.2 The Problem with Estimating Distributions over Class Labels

Note that the approach taken in this chapter is different from the approach taken in

Chapter 2, where each learner estimates the distribution over the samples with a partic-

ular class label. Here, we take a different approach – using a discriminant function to

return a real value from each learner rather than an estimation of the probability density

associated with an observation. In other words, no attempt is made to approximate the

distributions over the two class labels.

The reason that this approach has been adopted is due to the “worst case

scenario” of an adversary choosing the distribution over the observations. When using a

generative algorithm and attempting to estimate the distributions over each class label,

imagine a kernel technique being used to give some probability density “weighting” to

each observation in a sample. No matter what measure of the width of these kernels is

used, an adversary could choose a distribution consisting of spikes of probability density

of a far smaller width, such that data with one label is situated next to data of the other

label, with the distance separating the two classes being a tiny fraction of the width

of the kernel. Whereas a discriminative algorithm could separate the two data sets no

matter how small the gap, the generative algorithm would struggle to do so.

4.2 Learning Framework

The learning framework in which we study the learning problem is based on the PAC-

learning framework, whereby we are learning an unknown concept from the class of all

functions c() with at most k local minima and maxima, and observations are drawn

from an oracle according to some unknown arbitrary probability distribution.

An example oracle can be seen in Figure 4.1. Note that we can think of the

oracle in terms of distributions D0 and D1, such that D0(x) = D(x)(1 − c(x)) and

D1(x) = D(x)c(x). This is illustrated in Figure 4.2.

1Learning p-concepts in this way focuses on estimating the function c().

57

c(x)

X

X

D(x)

Figure 4.1: Example Oracle – c(x) has 2 turning points.

58

c(x)

X

X

D(x)

D (x)
0

D (x)
1

Figure 4.2: D0 and D1 – note that D0(x) = D(x)(1 − c(x)) and D1(x) = D(x)c(x).

59

For the sake of simplicity we make the restriction that the a priori probabilities of

generating an observation with label 0 or 1 are 1
2 (as is commonly assumed when solving

such problems). This allows us to concentrate on the fundamental properties of the

problem and of the algorithm without being concerned with the additional complication

of estimating a priori probabilities of the classes (an extension that can be made sampling

a polynomial amount of data), and an overview of possible alterations to allow the

algorithm to work without this condition is given in Section 6.1.

We use a linear loss function to evaluate the performance of a classifier, such

that a misclassification of an observation leads to a unit cost and a correct classification

leads to a loss of 0. It follows that the expected loss α of function f on an observed

value x ∈ X, is given by α(x, f(x)) = |f(x)− c(x)|.2 Risk functional R(f) is such that

R(f) = Ex∼D[α(x, f(x))] =
∫

X D(x).α(x, f(x)) dx.

In this case, the Bayes Optimal Classifier is defined as follows:

f∗(x) =

{

1, if c(x) ≥ 1
2 ,

0, otherwise.

See Figure 4.3 for an illustration of the optimal classifier. Note that the proba-

bility distribution of the observations over the domain is irrelevant to the performance

of the optimal classifier and has been omitted from the diagram. Given knowledge of

the concept c, the Bayes Optimal Classifier optimises the probability of assigning the

correct label at every value in the domain. It should be noted that f∗ gives the optimum

risk, R(f∗) =
∫

X D(x).min{c(x), 1 − c(x)} dx.

4.3 Algorithm to Learn p-concepts with k Turning Points

The algorithm is given in Figure 4.4. The algorithm can be best explained if split into

its three constituent parts as shown – Algorithm 4 generates the training data, and

Algorithm 6 labels previously unseen data by calling the two unsupervised learners using

Algorithm 5.

We draw a sample of observations from the oracle, from which the observations

are generated independently at random, and identically distributed over the unknown

probability distribution D on X. Observations are of the form (x, ℓ), where ℓ ∈ {0, 1}.
Note that p-concept c is a function over X with a total of at most k local maxima

and minima, such that Pr(ℓ = 1 | x) = c(x). Note that the observation comprises an

element of the domain and a label of either 0 or 1, rather than a real value representing

a probability.

2Note that this corresponds to Definition 11 given equal class priors and a linear loss function.

60

c(x)

X

1/2

X

f*(x)

1

0

Figure 4.3: The Bayes Optimal Classifier.

61

Algorithm 4 Training Algorithm.

S0 = ∅, S1 = ∅
m = max

{

(

211ǫ−3(k + 1)
)

3

2 ,
(

8(k+1)
ǫ−(ǫ2/16)

)3
, 239ǫ−9, δ−1ǫ−3

}

repeat

generate observation (x, ℓ) from oracle

if (|Sℓ| < m) then add (x, ℓ) to Sℓ

until |S0| = |S1| = m

Algorithm 5 Learners return numerical values given x ∈ X.

getValue(ℓ, x){
w = miny{window W of width y centred at x, such that

W contains exactly m
2

3 observations in Sℓ}
v = 1/w
return v

}

Algorithm 6 Classification Algorithm.

input: x′

v0 = getValue(0, x′)
v1 = getValue(1, x′)
if (v0 > v1) then ℓ′ = 0, else ℓ′ = 1
return ℓ′

Figure 4.4: Algorithm to learn p-concepts with k turning points.

62

In Algorithm 4 we draw observations from the oracle until we have seen exactly

m observations with each label, discarding any additional observations with a label for

which m observations have already been obtained. The observations are stored in two

sets, S0 and S1 - with S0 containing m observations with label 0, and S1 containing

m observations with label 1. From these observations we construct classifier f such

that the probability of f correctly labelling an element of X is optimised based on the

sample data. Note that this classifier is constructed implicitly in the process of labelling

newly observed data, and is never explicitly constructed in our algorithm – this will be

discussed in Section 4.4.

4.3.1 Constructing the Learning Agents

We pass the sets S0 and S1 to a pair of learning agents, L0 and L1 respectively, such

that learner L0 receives set S0 and L1 receives set S1. Notice at this stage that the data

sample provided to each of the learning agents is made up of a set of m observations

of values of X, and that the label of the observations is immaterial (as they are all

identical). Therefore, the learning agents are acting within the unsupervised learning

framework and can be referred to as unsupervised learners.

When a previously unseen observation is generated, the algorithm is given a value

xq ∈ X and is asked to label it, as shown in Algorithm 6. The value xq is passed to

learners L0 and L1 (using the getValue() call to Algorithm 5), each of which returns

a numerical value. The highest of these values is used to label the observation – with

label 0 if the highest value came from L0, and with 1 if it came from L1.

Each learning agent has access to its sample of training data, and takes as input

a single value xq from the domain. Each learner then creates a window centred at xq,

defined as the interval with minimum width containing exactly m
2

3 observations from

the training set. The inverse of this window width is then taken and returned to the

algorithm by the learner.

It follows that whichever learner fitted the narrowest window to xq returns the

largest value, and the algorithm labels the observation with the label associated with

that learner.

4.4 Analysis of the Algorithm

We show that with high probability, the distribution of observations in a sample gener-

ated by the oracle is close to the distribution D over which the sample has been randomly

generated. In Lemma 23, we formalise this by imagining the domain to be divided into
1
ζ intervals for some small fraction ζ such that each interval is expected to contain ζ

proportion of the sample. It is then shown that the empirical sample is likely to contain,

63

to within a small multiplicative error, the expected proportion of observations occurring

within each interval.

4.4.1 Bounds on the Distribution of Observations over an Interval

Lemma 23 Let D be an arbitrary probability density function over continuous domain

X, let ζ be a small positive constant, and let ǫ, δ ∈ (0, 1). We divide X into 1
ζ intervals

[x0, x1] , ...,
[

x 1

ζ
−1, x 1

ζ

]

, such that for all values of i in 1, ..., 1
ζ ,
∫ xi

xi−1
D(x) dx = ζ. A

sample S of observations of X generated i.i.d. over D, such that |S| ≥ 3
ǫ2ζ ln

(

4
ζδ

)

,

contains between (1−ǫ)δ|S| and (1+ǫ)δ|S| observations in each interval with probability

at least 1− δ
2 .

Proof: Suppose that y1,1, ..., y|S|, 1
ζ

are {0, 1}-valued random variables, such that

yi,j = 1 if the ith observation in sample S lies in interval [xj , xj+1]. From the definition

of the intervals, and the fact that the observations are generated independently, it is

clear that Pr(yi,j = 1) = ζ.

From standard Chernoff bounds (see for instance [4, 9]) we see that, for ǫ ≥ 0

and j ∈
{

1, ..., 1
ζ

}

:

Pr
(

1
|S|

∑|S|
i=1 yi,j ≥ (1 + ǫ)ζ

)

≤ e−ǫ2ζ|S|/3,

and Pr
(

1
|S|

∑|S|
i=1 yi,j ≤ (1− ǫ)ζ

)

≤ e−ǫ2ζ|S|/2.

The above inequalities can be combined to show that

Pr





|S|
∑

i=1

yi,j ≥ (1 + ǫ)ζ|S|
∨

|S|
∑

i=1

yi,j ≤ (1− ǫ)ζ|S|



 < 2e−ǫ2ζ|S|/3. (4.1)

This equation bounds the probability of a sample being generated in which the

number of observations occurring within a specific interval is greater than a multiplicative

factor of (1 + ǫ) above or less than a multiplicative factor of (1− ǫ) below the expected

number. We regard samples of this nature to be unrepresentative of the distribution

from which it is generated. Equation 4.1 only looks at one specific interval on the

domain, and there are 1
ζ such intervals. By taking a union bound on the intervals, we

get the following inequality to ensure that a sample is representative across all intervals:

Pr



∀j ∈
{

1, ...,
1

ζ

}

: (1− ǫ)ζ|S| ≤
|S|
∑

i=1

yi,j ≤ (1 + ǫ)ζ|S|



 ≥ 1−
(

2

ζ

)

e−ǫ2ζ|S|/3.

(4.2)

64

We now show that a sample size of |S| ≥ 3
ǫ2ζ ln

(

4
ζδ

)

is sufficient to ensure that

the probability in Equation 4.2 is at least 1− δ
2 . By substituting |S| = 3

ǫ2ζ
ln
(

4
ζδ

)

into

the right hand side of Equation 4.2, we get

1−
(

2

ζ

)

e−ǫ2ζ|S|/3 = 1−
(

2

ζ

)

e
−ǫ2ζ

(

3

ǫ2ζ
ln
(

4

ζδ

))

/3

= 1−
(

2

ζ

)

e
− ln

(

4

ζδ

)

= 1−
(

2

ζ

)(

ζδ

4

)

= 1−
(

δ

2

)

.

Finally, by substituting this result back into Equation 4.2 we show that with

probability at least 1 − δ
2 , a sample S such that |S| ≥ 3

ǫ2ζ
ln
(

4
ζδ

)

, contains between

(1− ǫ)δ|S| and (1 + ǫ)δ|S| observations in each interval for 0 ≤ ǫ ≤ 1.

Pr



∀j ∈
{

1, ...,
1

ζ

}

: (1− ǫ)ζ|S| ≤
|S|
∑

i=1

yi,j ≤ (1 + ǫ)ζ|S|



 ≥ 1− δ

2
.

2

4.4.2 Bounds on the Regret Associated with the Classifier Resulting

from the Algorithm

We now show that the regret associated with the classifier defined by the algorithm in

Figure 4.4 is bounded within ǫ with probability at least 1 − δ, given a training sample

size polynomial in ǫ and δ.

Theorem 24 The algorithm in Figure 4.4 defines classifier f̂ such that with probability

at least 1− δ, Regret
(

f̂
)

≤ ǫ.

Proof: The analysis of the algorithm can be broken down into three distinct cases.

Each of these cases represent a subset of the domain formed by the composition of

noncontiguous intervals. The three subsets are mutually exclusive and span all elements

of the domain. We examine each of these cases, bounding the addition to the total

regret associated with the classifier in each case.

Notice that the aim is not to bound the risk associated with the classifier f̂

defined by the algorithm, rather it is to bound the additional risk incurred by using f̂

as opposed to f∗. There is a minimum risk R(f∗) associated with any classifier, and

65

it is clear that for values of x ∈ X where c(x) is close to 1
2 , there is little advantage

(in terms of risk) of a classifier choosing one label over the other – even the optimum

classifier can do no better than a 50/50 success rate when classifying such observations.

See Figure 4.5 for an illustration of such regions.

c(x)

X

1/2

1/2 +

1/2 −

 i1 i2 i3

Figure 4.5: Case 1 – covering values of x where the value of f̂(x) has little effect on
regret. i1 ∪ i2 ∪ i3 = I1.

From Figure 4.5 it can be seen that for all values of x in the intervals labeled

i1, i2 and i3,
1
2 − ǫ′ ≤ c(x) ≤ 1

2 + ǫ′, where ǫ′ is a small fraction of ǫ.3 Informally, this

is what we shall refer to as “Case 1”. Formally, we define I1 to be the subset of the

domain representing Case 1, such that I1 =
{

x ∈ X | 1
2 − ǫ′ ≤ c(x) ≤ 1

2 + ǫ′
}

.

“Case 1”

To bound the regret associated with I1, we consider the worst-case scenario (from the

point of view of maximising the regret incurred over I1). Consider the case where

3In fact we shall later define ǫ′ such that ǫ′ = ǫ
8
, but for now we shall stick to using ǫ′ to simplify

the analysis.

66

∀x ∈ X : c(x) = 1
2 − ǫ′ (I1 covers the whole domain). The optimal classifier f∗ for this

function is one which predicts label 0 for every value of x ∈ X, since the probability of

any observation having label 0 is 1
2 + ǫ′. It follows that R(f∗) = 1

2 − ǫ′, regardless of

the probability distribution over X.

If we now consider the worst possible classifier for this p-concept – which we

shall call f1 – such that f1 gives the label 1 to all observations, then it can be seen

that R
(

f1
)

= 1
2 + ǫ′. This is illustrated in Figure 4.6. It is therefore the case that

Regret
(

f1
)

= R(f1)−R(f∗) = 2ǫ′.

We have seen that in the worst scenario (where I1 covers the whole domain,

and where the regret associated with the classifier has been maximised) the total regret

incurred over values of the domain in I1 is 2ǫ′. There is no need to examine the detail

of our algorithm for dealing with values of the domain in I1 – it is clear that the worst

possible classifier does little worse than the optimal classifier – so we use 2ǫ′ as the

upper bound on the contribution to the regret associated with our classifier over this

region.

In contrast to Case 1 where we do not make any claims about the algorithm’s

performance in labelling data, Case 2 consists of regions where one label has a signif-

icantly higher probability of occurring, and we would like the algorithm to reflect this

and label the points with the appropriate label. I2 consists of regions lying outside of

I1, such that either c(x) < 1
2 − ǫ′ or c(x) > 1

2 + ǫ′. However, we need to guarantee

that when we label the points, the windows generated in Algorithm 5 lie wholly outside

I1 as any overlap will invalidate the method (as will be explained in due course). It is

therefore necessary to have a third case defining “buffer zones” between I1 and I2, to

cover regions where this overlap is possible. These buffer zones will comprise I3.

Finally we will examine Case 3, with I3 representing the corresponding subset of

the domain. Case 3 deals with the situation where the point being classified lies outside

the regions comprising I1, yet close enough to the region for an overlap to occur with

the windows constructed by L0 and L1 in Algorithm 5 as described above.

“Case 2”

Figure 4.7 shows the regions comprising I2 (see the lower of the two graphs), labeled

as i4, i5, i6 and i7. Notice that gaps have been left between these regions and the

regions comprising I1 (see the top graph). These are illustrated in Figure 4.8, and will

be explained in detail later on.

We wish to ensure that given a representative sample (as discussed in Lemma 23)

of observations, the algorithm will choose the most likely label for each value of the

domain lying within I2, namely 0 if c(x) < 1
2 − ǫ′ and 1 if c(x) > 1

2 + ǫ′. If this occurs

(the most likely label is chosen over all x ∈ I2) it follows that ∀x ∈ I2 : f̂(x) = f∗(x).

67

c(x)

X

1/2

1/2 +

1/2 −

X

1

0

1/2 +

1/2 −

f*

f 1

f(x)

c(x)

Figure 4.6: Case 1 – Worst Case Scenario.

68

c(x)

X

1/2

1/2 +

1/2 −

 i1 i2 i3

X

D(x)

 i4 i6 i5 i7

Figure 4.7: Case 2 – intervals where it is important that f̂(x) should predict the same
label as f∗(x). I1 = i1 ∪ i2 ∪ i3, I2 = i4 ∪ i5 ∪ i6 ∪ i7, and the remaining intervals are
I3.

69

c(x)

X

1/2

1/2 +

1/2 −

 i1 i2 i3

X

D(x)

 i01 i12 i11 i02 i03 i13

Figure 4.8: Case 3 – I3 = i01∪ i11∪ i02∪ i12∪ i03∪ i13. The intervals with dark shading
represent values of x for which c(x) < 1

2 − ǫ′, and the lighter areas represent values of
x for which c(x) > 1

2 + ǫ′.

70

It is therefore the case that over this region no additional regret is accrued since the risk

associated with f̂ and f∗ is identical.

To analyse the algorithm further we need to define what is meant by a represen-

tative sample of observations. We will then show that with probability at least 1 − δ

the algorithm generates representative samples of observations with each label.

The algorithm generates a sample of m observations with each label from the

oracle, where m is defined in Algorithm 4. For each label, we wish to divide up the

domain in the way described in Lemma 23, into 1
ζ intervals, each containing roughly the

expected number of points (with that label). Note that the intervals defined for labels

0 and 1 will differ (unless c(x) = 1
2 over the entire domain). We shall refer to these sets

of intervals as Z0 and Z1 respectively. It can be seen from Lemma 23 that, for suitably

small values of ζ and ǫ′′ which will be defined later, if a sample of at least 3
(ǫ′′)2ζ

ln
(

4
ζδ

)

observations with a specific label is generated then with probability at least 1− δ
2 , each

of the intervals will contain between (1− ǫ′′) ζm and (1 + ǫ′′) ζm observations.

For the overall sample to be representative, we require that for each label’s

sample, the observations are divided more or less equally between the intervals, such that

each interval contains between (1− ǫ′′) ζm and (1 + ǫ′′) ζm observations as described

above.

We now substitute expressions for ǫ′′ and ζ – we choose ǫ′′ = ǫ
16 and ζ = 28

ǫ2m
2
3

.

This means that with probability at least 1 − δ
2 there are 2−8ǫ2m

2

3 intervals, each

containing between
(

1− ǫ
16

)

28ǫ−2m
1

3 and
(

1 + ǫ
16

)

28ǫ−2m
1

3 observations, so long as

m ≥ 3m
2

3 ln

(

ǫ2m
2

3

26δ

)

1

3
m

1

3 ≥ ln

(

ǫ2m
2

3

26δ

)

e−
1

3
m

1
3 ≤

(

26δ

ǫ2m
2

3

)

.

It can be verified that this inequality is satisfied when m ≥ δ−1ǫ−3 and m ≥ 239. From

Algorithm 4 it can be verified that this is the case.

Since the samples of observations with label 0 and label 1 are each represen-

tative with probability at least 1 − δ
2 , it follows that both generated samples will be

representative with probability at least 1− δ .

Assuming that both samples used by the algorithm are representative, we show

that all observations occurring in a region of I2 for which c(x) > 1
2 + ǫ′ are given label 1

by the algorithm – and by symmetry observations in regions of I2 for which c(x) < 1
2−ǫ′

are labeled 0. Consider an observation at x′ ∈ X, such that x′ ∈ I2 and c(x) > 1
2 + ǫ′.

71

Learners L0 and L1 generate windows, centred at x′, each containing m
2

3 observations

from the training data with their respective label.

First we examine the window generated by L1. Given that c(x) > 1
2 + ǫ′, the

observation should be labeled 1 by the algorithm, and this happens when L1’s window

is narrower than that of L0. Note that the whole region of the domain containing the

window generated by L1 must lie outside I1 for the following analysis to hold – however

the same restriction is not put on the window of L0. If L0’s window encroaches on I1

and L1’s does not, it follows that the window generated by L1 must be narrower and

therefore the observation will be labeled correctly.

We define range1 as the minimum set of intervals in Z1 such that range1

contains the entire window generated by L1, and r1 is the number of these intervals. By

the definition of these intervals it follows that r1 ≤ 2+ m
2
3

(1−ǫ′′)ζm , as the window contains

m
2

3 observations from the sample and each interval must contain at least (1 − ǫ′′)ζm

observations for the sample to be representative, and in addition to this the window may

overlap at most 2 incomplete intervals. Therefore,

r1 ≤ 2 +
1

(1− ǫ′′)ζm
1

3

. (4.3)

Let r̄1 be the upper bound on r1. r̄1 = 2 + 1

(1−ǫ′′)ζm
1
3

. We now define range0

as the minimum set of intervals in Z0 such that range0 contains the entire window

generated by L0, and r0 is the number of these intervals. Since c(x) > 1
2 + ǫ′, the

probability density of observations with label 0 occurring over this region must be at

least a factor of
1

2
−ǫ′

1

2
+ǫ′
≤ 1−2ǫ′ smaller than that of observations with label 1. Referring

to Equation 4.3, it can be seen that

r0 ≤ 2 + r̄1(1− 2ǫ′)

= 2 +

(

2 +
1

(1− ǫ′′)ζm
1

3

)

(1− 2ǫ′)

= 4(1− ǫ′) +
1− 2ǫ′

(1− ǫ′′)ζm
1

3

. (4.4)

Let m0 be the maximum number of observations in L0’s sample occurring across

r0 intervals in Z0. We define the upper bound on r0 as r̄0 = 4(1 − ǫ′) + 1−2ǫ′

(1−ǫ′′)ζm
1
3

.

72

From Equation 4.4, it can be seen that

m0 = r̄0(1 + ǫ′′)ζm

=

(

4(1 − ǫ′) +
1− 2ǫ′

(1− ǫ′′)ζm
1

3

)

(1 + ǫ′′)ζm

≤ 4(1 − ǫ′)(1 + ǫ′′)ζm +
(1 + ǫ′′)(1− 2ǫ′)m

2

3

1− ǫ′′
. (4.5)

By substituting the values of ζ = 28

ǫ2m
2
3

, ǫ′ = ǫ
8 and ǫ′′ = ǫ

16 into Equation 4.5, we find

that

m0 ≤ 210ǫ−2
(

1− ǫ

8

)(

1 +
ǫ

16

)

m
1

3 +

(

1 + ǫ
16

1− ǫ
16

)

(

1− ǫ

4

)

m
2

3

< 210ǫ−2
(

1− ǫ

8

)(

1 +
ǫ

16

)

m
1

3 +
(

1 +
ǫ

8

)(

1− ǫ

4

)

m
2

3 .

For values of m ≥ 239ǫ−9, we see that m0 < m
2

3 from the following:

m0 < 210ǫ−2
(

1− ǫ

8

)(

1 +
ǫ

16

)

213ǫ−3 +
(

1 +
ǫ

8

)(

1− ǫ

4

)

226ǫ−6

= 223ǫ−5

(

1− ǫ

16
− ǫ2

128

)

+ 226ǫ−6

(

1− ǫ

8
− ǫ2

32

)

= 226ǫ−6 + 223ǫ−5 −
(

219ǫ−4 + 216ǫ−3 + 223ǫ−5 + 221ǫ−4
)

< 226ǫ−6 ≤ m
2

3 .

We know that the window generated by L1 contains m
2

3 observations, and we

have shown that m0 – the maximum number of observations with label 0 within range0,

is smaller than this. Therefore the window containing m
2

3 observations with label 0 must

be wider than this. It follows that the value returned by L1 (the inverse of the window

width) is higher, so the observation receives label 1.

From this result it can be seen that (provided that the data sample of each

label is representative – as in Equation 4.2), all observations occurring within I2 will be

given the most probable label by the algorithm. This means that no additional regret

is incurred in the region, since the algorithm predicts the same label as the optimal

classifier in all cases.

“Case 3”

We now examine Case 3, which provides the buffer zones I3 between I1 and I2 to ensure

that for the analysis of Case 2, c(x) > 1
2 + ǫ′ (or c(x) < 1

2 − ǫ′) across the whole of

range1 (or the corresponding range for the analysis when c(x) < 1
2−ǫ′) as stated above.

73

In a similar way to Case 1, we make no claim about the performance of the algorithm

on observations generated in I3. However, in Case 1 the optimal algorithm does little

better than to randomly guess the label, which means that the additional regret incurred

is limited. In this case the optimal algorithm classifies at least a proportion 1
2 + ǫ′ of the

observations correctly, so if our algorithm chooses the less likely label as a classification,

we incur additional expected loss.

For each of the turning points, of which there at most k, there can be at most

two regions where the the function c(x) crosses either 1
2 − ǫ′ or 1

2 + ǫ′ (note that there

is an additional region at either end of the domain, where the function enters I1 for the

first time and when it leaves I1 for the last time). In each of these regions we define an

interval such that at least m
2

3 observations of the label with highest probability occur

within that region – or until the threshold is crossed again into I1. For example, when

the function crosses c(x) = 1
2 − ǫ′ at some value of x ∈ X, we define an interval so that

c(x) ≤ 1
2 − ǫ′ over the entire interval, and such that the interval must contain at least

m
2

3 points with label 0 in a representative sample, unless by doing so we cross back into

I1, at which point the interval ends. See Figure 4.8 for an illustration of these regions.

Intervals i01, i02 and i03 are all regions where c(x) ≤ 1
2 − ǫ′, and i11, i12 and i13 are

regions where c(x) ≥ 1
2 + ǫ′. As such, intervals i0∗ are defined to contain a minimum

of m
2

3 observations with label 0, and intervals i1∗ are defined to contain a minimum of

m
2

3 observations with label 1.

The addition to the regret incurred by the algorithm in I3 is at most the prob-

ability of an observation with the higher c(x) value being generated in the region. By

symmetry the following applies both to intervals where c(x) ≤ 1
2 − ǫ′ and those where

c(x) ≥ 1
2 + ǫ′, but we shall analyse the former. Let range′ be the minimum set of

intervals in Z0 containing the entirety of the maximum-width window generated by L0

on a representative sample, such that the window contains the observation closest to

I1 (at the boundary under scrutiny) in its sample without encroaching on it. Let the

number of these intervals in range′ be r′, such that r′ ≤ 2 + m
2
3

(1−ǫ′′)ζm .

This value of r′ represents the largest number of intervals in Z0 which could

be overlapped by the window described above. The probability of an observation with

label 0 being generated in this region is at most r′ζ =

(

2 + m
2
3

(1−ǫ′′)ζm

)

ζ. Therefore the

maximum probability that an observation of the label with the higher likelihood being

generated in any of at most 2(k + 1) regions comprising I3, is

(

2 + m
2
3

(1−ǫ′′)ζm

)

2(k +

1)ζ = 4(k + 1)ζ + 2(k+1)

(1−ǫ′′)m
1
3

. This term is our upper bound on the regret incurred by

the algorithm over I3.

74

Examining the first part of this expression, we see that for m ≥
(

211(k+1)
ǫ3

)
3

2

,

4(k + 1)ζ =
210(k + 1)

ǫ2m
2

3

≤ 210(k + 1)

ǫ2
(

211(k+1)
ǫ3

) = ǫ/2. (4.6)

Now examining the second part of the expression, for m ≥
(

8(k+1)

ǫ− ǫ2

16

)3

,

2(k + 1)

(1− ǫ′′)m
1

3

=
2(k + 1)

(

1− ǫ
16

)

m
1

3

≤ 2(k + 1)
(

1− ǫ
16

)

(

8(k+1)

ǫ− ǫ2

16

) = ǫ/4. (4.7)

Summary

We have now shown that with probability at least 1− δ, both samples of data are rep-

resentative. It has been shown that the regret associated with our algorithm’s classifier

is at most 2ǫ′ = ǫ
4 over I1. It has also been shown that if both samples are represen-

tative and given sufficiently large sample sizes, no regret is incurred from I2, and (from

Equations 4.6 and 4.7), at most ǫ
2 + ǫ

4 = 3ǫ
4 is incurred from I3. Therefore, it has been

shown that with probability at least 1− δ, Regret
(

f̂
)

≤ ǫ. 2

75

Chapter 5

Learning PDFA

A probabilistic deterministic finite-state automaton (PDFA) is an automaton with a finite

number of states that has, for each state, a probability distribution over the transitions

leaving that state. We study these automata in a setting in which a function maps the

set of all transitions to symbols from a finite alphabet, such that a symbol is emitted

as a transition is used. The automaton is deterministic in that at most one transition

with a given symbol is possible from any state. Thus a PDFA defines a probability

distribution over the set of all strings over its alphabet.

In the introduction to Chapter 2 we discuss the method of solving classification

problems through using a Bayes classifier in conjunction with probability distributions

over each class label. Automata and their associated distributions over outputs can

be used in multiclass classification problems where sequences are being modeled. Such

problems include genetic sequencing, natural language processing, and all manner of

sound and image analysis such as speech recognition.

5.1 An overview of automata

5.1.1 Related Models

PDFAs are just one of a variety of structures used to model stochastic processes in

fields such as AI and machine learning. Similar structures seen in related work include

probabilistic nondeterministic finite automata (PNFA), hidden Markov models (HMM),

and partially observable Markov decision processes (POMDP).

Probabilistic nondeterministic finite automata

A PNFA is similar to a PDFA, but whereas a PDFA may have at most one transition with

a given symbol leaving a state, a PNFA may have more than one transition emitting the

77

same symbol. Thus even with knowledge of the starting state and the symbol generated

by a transition from this state, the machine may be in one of several states. This model

has more expressive power, and consequently it is harder to obtain positive results for

learning.

Hidden Markov models

In a HMM, each state has a probability distribution over symbols, and a symbol is emitted

when that state is visited. HMMs and PNFAs have essentially the same expressive

power [18]1. Abe and Warmuth [2] give a strong computational negative result for

learning PNFAs and HMMs, namely that is it hard to maximise the likelihood of an

individual string using these models (for a fixed number of states).

Partially observable Markov decision processes

POMDPs are associated with online learning problems where choices can be made by

the learner as data is analysed. There is an underlying probabilistic finite automaton

whose states are not directly observable. A POMDP takes actions as input from the

learner, where an observation is output and a reward is awarded to the learner (at each

step, the reward depends on the transition taken and the learner’s action). The objective

in these learning problems is to maximise some function of the rewards. A POMDP is

an extension of the notion of a Markov decision process to situations where the state is

not always known to the algorithm.

5.1.2 PDFA Results

Positive results for PAC-learning sub-classes of PDFAs were introduced by Ron et al. [41],

where they show how to PAC-learn acyclic PDFAs, and apply the algorithm to speech and

handwriting recognition. Clark and Thollard [10] presented an algorithm that PAC-learns

general PDFAs, using the KL-divergence as the error measure (the distance between

the true distribution defined by the target PDFA, and the hypothesis returned by the

algorithm). The algorithm is polynomial in three parameters: the number of states,

the “distinguishability” of states, and the expected length of strings generated from any

state of the target PDFA. Distinguishability (defined in Section 5.3) is a measure of the

extent to which any pair of states have an associated string that is significantly more

likely to be generated from one state than the other. While unrestricted PDFAs can

1As it is shown in [2], a PNFA can only be encoded as a HMM if it is the case that from each state
in the automaton, the ratio between the probabilities of the different symbols emitted by the outgoing
transitions is independent of the states arrived at by the transitions. i.e. the probability of observing
symbol σ given that a transition from state q0 to state q1 is followed, is equal to the probability of
observing symbol σ given a transition to state q2 from q0, for any pair of states q1 and q2.

78

encode noisy parity functions [30] (believed to be hard to PAC-learn), these PDFAs have

“exponentially low” distinguishability.

5.1.3 Significance of Results

We study the problem of PAC-learning general PDFAs (as in [10]), using variation dis-

tance instead of KL-divergence. This modification allows some strengthening and sim-

plifications of the resulting algorithms. The main one is that—as conjectured in [10]—a

polynomial bound on the sample-size requirement is obtained that does not depend on

the length of strings generated by the automaton. We also have no need for a distin-

guished “final symbol” that must terminate all data strings, or a “ground state” in the

automaton constructed by the algorithm2. We have also simplified the algorithm by not

re-sampling at each iteration; instead we use the same sample in all iterations.

The L1 distance and KL divergence are defined in Section 1.4. KL-divergence is

in a strong sense a more “sensitive” measure than variation distance – this was pointed

out in Kearns et al. [30], which introduced the general topic of PAC-learning probability

distributions. In Cryan et al. [13] a smoothing technique is given for distributions over

the boolean domain (where the length of strings is a parameter of the problem)—an

algorithm that PAC-learns distributions using the variation distance can be converted

to an algorithm that PAC-learns using the KL-divergence. (Abe et al. [1] give a similar

result in the context of learning p-concepts.) Over the domain Σ∗ (strings of unrestricted

length over alphabet Σ) that technique does not apply, which is why we might expect

stronger results as a result of switching to the L1 distance.

Our approach follows [10], in that we divide the algorithm into two parts. The

first (Algorithm 7 of Figure 5.1) finds a DFA that represents the structure of the hy-

pothesis automaton, and the second (Algorithm 8 of Figure 5.2) finds estimates of the

transition probabilities. Algorithm 7 constructs (with high probability) a DFA whose

states and transitions are a subset of those of the target. Algorithm 8 learns the transi-

tion probabilities by following the paths of random strings through the DFA constructed

by Algorithm 7, taking advantage of the fact that commonly-used transitions can be

estimated more precisely.

2The presence of the ground state is the reason why it is necessary for the expected length of a string
to be known in [10]. Due to the nature of KL-divergence, it is essential to avoid unbounded logarithmic
errors occurring – therefore the constructed automaton must accept all strings over the alphabet. This
is done by constructing a ground state, q∗, to which any undefined transitions are linked (where there is
no corresponding transition for symbol σ leaving node q, a transition (q, σ) is created with some small
associated probability such that τ (q, σ) = q∗). At the ground node, there are transitions τ (q∗, σ) = q∗

defined for all σ ∈ Σ, and the expected length of a string can be used to calculate γ(q∗, σ) such that
strings with the required expected length may be generated. Finally, a transition τ (q∗, σf) = qf links the
ground node to the finishing state, emitting the final symbol σf (which is not required in our definition
of the problem).

79

In Section 5.7 we show that for the subclass of PDFA consisting of automata

that can be represented as a finite length string, PAC-learning in terms of L1 distance

is equivalent to inefficient PAC-learning in terms of KL-divergence. The method used

to convert from a distribution which is close to the target automaton in terms of L1

distance to an equivalent distribution which is equivalently close in KL-divergence is

similar to the ǫ-Bayesian averaging performed in [1].

5.2 Defining a PDFA

A PDFA can stochastically generate strings of symbols as follows. The automaton has

a finite set of states – one of which is distinguished as the initial state. The automaton

generates a string by making transitions between states (starting at the initial state),

each transition occurring with a constant probability specifically associated with that

transition. The symbol labelling that transition is then output. The automaton halts

when the final state is reached. It is common for a definition of a PDFA to include the

specification of a final symbol at the end of all words; we do not require that restriction

here.

Definition 25 A PDFA A is a sextuple (Q,Σ, q0, qf , τ, γ), where

• Q is a finite set of states,

• Σ is a finite set of symbols (the alphabet),

• q0 ∈ Q is the initial state,

• qf /∈ Q is the final state,

• τ : Q× Σ→ Q ∪ {qf} is the (partial) transition function,

• γ : Q× Σ → [0, 1] is the function representing the probability of a given symbol

(and the corresponding transition) occurring from a given state.

Where appropriate, we extend the use of τ and γ to strings:

τ(q, σ1σ2...σk) = τ(τ(q, σ1), σ2...σk), and

γ(q, σ1σ2...σk) = γ(q, σ1).γ(τ(q, σ1), σ2...σk).

It is required that
∑

σ∈Σ γ(q, σ) = 1 for all q ∈ Q, and when τ(q, σ) is undefined,

γ(q, σ) = 0. In addition qf is reachable from any state of the automaton, that is, for

all q ∈ Q there exists s ∈ Σ∗ such that τ(q, s) = qf ∧ γ(q, s) > 0.

80

If A denotes a PDFA, it follows that A defines a probability distribution over

strings in Σ∗.3 Let DA(s) denote the probability that A generates s ∈ Σ∗, so we have

DA(s) = γ(q0, s) for s such that τ(q0, s) = qf .

We use the pair (q, σ) to denote the transition from state q ∈ Q labeled with

character σ ∈ Σ. Let DA(q) denote the probability that a random string generated by

A uses state q ∈ Q. Thus DA(q) is the probability that s ∼ DA (i.e. s sampled from

distribution DA) has a prefix p with τ(q0, p) = q. In a similar way, DA(q, σ) denotes the

probability that a random string generated by A uses transition (q, σ)—the probability

that a random string s ∼ DA has a prefix pσ with τ(q0, p) = q.

Suppose D and D′ are probability distributions over Σ∗. A class D of probability

distributions is PAC-learnable by algorithm A with respect to the variation distance if

the following holds. Given parameters ǫ > 0, δ > 0, and access to samples from any

D ∈ D, using runtime and sample size polynomial in 1/ǫ and 1/δ, A should, with

probability at least 1 − δ, output a distribution D′ with L1(D,D′) < ǫ. If D ∈ D is

described in terms of additional parameters that represent the complexity of D, then we

require A to be polynomial in these parameters as well as 1/ǫ and 1/δ.

5.3 Constructing the PDFA

In this section we describe the first part of the algorithm, which constructs the underlying

DFA of a target PDFA A. That is, it constructs the states Q and transitions given by

τ , but not the probabilities given by γ. The algorithm has access to a source of strings

in Σ∗ generated by DA. We allow “very unlikely” states to be ignored, as described at

the end of this section where we explain how our algorithm differs from previous related

algorithms. Properties of the constructed DFA are proved in Section 5.4.

The algorithm is shown in Figure 5.1. We have the following parameters (in

addition to the PAC parameters ǫ and δ):

• |Σ|: the alphabet size,

• n: an upper bound on the number of states of the target automaton,

• µ: a lower bound on distinguishability, defined below.

In the context of learning using the KL-divergence, a simple class of PDFAs (see Clark

and Thollard [10]) can be constructed to show that the parameters above are insufficient

for PAC learnability in terms of just those parameters. In [10], parameter L is also used,

denoting the expected length of strings.

3The reachability of the final state ensures that A will halt with probability 1.

81

From the target automaton A we generate a hypothesis automaton H using

a variation on the method described by [10] utilising candidate nodes, where the L∞

norm between the suffix distributions of states is used to distinguish between them (as

studied also in [28, 41]). We define a candidate node in the same way as [10]. Suppose

G is a graph whose vertices correspond to a subset of the states of A, and whose edges

correspond to transitions. Initially G will have a single vertex corresponding to the initial

state; G is then constructed in a greedy incremental fashion.

5.3.1 Structure of the Hypothesis Graph

G = 〈V,E〉 denotes the directed graph constructed by the algorithm. V is the set of

vertices and E the set of edges. Each edge is labeled with a letter σ ∈ Σ, so an edge is

a member of V ×Σ× V . Note that due to the deterministic nature of the automaton,

there can be at most one vertex vq such that (vp, σ, vq) ∈ E for any vp ∈ V and σ ∈ Σ.

Candidate nodes

Definition 26 A candidate node in hypothesis graph G is a pair (u, σ) (also denoted

q̂u,σ), where u is a node in the graph and σ ∈ Σ where τG(u, σ) is undefined.

Let Dq denote the distribution over strings generated using state q as the initial

state, so that

Dq(s) = γ(q, s) for s such that τ(q, s) = qf .

Given a sample S of strings generated from DA, we define a multiset associated

with each node or candidate node in a hypothesis graph. The multiset for node q is an

i.i.d. sample from Dq, derived from S, obtained by taking members of S that use q and

deleting their prefixes that reach q for the first time in a string. For a candidate node,

we use the following definition.

Definition 27 Given a sample S, candidate node q̂u,σ has multiset Su,σ associated with

it, where for each s ∈ S, we add s′′ to Su,σ whenever s = s′σs′′ and τG(q0, s
′) = u.

The notion of distinguishability

The L∞-norm is a measure of distance between a pair of distributions, defined as follows.

Definition 28 L∞(D,D′) = maxs∈Σ∗ |D(s)−D′(s)|.

Definition 29 The parameter of distinguishability, µ, is a lower bound on the L∞-norm

between Dq1
and Dq2

for any pair of nodes (q1, q2), where q1 and q2 are regarded as

having sufficiently different suffix distributions in order to be considered separate states.

82

We define as follows the L̂∞-norm (an empirical version of the L∞-norm) with

respect to multisets of strings Sq1
and Sq2

, where Sq1
and Sq2

have been respectively

sampled from Dq1
and Dq2

.

Definition 30 For nodes q1 and q2, with associated multisets Sq1
and Sq2

,

L̂∞ (Dq1
,Dq2

) = max
s∈Σ∗

(∣

∣

∣

∣

|s ∈ Sq1
|

|Sq1
| −

|s ∈ Sq2
|

|Sq2
|

∣

∣

∣

∣

)

where Dq is the empirical distribution over the strings in the multiset Sq associated with

q, and where |s ∈ Sq| is the number of occurrences of string s in multiset S.

As in [41, 10], we say that a pair of nodes (q1, q2) are µ-distinguishable if

L∞(Dq1
,Dq2

) = maxs∈Σ∗ |Dq1
(s)−Dq2

(s)| ≥ µ.

Although we claim only to learn PDFA with a bounded µ-distinguishability be-

tween all pairs of states, in fact – as observed by [41] – it is enough that all pairs of

states with non-negligible weights be distinguishable.

5.3.2 Mechanics of the Algorithm

The algorithm uses two quantities, m0 and N . m0 is the number of suffixes required in

the multiset of a candidate node for the node to be added as a state (or as a transition)

to the hypothesis. It will be shown that m0 is a sufficiently large number to allow us to

establish that the distribution over suffixes in the multiset that begin at state q is likely

to approximate the true distribution Dq over suffixes at that state. N is the number of

(i.i.d.) strings in the sample generated by the algorithm. Polynomial expressions for m0

and N are given in Algorithm 7.

We show that the probability of Algorithm 7 failing to adequately learn the

structure of the automaton is upper bounded by δ′. In Section 5.5 we show that

the transition probabilities are learnt (with sufficient accuracy for our purposes) by

Algorithm 8 with a failure probability of at most δ′′. Overall, the probability of the

algorithms failing to learn the target PDFA within a variation distance of ǫ is at most

δ, for δ = δ′ + δ′′.

Algorithm 7 differs from [10] as follows. We do not introduce a “ground node”

– a node to catch any undefined transitions in the hypothesis graph so as to give a

probability greater than zero to the generation of any string. Instead, any state q

for which DA(q) < ǫ
4n|Σ| can be discarded – no corresponding node is formed in our

hypothesis graph. There is only a small probability that our hypothesis automaton

rejects a random string generated by DA (when there is no corresponding path through

the graph), which means that the contribution to the overall variation distance is very

small. This is in contrast to the KL distance, which would become infinite.

83

Algorithm 7 Construct Automaton.

Hypothesis Graph G = 〈V,E〉 = 〈{q0}, ∅〉
m0 = (16/µ)2(log(32/δ′µ) + log(n|Σ|) + n|Σ|)
N = max

(

8n2|Σ|2

ǫ2
ln
(

2n|Σ|n|Σ|
δ′

)

, 8m0n|Σ|
ǫ

)

generate a sample S of N strings iid from DA

repeat

for each v ∈ V , σ ∈ Σ, where τG(v, σ) is undefined

create a candidate node q̄v,σ with associated multiset Sv,σ = ∅
for each string s ∈ S, where s = rσ′t and q̄τG(q0,r),σ′ is a candidate node

Sτ(q0,r),σ′ ← Sτ(q0,r),σ′ ∪ {t}
identify candidate node q̄u,σ′′ with the largest multiset, Su,σ′′

if
(

|Su,σ′′ | ≥ m0

)

% candidate node has large enough multiset

if
(

∃v ∈ V : L̂∞

(

Dq̄u,σ′′ ,Dv

)

≤ µ
2

)

% candidate “looks like” existing node

add edge (u, σ′′, v) to E
else

add node q̄u,σ′′ to V , with multiset Su,σ′′

add edge (u, σ′′, q̄u,σ′′) to E
until(|Su,σ′′| < m0) % no candidate node has large enough multiset
return G

Figure 5.1: Constructing the underlying graph

Note that in contrast to the previous version of this algorithm in [39], and the

algorithm of [10], we make a single sample at the beginning of the algorithm and we use

the whole sample at each iteration. The trade-off is that by re-using the same sample

at each iteration, we need a much lower failure probability (or higher reliability). It

turns out that the total sample-size is about the same, but the algorithm is simpler and

corresponds with the natural way one would treat real-world data.

5.4 Analysis of PDFA Construction Algorithm

The initial state q̄0 of H corresponds to the initial state q0 of A. Each time a new

state q̄v,σ is added to H, its corresponding state in A is (with high probability) τ(qv, σ).

(Note that qv in H already has a corresponding state in A.) We show that there is a

one to one correspondence and that we reproduce a subgraph of A. We claim that at

84

every iteration of the algorithm, with high probability a bijection Φ exists between

the states of H and candidate states, and a subset of the states of A, such that

τA(u, σ) = v ⇔ τH(Φ(u), σ) = Φ(v).

5.4.1 Recognition of Known States

We start by showing that with high probability, candidate states are correctly identified

as being either unseen so far, or the same as a pre-existing state in the hypothesis. This

part exploits the fact that the target automaton is known to have a minimum degree of

distinguishability between all pairs of states.

Proposition 31 Let D be a distribution over a countable domain. Let δ and µ be

positive probabilities. Suppose we draw a sample S of (16/µ)2 log(16/δµ) observations

of D. Let D̂ be the empirical distribution, i.e. the uniform distribution over multiset S.

Then with probability 1− δ, L∞(D, D̂) < 1
4µ.

Proof: Let X = {x1, x2, . . .} be the domain. Associate xi with the interval Ii =

[
∑

j<i Pr(xj),
∑

j≤i Pr(xj)]. Let U1 denote the uniform distribution over the unit in-

terval; a point drawn from U1 selects xi with probability Pr(xi).

Suppose k ∈ N, k ≤ 16/µ. We identify a sufficiently large size for a sample

S from U1 such that with probability at least 1 − (δµ/16), the proportion of points in

S that lie in [0, k(µ/16)], is within µ/16 of k(µ/16). By Hoeffding’s inequality it is

sufficient that m = |S| satisfies

δµ

16
≥ 2 exp

(

−2m
(µ

16

)2)

.

That is satisfied by

m ≥
(16

µ

)2
log
(16

δµ

)

.

Furthermore, by a union bound we can deduce that with probability at least

1 − δ, for all k ∈ {0, 1, . . . , 16/µ}, the proportion of points in [0, k(µ/16)] is within

µ/16 of expected value. This implies that for all intervals, including the Ii intervals, the

proportion of points in those intervals is within µ/4 of expected value. 2

The following result shows that given any partially-constructed DFA, a candidate

state is correctly identified with very high probability, using a sample of size m0 =

(16/µ)2(log(32/δ′µ) + log(n|Σ|) + n|Σ|).

Proposition 32 Let G be a DFA with transition function τG whose vertices and edges

are a subgraph of the underlying DFA for PDFA A. Suppose DA is repeatedly sampled,

85

and we add s2 to Sq,σ whenever we obtain a string of the form s1σs2, where τG(s1) is

state q of G.

If |Sq,σ| ≥ m0, then with probability at least 1− δ′(n|Σ|2n|Σ|+1)−1,

L̂∞(Sq,σ,Dq,σ) < µ/4.

Proof: Given any G, strings s2 obtained in this way are all sampled independently

from Dq,σ.

Proposition 31 shows that a sufficiently large sample size is given by

(16

µ

)2
log
(16

δ′µ(n|Σ|2n|Σ|+1)−1

)

=
(16

µ

)2(

log
(32

δ′µ

)

+ log(n|Σ|) + n|Σ|
)

.

2

The following result applies a union bound to verify that whatever stage we reach

at an iteration, and whatever candidate state we examine, the algorithm is unlikely to

make a mistake.

Proposition 33 With probability δ′, for all candidate nodes q̄u,σ′′ found by the algo-

rithm, q̄u,σ′′ is added to G such that G continues to be a subgraph of the PDFA for

A.

Proof: Proposition 31 and the metric property of L∞ show that if distributions Dv

associated with states v are empirically estimated to within L∞ distance µ/4, then our

threshold of µ/2 that is used to distinguish a pair of states, ensures that no mistake is

made.

There are at most 2n|Σ| possible subgraphs G and at most n|Σ| candidate nodes

for any subgraph. If the probability of failure is at most δ′(n|Σ|2n|Σ|+1)−1 for any single

combination of G and candidate node, then by a union bound and Proposition 32, the

probability of failure is at most δ′/2. 2

We have ensured that m0 is large enough that with high probability the algorithm

does not

• identify two distinct nodes with each other, or

• fail to recognise a candidate node as having been seen already.

5.4.2 Ensuring that the DFA is Sufficiently Complete

Next we have to check that it does not “give up too soon”, as a result of not seeing

m0 samples from a state that really should be included in G.

86

Proposition 34 Let A′ be a PDFA whose states and transitions are a subset of those of

A. Assume A′ contains the initial state q0. Suppose q is a state of A′ but (q, σ) is not

a transition of A′. Let S be a sample from DA, |S| ≥ (8n2|Σ|2/ǫ2) ln(2n|Σ|n|Σ|/δ′).
Let Sq,σ(A′) be the number of elements of S of the form s1σs2 where τ(q0, s1) = q

and for all prefixes s′1 of s1, τ(q0, s
′
1) ∈ A′. Then

Pr

(∣

∣

∣

∣

(

Sq,σ(A′)

|S|

)

− E

[

Sq,σ(A′)

|S|

]∣

∣

∣

∣

≥ ǫ

8n|Σ|

)

≤ δ′

2n|Σ|n|Σ| .

Proof: From Hoeffding’s Inequality it can be seen that

Pr

(∣

∣

∣

∣

(

Sq,σ(A′)

|S|

)

− E

[

Sq,σ(A′)

|S|

]∣

∣

∣

∣

≥ ǫ

8n|Σ|

)

≤ 2 exp

(

−2|S|
(

ǫ

4n|Σ|

)2
)

. (5.1)

We need |S| to satisfy exp(−|S|ǫ2(8n2|Σ|2)−1) ≤ δ′(2n|Σ|n|Σ|)−1. Equivalently,

8n2|Σ|2
ǫ2

ln

(

2n|Σ|n|Σ|
δ′

)

≤ |S|.

So the sample size identified in the statement is indeed sufficiently large. 2

The following result shows that the algorithm constructs a subset of the states

and transitions that with high probability accepts a random string from DA.

Theorem 35 There exists T ′ a subset of the transitions of A, and Q′ a subset of the

states of A, such that
∑

(q,σ)∈T ′ DA(q, σ) +
∑

q∈Q′ DA(q) ≤ ǫ
2 , and with probability

at least 1− δ′, every transition (q, σ) /∈ T ′ in target automaton A has a corresponding

transition in hypothesis automaton H, and every state q /∈ Q′ in target automaton A

has a corresponding state in hypothesis automaton H.

Proof: Proposition 33 shows that the probability of all candidate nodes having “good”

multisets (if the multisets contain at least m0 suffixes) is at least 1− δ′/2, from which

we can deduce that all candidate nodes can be correctly distinguished from any nodes4

in the hypothesis automaton.

Proposition 34 shows that with a probability of at least 1 − δ′(2n|Σ|n|Σ|)−1,

the proportion of strings in a sample S (generated i.i.d. over DA, and for |S| ≥
(8n2|Σ|2/ǫ2) ln(2n|Σ|n|Σ|/δ′)) reaching candidate node q̄ is within ǫ(8n|Σ|)−1 of the

expected proportion DA(q̄). This holds for each of the candidate nodes (of which there

are at most n|Σ|), and for each possible state of the hypothesis graph in terms of

4Note that due to the deterministic nature of the automaton, distinguishability of transitions is not
an issue.

87

the combination of edges and nodes found (of which there are at most 2n|Σ|), with a

probability of at least 1− δ′/2.

If a candidate node (or a potential candidate node5) q̄, for which DA(q̄) ≥
ǫ(4n|Σ|)−1, is not included in H, then from the facts above it follows that at least

ǫN(8n|Σ|)−1 strings in the sample are not accepted by the hypothesis graph. For each

string not accepted by H, a suffix is added to the multiset of a candidate node, and

there are at most n|Σ| such candidate nodes. From this it can be seen that some

candidate node has a multiset containing at least 1
8ǫN suffixes. From the definition

of N , N ≥ (8m0n|Σ|/ǫ). Therefore, some multiset contains at least m0n|Σ| suffixes,

which must be at least as great as m0. This means that as long as there exists some

significant transition or state that has not been added to the hypothesis, some multiset

must contain at least m0 suffixes, so the associated candidate node will be added to H,

and the algorithm will not halt.

Therefore it has been shown that all candidate nodes which are significant enough

to be required in the hypothesis automaton (at least a fraction ǫ(4n|Σ|)−1 of the strings

generated reach the node) are present with a probability of at least 1 − 1
2δ′, and that

since all multisets contain at least m0 suffixes, the candidate nodes and hypothesis graph

nodes are all correctly distinguished from each other (or combined as appropriate) with

a probability of at least 1− 1
2δ′.

T ′ is those transitions that have probability less than ǫ/4n|Σ| of being used by

a random string, and there can be at most n|Σ| such transitions. Hence a random

string uses an element of T ′ with probability at most 1
4ǫ. We conclude that with a

probability of at least 1 − δ′, every transition (q, σ) /∈ T ′ in target automaton A for

which DA(q, σ) ≥ ǫ(4n|Σ|)−1 and every state q /∈ Q′ in target automaton A for which

DA(q) ≥ ǫ(4n|Σ|)−1, has a corresponding transition or state in hypothesis automaton

H. 2

5.5 Finding Transition Probabilities

The algorithm is shown in Figure 5.2. We can assume that we have at this stage found

DFA H, whose graph is a subgraph of the graph of target PDFA A. Algorithm 8 finds

estimates of the probabilities γ(q, σ) for each state q in H, σ ∈ Σ.

If we generate a sample S from DA, we can trace each s ∈ S through H, and

each visit to a state qH ∈ H provides an observation of the distribution over the transi-

tions that leave the corresponding state qA in A. For string s = σ1σ2 . . . σℓ, let qi be the

state reached by the prefix σ1 . . . σi−1. The probability of s is DA(s) =
∏ℓ−1

i=0 γ(qi, σi+1).

5A potential candidate node is any state or transition in the target automaton which has not yet
been added to H , and is not currently represented by a candidate node.

88

Letting nq,σ(s) denote the number of times that string s uses transition (q, σ), then

DA(s) =
∏

q,σ

γ(q, σ)nq,σ(s). (5.2)

Let γ̂(q, σ) denote the estimated probability that is given to transition (q, σ) in H.

Provided H accepts s, the estimated probability of string s is given by

DH(s) =
∏

q,σ

γ̂(q, σ)nq,σ(s). (5.3)

We aim to ensure that with high probability for s ∼ DA, if H accepts s (i.e.

if s does not visit a node that has been omitted from the hypothesis) then the ratio

DH(s)/DA(s) is close to 1. This is motivated by the following observation.

Observation 36 Suppose that with probability 1−1
4ǫ for s ∼ DA, we have DH(s)/DA(s) ∈

[1− 1
4ǫ, 1 + 1

4ǫ]. Then L1(DA,DH) ≤ ǫ.

Proof:

L1(DA,DH) =
∑

s∈Σ∗

|DA(s)−DH(s)|

Let X = {s ∈ Σ∗ : DH(s)/DA(s) ∈ [1− 1
4ǫ, 1 + 1

4ǫ]}. Then

L1(DA,DH) =
∑

s∈X

|DA(s)−DH(s)|+
∑

s∈Σ∗\X

|DA(s)−DH(s)| (5.4)

The first term of the right-hand side of Equation 5.4 is

∑

s∈X

DA(s)
∣

∣

∣
(1−DH(s)/DA(s))

∣

∣

∣
≤
∑

s∈X

DA(s).
(ǫ

4

)

≤ ǫ

4
.

DA(X) ≥ 1 − 1
4ǫ and DH(X) ≥ DA(X) − 1

4ǫ, equivalently DA(Σ∗ \ X) ≤ 1
4ǫ and

DH(Σ∗ \X) ≤ DA(Σ∗ \X) + 1
4ǫ ≤ 1

2ǫ, hence the second term in the right-hand side

of Equation 5.4 is at most 3
4ǫ. 2

We have so far allowed the possibility that H may fail to accept up to a fraction
1
4ǫ of strings generated by DA. Of the strings s that are accepted by H, we want to

ensure that with high probability DH(s)/DA(s) is close to 1, to allow Observation 36

to be used.

89

5.5.1 Correlation Between a Transition’s Usage and the Accuracy of its

Estimated Probability

Suppose that nq,σ(s) is large, so that s uses transition (q, σ) a large number of times.

In that case, errors in the estimate of transition probability γ(q, σ) can have a dispro-

portionately large influence on the ratio DH(s)/DA(s). What we show is that with high

probability for random s ∼ DA, regardless of how many times transition (q, σ) typically

gets used, the training sample contains a large enough subset of strings that use that

transition more times than s does, so that γ(q, σ) is nevertheless known to a sufficiently

high precision.

We say that s′ ∈ Σ∗ is (q, σ)-good for some transition (q, σ), if s′ satisfies

Pr
s∼DA

(nq,σ(s) > nq,σ(s′)) ≤ ǫ

4n|Σ| .

Informally, a (q, σ)-good string is one that is more useful than most in providing an

estimate of γ(q, σ).

Proposition 37 Let m ≥ 1. Let S be a sample from DA,

|S| ≥ m(32n|Σ|/ǫ) ln(2n|Σ|/δ′′). With probability 1−δ′′(2n|Σ|)−1, for transition (q, σ)

there exist at least ǫ(8n|Σ|)−1|S| (q, σ)-good strings in S.

Proof: From the definition of (q, σ)-good, the probability that a string generated at

random over DA is (q, σ)-good for transition (q, σ), is at least ǫ(4n|Σ|)−1.6

Applying a standard Chernoff bound (see [4], p.360), for any transition (q, σ),

with high probability over samples S, the number of (q, σ)-good strings in S is at least

half the expected number as follows.

Pr

(

|{s ∈ S : s is (q, σ)−good}| < 1

2

(

ǫ

4n|Σ| |S|
))

≤ exp

(

−1

8

(

ǫ

4n|Σ|

)

|S|
)

.

(5.5)

We wish to bound this probability to be at most δ′′(2n|Σ|)−1, so from Equa-

tion 5.5,

exp

(

−1

8

(

ǫ

4n|Σ|

)

|S|
)

≤ δ′′

2n|Σ|

|S| ≥
(

32n|Σ|
ǫ

)

ln

(

2n|Σ|
δ′′

)

6The probability that a random string s ∼ DA uses the transition (q, σ) more times than a (q, σ)-
good string is at most ǫ(4n|Σ|)−1, so the probability of generating a (q, σ)-good string must be at least
that much.

90

which is indeed satisfied by the assumption in the statement. 2

Notation. Suppose S is as defined in Algorithm 8. Let Mq,σ(S) be the largest number

with the property that at least a fraction ǫ(8n|Σ|)−1 of strings in S use (q, σ) at least

Mq,σ(S) times.

Informally, Mq,σ(S) represents a “big usage” of transition (q, σ) by a random

string — the fraction of elements of S that use (q, σ) more than Mq,σ(S) times is less

than ǫ(8n|Σ|)−1. The next observation states that Mq,σ is likely to be an over-estimate

of the number of uses of (q, σ) required for (q, σ)-goodness.

Observation 38 For any (q, σ), with probability 1−δ′′(2n|Σ|)−1 (over random samples

S with |S| as given in the algorithm),

Pr
s∼DA

(nq,σ(s) > Mq,σ(S)) ≤ ǫ

4n|Σ| . (5.6)

Proof: This follows from Proposition 37 (plugging in

m = (2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2). 2

Algorithm 8 Finding Transition Probabilities.

Input: DFA H, a subgraph of A.

generate sample S from DA; |S| =
(

2n|Σ|
δ′′

)(

64n|Σ|
ǫδ′′

)2 (
32n|Σ|

ǫ

)

ln
(

2n|Σ|
δ′′

)

;

for each state q ∈ H, σ ∈ Σ:
repeat

for strings s ∈ S, trace paths through H;

let Nq,−σ be random variable: number of observations of state q
up to and including the next observation of transition (q, σ)
(include observations of q and (q, σ) in rejected strings).

until(all strings in S have been traced)

let µ̂(Nq,−σ) be the mean of the observations of Nq,−σ;

let γ̂(q, σ) = 1/µ̂(Nq,−σ).
for each q ∈ H, rescale γ̂(q, σ) such that

∑

σ∈Σ γ̂(q, σ) = 1.

Figure 5.2: Finding Transition Probabilities

91

5.5.2 Proving the Accuracy of the Distribution over Outputs

Theorem 39 Suppose that H is a DFA that differs from A by the removal of a set of

transitions that have probability at most 1
2ǫ of being used by s ∼ DA. Then Algorithm 8

assigns probabilities γ̂(q, σ) to the transitions of H such the resulting distribution DH

satisfies L1(DA,DH) < ǫ, with probability 1− δ′′.

Proof: Recall Observation 38, that with probability 1− δ′′(2n|Σ|)−1,

Pr
s∼DA

(nq,σ(s) > Mq,σ(S)) ≤ ǫ

4n|Σ| .

By definition of Mq,σ(S), at least |S|ǫ(8n|Σ|)−1 > (2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2
members of Sq,σ use (q, σ) at least Mq,σ(S) times. Hence for any (q, σ), with probability

1− δ′′(2n|Σ|)−1, there are Mq,σ(S)(2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2 uses of transition (q, σ).

Consequently, (again with probability 1 − δ′′(2n|Σ|)−1 over random choice of

S), for any (q, σ) the set S generates a sequence of independent observations of state

q, which continues until at least Mq,σ(S)(2n|Σ|/δ′′)(64n|Σ|/ǫδ′′)2 of them resulted in

transition (q, σ).

Let Nq,−σ denote the random variable which is the number of times q is observed

before transition (q, σ) is taken. Each time state q is visited, the selection of the next

transition is independent of previous history, so we obtain a sequence of independent

observations of Nq,−σ. So, with probability 1−δ′′(2n|Σ|)−1, the number of observations

of Nq,−σ is at least Mq,σ(S)(2n|Σ|/δ′′)(64n|Σ|/ǫ)2.
Recall Chebyshev’s inequality, that for random variable X with mean µ and

variance σ2, for positive k,

Pr(|X − µ| > k) ≤ σ2

k2
.

Nq,−σ has a discrete exponential distribution with mean γ(q, σ)−1 and variance ≤
γ(q, σ)−2. Hence the empirical mean µ̂(Nq,−σ) is a random variable with mean γ(q, σ)−1

and variance at most γ(q, σ)−2(Mq,σ)−1(2n|Σ|/δ′′)−1(64n|Σ|/ǫδ′′)−2. Applying Cheby-

shev’s inequality with µ̂(Nq,−σ) for X, and

k = γ(q, σ)−1ǫδ′′(64n|Σ|
√

Mq,σ)−1, we have

Pr

(

|µ̂(Nq,−σ)− γ(q, σ)−1| > γ(q, σ)−1

(

ǫδ′′

64n|Σ|
√

Mq,σ

))

≤ δ′′

2n|Σ| .

Note that for x, y > 0 and 1
2 > ξ > 0, if |y − x| < xξ then |y−1 − x−1| < 2x−1ξ, and

applying this to the left-hand side of the above, we deduce

Pr

(

|γ̂(q, σ)− γ(q, σ)| > 2γ(q, σ)

(

ǫδ′′

64n|Σ|
√

Mq,σ

))

≤ δ′′

2n|Σ| .

92

The rescaling at the end of Algorithm 8 (which may be needed as a result of

infrequent transitions not being included in the hypothesis automaton) loses a factor of

at most 2 from the upper bound on |γ(q, σ) − γ̂(q, σ)|. Overall, with high probability

1− δ′′(2n|Σ|)−1,

|γ̂(q, σ)− γ(q, σ)| ≤
(

ǫδ′′γ(q, σ)

16n|Σ|
√

Mq,σ

)

. (5.7)

For s ∈ Σ∗ let nq(s) denote the number of times the path of s passes through

state q. By definition of Mq,σ(S), for any transition (q, σ) with high probability 1 −
ǫ(4n|Σ|)−1,

Es∼DA
[nq(s)] < Mq,σ(S)/γ(q, σ). (5.8)

For s ∼ DA we upper bound the expected log-likelihood ratio,

log

(

DH(s)

DA(s)

)

=

|s|
∑

i=1

log

(

γ̂(qi, σi)

γ(qi, σi)

)

,

where σi is the i-th character of s and qi is the state reached by the prefix of length

i− 1.

Suppose A generates a prefix of s and reaches state q. Let random variable Xq

be the contribution to log(DH(s)/DA(s)) when A generates the next character.

E[Xq] =
∑

σ

γ(q, σ) log

(

γ̂(q, σ)

γ(q, σ)

)

=
∑

σ

γ(q, σ)[log(γ̂(q, σ)) − log(γ(q, σ))].

For |ξ| ≪ x and some |α| < 2, it is the case that log(x + ξ) − log(x) =

ξx−1(1 + αξ/x). Using this fact and plugging in γ(q, σ) for x, then from Equation 5.7

we claim that (with high probability 1− δ′′(2n|Σ|)−1):

log(γ̂(q, σ)) − log(γ(q, σ)) = |γ̂(q, σ) − γ(q, σ)|
(

1

γ(q, σ)

)

Aq,σ (5.9)

for some Aq,σ ∈ [1− ǫδ′′(8n|Σ|
√

Mq,σ)−1, 1 + ǫδ′′(8n|Σ|
√

Mq,σ)−1].

Consequently,

E[Xq] =
∑

σ

γ(q, σ)

(

1

γ(q, σ)

)

Aq,σ|γ̂(q, σ)− γ(q, σ)|

=
∑

σ

Aq,σ|γ̂(q, σ)− γ(q, σ)|

=
∑

σ

|γ̂(q, σ) − γ(q, σ)|+
∑

σ

Bq,σ|γ̂(q, σ)− γ(q, σ)|

93

for some Bq,σ ∈ [−ǫδ′′(8n|Σ|
√

Mq,σ)−1, ǫδ′′(8n|Σ|
√

Mq,σ)−1]. The first term vanishes,

so we have

E[Xq] =
∑

σ

Bq,σ|γ̂(q, σ) − γ(q, σ)|

=
ǫδ′′

8n|Σ|
∑

σ

(

1
√

Mq,σ

)

|γ̂(q, σ)− γ(q, σ)|

≤ ǫδ′′

8n|Σ|
∑

σ

γ(q, σ)

Mq,σ

where the last inequality uses Equation 5.7. For s ∼ DA, the expected contribution to

log(DH(s)/DA(s)) from all nq(s) usages of state q is, using Equation 5.8, at most

E[nq(s)]

(

ǫδ′′

8n|Σ|

)

∑

σ

1

E[nq(s)]
=

(

ǫδ′′nq(s)

8n|Σ|

)

|Σ|
(

1

nq(s)

)

=
ǫδ′′

8n
.

The total expected contribution from all n states q, each being used nq(s) times is

∑

q∈Q

ǫδ′′

8n
=

ǫδ′′

8
. (5.10)

Using Markov’s inequality, there is a probability at most δ′′ that

log(DH(s)/DA(s)) is more than ǫ/8.

Finally, in order to use Observation 36, note that

(DH(s)/DA(s)) ∈
[

1− 1
4ǫ, 1 + 1

4ǫ
]

follows from log(DH(s)/DA(s)) ∈
[

−1
8ǫ, 1

8ǫ
]

. 2

5.5.3 Running Algorithm 8 in log(1/δ′′) rather than poly(1/δ′′)

The sample size expression is polynomial in 1/δ′′, as is necessary for a PAC algorithm.

However, this expression can be converted into one that is logarithmic in 1/δ′′ as follows.

If we run the algorithm x times using δ′′ = 1
10 , we obtain x values for the likelihood of

a string, rather than just one. It is not hard to show that for x = O(log(1/δ′′)), the

median will be accurate with probability 1− δ′′.

5.6 Main Result

We can now put the two algorithms together using any values of δ′ and δ′′ that add

up to at most δ (δ being the overall uncertainty bound). By combining the results of

Theorem 35 and Theorem 39, we get the following.

94

Theorem 40 Given an automaton with alphabet Σ and at most n states, which is µ-

distinguishable for some parameter µ, then Algorithm 1 and Algorithm 2 run in time

polynomial in the above parameters (also ǫ and δ), producing a model which with

probability at least 1− δ differs (in L1 distance) from the original automaton by at most

ǫ.

The algorithms are structurally similar to previous algorithms for learning PDFAs.

One change worth noting that we have made, is that for each algorithm a single sample

is taken at the beginning, and all elements of that sample are treated the same way.

Previous related algorithms (including [39]) typically draw a sample at each iteration,

so as to ensure independence between iterations. In practice it is natural and realistic

to assume that every measurement is extracted from all the data.

We have shown that as a result of using the variation distance as a criterion for

precise learning, we can obtain sample-size bounds that do not involve the length of

strings generated by unknown PDFAs. In the appendix we show why the KL-divergence

requires a limit on the expected length of strings that the target automaton generates

(see Section B.1). Furthermore, this approach has addressed the issue of extracting

more information from long strings than short strings, which is necessary in order to

estimate heavily-used transitions with higher precision.

5.7 Smoothing from L1 Distance to KL-Divergence

Consider the problem of learning PDFAs having n states, over finite alphabet Σ, and

probabilities represented by bit strings of length ℓ. Using sample size (but not time)

polynomial in n, |Σ| and ℓ (and the PAC parameters ǫ and δ), a distribution over this

class can be estimated within KL-divergence ǫ. The proof follows from Lemma 22 in

Chapter 2, and from the observation that such a PDFA can be represented using a bit

string whose length is polynomial in the parameters.

Consequently we can learn the same class of PDFAs under the KL-divergence

that can be learned under the L1 distance, i.e. PDFAs with distinguishable states but no

restriction on the expected length of their outputs. However, note that the hypothesis

is “inefficient” (using a mixture of exponentially many PDFAs).

See Section B.2 for further details of this.

95

Chapter 6

Conclusion

To conclude we give a summary of the results contained in this thesis. We shall examine

the significance of these results and, where relevant, put them in the context of related

work. We will then discuss the questions stated in the introduction – namely whether

there is a benefit to learning with unsupervised learners, whether it is harder to learn

with unsupervised learners, and whether we can draw conclusions about the equivalence

of learning in this framework to classical PAC-learning.

6.1 Summary of Results

Chapter 2

In this chapter we gave results in the agnostic PAC learning framework bounding the

accuracy and confidence of a PAC classifier to the accuracy of the distributions over

class labels. We showed that if the distributions over k class labels are learnt within L1

distance of ǫ/gℓ of their targets (where ℓ is the label of the respective distribution) then

the associated Bayes classifier is accurate within ǫ.k.max{c} of the optimal classifier

(max{c} being the largest cost in the cost matrix). This use of the maximum cost is an

upper bound and this was used to provide generality, but the term could be tightened

with the result of adding complexity to the expression. It is also shown that if the class

distributions are learnt with respect to KL-divergence, a regret of kǫ upper bounds the

additional risk. In addition to this matching lower bounds are given by way of example

distributions.

It is then shown that for a class D of distributions specified on a finite discrete

scale, distributions learnt under L1 distance in polynomial time can be learnt under

KL-divergence in polynomial time. We go on to give a demonstration of a setting in

which this can be applied in Chapter 5.

97

Chapter 3

Following from the previous chapter we demonstrate the use of unsupervised learners

to achieve optical digit recognition. We show that adequate results can be gained from

an algorithm using estimates of distributions over class labels in the extension of the

PAC-learning framework as described in Chapter 2. These results are comparable with

the widely used method of k-nearest neighbours – a discriminative algorithm. Since

no preprocessing was performed on the images it is reasonable to assume that the

results obtained in our experiments could be considerably enhanced (possibly halving the

achieved error rate) by applying such techniques as have been studied elsewhere [11].

When the technique is applied to strings of digits with an aspect of context

sensitivity, the generative technique is shown to perform well, exhibiting the expected

level of error correction. The results indicate that it is worthwhile to perform such

generative techniques in order to be able to correct errors in the recognition process

with some degree of success.

Chapter 4

We show that the class of probabilistic concepts consisting of functions with at most k

turning points can be PAC-learnt in the sense of [31] using a weak generative algorithm.

It is conjectured that the problem cannot be solved in the strong generative sense of

estimating distributions over class labels, and as such we give an algorithm that provides

an alternative discriminant function for each label.

For the analysis in Section 4.4 to hold, we imposed a restriction in the statement

of the problem that the class priors of label 0 and label 1 must each be 1
2 . In learning

problems of this nature there is often a restriction of this kind placed upon the learn-

ing framework, or at least an assumption that the priors are known beforehand. This

restriction allows greater simplicity of analysis, but may be seen as a limitation to the

usefulness of the algorithm. However, it appears that the algorithm will work equally

well given pairs of labels with different prior probabilities but to see this requires more

complex analysis.

Consider the following adaptation of the algorithm, whereby rather than generat-

ing two samples of m observations from which to learn, we generate samples containing

m0 and m1 observations of labels 0 and 1 respectively. Given class priors g0 and g1

of the labels being generated by the oracle, where g1 = 1 − g0, we generate samples

containing
(

max{g0,g1}
min{g0,g1}

)

m observations of the label with the higher prior probability,

and m observations of the label with the lower prior probability.

It appears that Theorem 24 still holds, although the method of showing this will

differ slightly from the proof given. The additional complexity in the analysis comes

98

from the fact that when using Lemma 23 to show that a sample is representative of

its distribution, one of the classes will have a higher expected number of observations

per interval than the other. To get around this, it would be necessary to alter the

lemma, such that the domain is divided into a larger number of intervals for the label

with the higher prior, in order to keep the expected number of observations in the

intervals the same for each class. Since the idea of the algorithm given here is to show

that unsupervised learners can be used efficiently to solve the problem, it was deemed

unnecessary to explore this further.

Chapter 5

It is shown that it is possible to PAC-learn PDFA in terms of the L1 distribution between

the estimated distribution over outputs and that representing the target automaton.

This extends the work of Clark and Thollard [10] where the KL-divergence is used as a

measure of proximity. We show how to dispense with the previous requirement of an

upper bound on the expected length of a string by virtue of the fact that the weaker L1

distance is used. We then show that for the class of PDFA capable of representation

by bit strings (in other words the probabilities of transitions can be represented on a

discrete finite scale), the output distribution can be smoothed such that it is good under

KL-divergence but not in polynomial time.

In [24] the notion of µ-distinguishability is challenged, and a weaker notion of

distinguishability termed µp-distinguishability is used to PAC-learn PDFA in terms of

KL-divergence using a similar state-merging algorithm1. It is shown in [30] that PAC-

learning of PDFA without distinguishability restrictions is hard – in that a subset of PDFA

can encode noisy parity functions. It is conjectured in [25] that PAC-learning automata

under L1 distance suffers from the same problem, but learning µp-distinguishable PDFA

does not.

As a further exploration of this problem, it would be interesting to investigate

whether PDFAs are learnable without an a priori “distinguishability” of states. Given the

research carried out on distinguishability of automata it is likely that any such results

would involve restricting the algorithm to apply to specific subclasses of PDFA.

A further question concerns whether it is necessary to be given the number of

states as a parameter of the problem – techniques exist for estimating such parameters

for solving similar problems. To do so would involve a process of taking an initially small

value of n and applying the algorithm, then testing the resulting hypothesis automata

to see whether a sufficiently large proportion of strings are accepted by the resulting

hypothesis graph. If not, the value of n is increased until the condition is met.

1A pair of states are said to be µp-distinguishable if the Lp distance between their suffix distributions
is at least µ.

99

However, it appears that this problem is non-trivial since the lower the value of

n is that is being tested, the higher the criteria for significant candidate nodes being

included. So as n is halved, the proportion of random strings using a transition in order

for it to be considered significant doubles. Therefore, there is a high probability that

transitions are excluded from the resulting DFA which should be included. There is then

a problem of how much data to generate in order to test the DFA to see what proportion

of strings are accepted, which – in order to achieve any bounds on the confidence of

success – must be polynomial in n. It seems that a variant of this method could well

generate an automaton that in practice is close to the target automaton, but it is unlikely

that such a method could claim any certainty of success.

6.2 Discussion

In general – is the method of classifying via unsupervised learners a worthwhile method?

There are a number of reasons supporting the use of unsupervised learners for classifi-

cation problems, particularly in the strong generative sense where the distributions over

class labels are estimated. In terms of the accuracy with which classifications can be

made, the results of Chapter 2 show that the classification error is linked strongly to the

accuracy of the distribution estimation, and Chapter 3 shows that good practical results

can be achieved this way.

The extension of the problem to circumstances where the a posteriori distribution

over class labels is important shows that this additional information gives great benefits

to the classification algorithm. Similar practical results [42] demonstrate that generative

algorithms can outperform discriminative methods, particularly in cases where the data

samples are relatively small. In situations such as those studied here where more than

two classes are involved, benefits may be gained from the seemingly natural way in which

classifications are made in contrast to finding class boundaries.

In addition to the results observed in terms of classification rates, a number of

reasons have been mentioned as to why it may be beneficial to construct class distribu-

tions. The most fundamental of these include the fact that data of all classes is treated

in the same way —there is no artificial ordering of data— and if a class is added to or

removed from the problem then it is relatively simple to accommodate this change.

In [35] it is shown that a class of problems exists that can be solved by discrimi-

native methods but not by generative methods. However, unlike the problems described

in this thesis (and those in [22], [23]), the authors set the problem within the “Prob-

ably Approximately Bayes” framework (defined in [35]) in which the distributions over

observations and labels need not be independent – indeed in the problem stated they

are not. However, the result does indicate a certain weakness in the power of generative

100

learning for solving certain types of problems.

In terms of whether it is harder to learn with unsupervised learners than in the

traditional PAC setting, it seems intuitive that the restrictions imposed on the problem

ought to mean that it is. The fact that the empirical error is unknown to the learners,

and that they have no knowledge of their class label ought to make it far tougher to

solve standard problems. In fact there are currently no known problems that are PAC-

learnable but not PAC-learnable via discriminant functions. The problem of learning

unrestricted monomials with unsupervised learners is left as an open problem as there

are no known positive or negative results to date.

101

Appendix A

Optical Digit Recognition

Results obtained from the practical testing of the algorithms in Chapter 3 are to be

found within this appendix.

Table A.1 shows how many of each digit appear in the training data set and in

the test data set.

Digit Number in Training Data Number in Test Data

0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

Total 60000 10000

Table A.1: Breakdown of image data sets into digit labels.

A.1 Distance Functions

A.1.1 L2 Distance

The algorithm in Figure A.1 returns the L2 distance between a pair of image vectors.

The algorithm examines all pairs of corresponding pixels in the two images (pi in image

103

Algorithm 9 L2 distance function.

L2(image I, image J)

let d = 0

for each pixel pi in I
let pj be the corresponding pixel in J
d = d + |pi − pj|2

let dL2
=
√

d

Return dL2

Figure A.1: Algorithm to compute the L2 distance between 2 image vectors.

I corresponds to pj in image J if the pixels have the same x and y coordinates) and

computes the sum of the squares of the differences in values stored at the pixels (the

difference in grey scale) and then returns the square root of this total.

A.1.2 Complete Hausdorff Distance

Figure A.2 shows the function for computing the complete Hausdorff distance between

a pair of image vectors. Although the images are represented in grey scale, they are

treated as binary black or white pixels in this case, with values over 5 being treated as

shaded pixels, and those equal to or less than 5 being treated as blank. The algorithm

then examines each shaded pixel in turn in image I, and finds the distance to the closest

shaded pixel in image J . The maximum of all these distances is then taken, giving the

Hausdorff distance from I to J . The same process is then repeated in the other direction,

and the maximum of the two values is the value returned.

A.2 Tables of Results

A.2.1 k Nearest Neighbours Algorithm

Tables A.2, A.3 and A.4 show the results of tests run on the entire set of ten thousand

images of handwritten digits, rounded to the nearest whole value. The true labels of the

104

Algorithm 10 Hausdorff distance function.

Hausdorff(image I, image J)

let dmax = 0

for each pixel pi in I
let dmin =∞
if pi is shaded (i.e. pi > 5)
for each pixel pj in J
if (pj is shaded AND L2(pi, pj) < dmin)

dmin = L2(pi, pj)
if dmin > dmax then dmax = dmin

for each pixel pj in J
let dmin =∞
if pj is shaded

for each pixel pi in I
if (pi is shaded AND L2(pj , pi) < dmin)

dmin = L2(pj , pi)
if dmin > dmax then dmax = dmin

Return dmax

Figure A.2: Algorithm to compute the Hausdorff distance between 2 image vectors.

images are shown in each row, with the columns representing the label assigned to the

image by the algorithm. The value vi,j, where i is the row number and j is the column

number, represents the number of images with label i, which were classified as having

label j, out of every 1000 images with label i processed by the algorithm.

For example, out of every 1000 images of the digit 8 processed by the algorithm

using 1 nearest neighbour (Table A.2), 18 were classified with label 5.

The final column, Errors, shows the number of misclassifications made by the

algorithm in every 1000 tests, which is equivalent to 1000 − vii for any row i. At the

foot of the table, the Average misclassification error per 1000 images is not equivalent

to the average of the error values in the final column as the distribution of samples over

the ten digits is not uniform (see Table A.1).

105

Image Classifications
per 1000

0 1 2 3 4 5 6 7 8 9 Errors

0 993 2 1 0 0 1 2 1 0 0 7
1 0 995 3 0 1 1 1 0 0 0 5
2 9 8 956 6 1 0 2 16 2 0 44
3 0 2 4 955 1 21 0 9 4 4 45

True 4 1 9 0 0 954 0 3 4 1 27 46
Label 5 2 1 0 19 2 951 10 1 6 8 49

6 5 2 1 0 2 5 984 0 0 0 16
7 0 19 4 2 4 0 0 962 0 9 38
8 9 5 6 22 4 18 3 4 918 10 82
9 1 5 1 7 13 5 1 9 1 957 43

Average misclassification error per 1000 images 39

Table A.2: 1 Nearest Neighbour algorithm – Classification results.

A.2.2 Unsupervised Learners Algorithms

Tables A.5, A.6 and A.7 show the results of using the kernel algorithm (with L2 metric)

to classify the set of ten thousand images of digits, rounded to the nearest whole value.

The results in this section are in the same format as those in Section A.2.1.

Tables A.8, A.9 and A.10 show the average likelihoods, uij, of an image of

digit i belonging to the class with label j, as estimated by the algorithm (to 3 decimal

places). The true labels of the images are shown in the rows, and the classifications

given to the image by the algorithm are displayed in the columns, with the values in the

table representing the average probability of the images being assigned each of the ten

possible labels by the algorithm. For example, over all of the images in the data set of

ten thousand, the algorithm using Normal Distribution kernels with a standard deviation

of 1000 (see Table A.8) gave an average likelihood of 0.013 that an image with label 9

should be assigned label 4, and a likelihood of 0.028 that an image with label 4 should

be assigned label 9.

106

Image Classifications
per 1000

0 1 2 3 4 5 6 7 8 9 Errors

0 994 1 1 0 0 1 2 1 0 0 6
1 0 999 1 0 0 0 0 0 0 0 1
2 11 16 949 3 1 0 1 16 4 0 51
3 1 3 4 964 1 14 0 9 2 2 36

True 4 1 13 0 0 951 0 6 4 0 24 49
Label 5 6 2 0 11 3 963 6 1 1 7 37

6 6 3 0 0 4 3 983 0 0 0 17
7 0 24 4 0 2 0 0 961 0 9 39
8 11 4 6 21 8 17 4 5 919 4 81
9 3 7 2 9 10 3 1 18 2 945 55

Average misclassification error per 1000 images 37

Table A.3: 3 Nearest Neighbours algorithm – Classification results.

Image Classifications
per 1000

0 1 2 3 4 5 6 7 8 9 Errors

0 994 1 1 0 0 1 2 1 0 0 6
1 0 998 2 0 0 0 0 0 0 0 2
2 12 19 944 3 2 0 1 16 4 0 56
3 0 3 2 963 1 15 1 10 2 3 37

True 4 2 11 0 0 951 0 6 5 1 23 49
Label 5 7 1 0 12 2 966 4 1 1 4 34

6 7 3 0 0 3 2 984 0 0 0 16
7 0 29 3 0 4 0 0 954 0 10 46
8 12 5 5 18 7 22 5 4 915 6 85
9 5 7 4 9 9 4 1 16 1 944 56

Average misclassification error per 1000 images 38

Table A.4: 5 Nearest Neighbours algorithm – Classification results.

107

Image Classifications
per 1000

0 1 2 3 4 5 6 7 8 9 Errors

0 993 1 1 0 0 2 2 1 0 0 7
1 0 995 3 0 1 1 1 0 0 0 5
2 9 8 956 6 1 0 2 16 2 0 44
3 0 2 4 955 1 21 0 9 4 4 45

True 4 1 9 0 0 954 0 3 4 1 27 46
Label 5 2 1 0 19 2 951 10 1 6 8 49

6 5 2 1 0 2 5 984 0 0 0 16
7 0 19 4 2 4 0 0 962 0 9 38
8 9 5 6 22 4 18 3 4 918 10 82
9 1 5 1 7 13 5 1 9 1 957 43

Average misclassification error per 1000 images 37

Table A.5: Normal Distribution kernels (measured by L2 distance, using standard devi-
ation of 1000) – Classification results.

Image Classifications
per 1000

0 1 2 3 4 5 6 7 8 9 Errors

0 993 1 1 0 0 2 2 1 0 0 7
1 0 996 3 0 0 1 1 0 0 0 4
2 9 9 954 6 1 0 2 16 3 0 46
3 0 3 3 955 1 20 0 10 4 4 45

True 4 1 12 0 0 953 0 3 4 1 25 47
Label 5 2 2 0 16 2 955 9 1 4 8 45

6 5 3 0 0 3 5 983 0 0 0 17
7 0 26 4 2 4 0 0 953 0 11 47
8 9 5 5 23 4 20 3 4 918 9 82
9 2 8 1 7 12 5 1 11 1 952 48

Average misclassification error per 1000 images 38

Table A.6: Normal Distribution kernels (measured by L2 distance, using standard devi-
ation of 2000) – Classification results.

Image Classifications
per 1000

0 1 2 3 4 5 6 7 8 9 Errors

0 990 1 1 0 0 1 6 1 0 0 10
1 0 998 2 0 0 0 0 0 0 0 2
2 11 53 906 2 2 0 0 21 5 0 94
3 0 23 1 949 1 10 0 10 3 4 51

True 4 1 39 0 0 916 0 7 3 0 34 84
Label 5 2 27 0 11 1 933 10 3 2 10 67

6 7 9 0 0 2 3 978 0 0 0 22
7 0 56 2 0 2 0 0 920 0 19 80
8 9 32 3 14 4 17 4 8 897 10 103
9 5 19 1 7 7 3 1 17 0 941 59

Average misclassification error per 1000 images 57

Table A.7: Normal Distribution kernels (measured by L2 distance, using standard devi-
ation of 4000) – Classification results.

Average Likelihood of Classification
0 1 2 3 4 5 6 7 8 9

0 0.992 0.001 0.001 0 0 0.002 0.003 0.001 0 0

1 0 0.995 0.003 0 0.001 0.001 0.001 0 0 0

2 0.009 0.007 0.956 0.006 0.001 0 0.002 0.017 0.002 0

3 0 0.002 0.003 0.956 0.001 0.021 0 0.009 0.004 0.003

4 0.001 0.009 0 0 0.953 0 0.003 0.004 0.001 0.028

5 0.002 0.001 0 0.019 0.002 0.952 0.010 0.001 0.005 0.007

6 0.005 0.002 0.001 0 0.003 0.005 0.984 0 0 0

7 0 0.020 0.004 0.002 0.004 0 0 0.961 0 0.009

8 0.009 0.005 0.006 0.022 0.004 0.021 0.003 0.004 0.916 0.010

9 0.001 0.005 0.001 0.007 0.013 0.005 0.001 0.012 0.001 0.953

Average Negative Log-Likelihood 0.743

Table A.8: Normal Distribution kernels (measured by L2 distance, using standard devi-
ation of 1000) – Likelihoods of labels.

Average Likelihood of Classification
0 1 2 3 4 5 6 7 8 9

0 0.991 0.001 0.001 0 0 0.001 0.004 0.001 0 0

1 0 0.996 0.002 0 0 0.001 0.001 0 0 0

2 0.009 0.010 0.952 0.006 0.001 0 0.002 0.018 0.003 0

3 0 0.003 0.003 0.953 0.001 0.021 0 0.010 0.006 0.004

4 0.001 0.012 0 0 0.943 0 0.004 0.005 0.001 0.034

5 0.002 0.003 0 0.020 0.002 0.950 0.010 0.001 0.005 0.007

6 0.005 0.004 0 0 0.003 0.005 0.983 0 0 0

7 0 0.027 0.004 0.002 0.004 0 0 0.950 0 0.013

8 0.008 0.006 0.005 0.022 0.004 0.021 0.003 0.006 0.917 0.009

9 0.002 0.007 0.001 0.006 0.015 0.005 0.001 0.020 0.001 0.942

Average Negative Log-Likelihood 0.203

Table A.9: Normal Distribution kernels (measured by L2 distance, using standard devi-
ation of 2000) – Likelihoods of labels.

Average Likelihood of Classification
0 1 2 3 4 5 6 7 8 9

0 0.983 0.001 0.001 0.001 0 0.003 0.009 0.002 0.001 0

1 0 0.988 0.002 0.001 0.001 0 0.002 0.003 0.001 0.001

2 0.014 0.061 0.873 0.009 0.003 0.001 0.003 0.026 0.007 0.002

3 0.001 0.029 0.006 0.889 0.002 0.033 0.002 0.013 0.014 0.010

4 0.001 0.036 0.001 0.001 0.827 0.001 0.009 0.017 0.002 0.105

5 0.005 0.0027 0 0.039 0.005 0.877 0.016 0.006 0.010 0.015

6 0.010 0.014 0.001 0 0.005 0.008 0.960 0 0.001 0.001

7 0 0.061 0.004 0.002 0.011 0 0 0.868 0.001 0.052

8 0.009 0.041 0.009 0.039 0.009 0.035 0.008 0.013 0.813 0.024

9 0.004 0.020 0.002 0.008 0.062 0.006 0.002 0.072 0.004 0.820

Average Negative Log-Likelihood 0.188

Table A.10: Normal Distribution kernels (measured by L2 distance, using standard
deviation of 4000) – Likelihoods of labels.

Appendix B

Learning PDFA

Section B.1 demonstrates the necessity of a bound on the expected length of strings

generated by the target automaton when learning a PDFA in terms of KL-divergence.

Section B.2 gives details of the method of smoothing from an approximated distribu-

tion under L1 distance to a close approximation under KL-divergence as discussed in

Section 5.7.

B.1 Necessity of Upper Bound on Expected Length of a

String When Learning Under KL-Divergence

We show that in order to learn a PDFA with respect to KL-Divergence, an upper bound

on the expected length of string output by the target PDFA must be known.

Observation 41 Consider the target automaton A, shown in Figure B.1.

a:1-ζ0
q

b:ζ

a:1-ζ'

b:ζ'

1
q

f
q

Figure B.1: Target PDFA A.

111

Suppose we wish to construct, with probability at least 1− δ, a distribution DH

such that I(DA||DH) < ǫ, using a finite sample of strings generated by DA. There is

no algorithm that achieves this using a sample size that depends only on ǫ and δ.

Proof: A outputs the string a with probability 1−ζ, and outputs a string of the form

b(a)∗b with probability ζ.

Suppose an algorithm draws a sample S (from DA) from which it is to construct

DH , with |S| = f(ǫ, δ). Let ζ = 1
2|S| be the probability that a random string is

of the form b(a)nb. Notice that S will be composed (entirely or almost entirely) of

observations of string a. Therefore there is no way that the algorithm can accurately

gauge the probability ζ ′ (see Figure B.1).

For i ∈ N let Pi be a probability distribution over the length ℓ of output strings,

where Pi(1) = (1−ζ) and over all values of ℓ greater than 1 the distribution is a discrete

exponential distribution defined as follows.

An infinite sequence {n1, n2, . . .} exists (see Observation 42), such that P1 has

a probability mass of 1
4|S| (half of the probability of generating a string of length greater

than 1) over the interval {1, ..., n1}, P2 has probability mass of 1
4|S| over the interval

{n1 + 1, ..., n2}, and in general Pi has probability of 1
4|S| over the interval {ni−1 +

1, ..., ni}. Let sℓ denote the string ba(ℓ−2)b (with length ℓ). Given any distribution1

DH , for any 0 < ω < 1 there exists an interval Ik = {nk−1 + 1, ..., nk} such that

∑

ℓ∈Ik

DH(sℓ) ≤ ω.

To lower-bound the KL-divergence, we now redistribute the probability distribu-

tion of DH in order to minimise the incurred KL-divergence (from the true distribution

DA), subject only to the condition that Ik still contains at most ω of the probability

mass. In order to minimise the KL divergence, by a standard convexity argument, the

algorithm must distribute the probability in direct proportion to DA.

∀ℓ ∈ Ik :
DH(ℓ)

DA(ℓ)
= 4|S|ω, and

∀ℓ /∈ Ik :
DH(ℓ)

DA(ℓ)
=

(

1− ω

1− 1
4|S|

)

.

1Note that this is a representation independent result - the distribution need not be generated by an
automaton.

112

It follows that the KL-divergence can be written in terms of |S| and ω in the following

way:

I(DA||DH) =
∑

ℓ∈N

DA(sℓ). log

(

DA(sℓ)

DH(sℓ)

)

=
∑

ℓ∈Ik

DA(sℓ). log

(

1

4|S|ω

)

+
∑

ℓ/∈Ik

DA(sℓ). log

(

1− 1
4|S|

1− ω

)

=

(

1

4|S|

)

log

(

1

4|S|ω

)

+

(

1− 1

4|S|

)

log

(

1− 1
4|S|

1− ω

)

≥
(

1

4|S|

)

(−2 log(|S|) − log(ω)) + log

(

1− 1

4|S|

)

.

Suppose that ω < 2
−2
(

|S|
(

ǫ−log
(

1− 1

4|S|

))

+log(|S|)
)

. It follows that:

I(DA||DH)

>

(

1

4|S|

)(

−2 log(|S|) + 2

(

2|S|
(

ǫ− log

(

1− 1

4|S|

))

+ log(|S|)
))

+

log

(

1− 1

4|S|

)

=

(− log(|S|)
2|S|

)

+

(

ǫ− log

(

1− 1

4|S|

))

+

(

log(|S|)
2|S|

)

+ log

(

1− 1

4|S|

)

= ǫ.

It has been shown that for any specified ǫ, given any hypothesis distribution DH ,

an exponential distribution DA exists such that I(DA||DH) > ǫ. 2

Observation 42 Given any positive integer ni ≥ 1 in the domain of string lengths, an

exponential probability distribution exists such that at least 1
4|S| of the probability mass

lies in the range {ni + 1, ..., ni+1}.

Proof: If we look at strings of length greater than 1, then given some value ni, there

is some exponential distribution over these strings such that there exists an interval

{ni + 1, ..., ni+1} containing half of the probability mass of the distribution.

For an automaton A′ (of a form similar to Figure B.1), the probability of an

output string having a length greater than 1 is 1
2|S| . Let ℓb = ℓ − 1 for those strings

with ℓ > 1 (where ℓb represents the number of characters following the initial b), and

113

let sℓb
represent the string starting with b which has length ℓ. For any value of ni, we

can create a distribution:

DA′(sℓb
) =

(

1

2|S|

)

(

ln
(

4
3

)

ni + 1

)

exp

(

−
(

ln
(

4
3

)

ni + 1

)

ℓ

)

.

A fraction 1
8|S| of the probability mass lies in the interval {2, ..., ni}. There exists a

value ni+1 =
⌈

(ni + 1)
(

ln(4)/ ln
(

4
3

))⌉

such that at least 1
4|S| of the probability mass

lies in the interval {ni + 1, ..., ni+1}. 2

B.2 Smoothing from L1 Distance to KL-Divergence

We define DAn to be the set of deterministic automata with a finite number n states.

DAc
n is the set of all members of DAn which are complete graphs. Given alphabet Σ

of symbols labelling transitions between states, it can be seen that |DAc
n| ≤ n|Σ|+1.

Let PDAn,ℓ be the set of all probabilistic deterministic automata with n states,

where the probability associated with each transition has a binary representation with

ℓ bits2. If each probability associated with a transition is represented by a bit string of

length ℓ, and there are no more than n|Σ| transitions in a deterministic automaton, then

for any automata Ax ∈ DAc
x, there are no more than

(

2ℓ
)n|Σ|

automata with the same

structure (states and transitions) in PDAn,ℓ. Therefore, |PDAn,ℓ| ≤ 2n|Σ|ℓ.n|Σ|+1.

We adapt the method of [13] to show that agnostic PAC-learnability of distribu-

tions generated from automata in PDAn,ℓ in terms of L1 distance implies learnability

in terms of KL-divergence.

Lemma 43 A probability distribution D over outputs of automata A ∈ PDAn,ℓ is

learnable under KL-divergence in the agnostic PAC framework if it is agnostic PAC-

learnable under L1 distance.

Proof: Let D be a distribution over outputs from automata A ∈ PDAn,ℓ, and let A

be an algorithm which takes an input set S (where |S| is polynomial in 1/ǫ, 1/δ, n, |Σ|
and 1/µ) of samples generated i.i.d. from distribution D, and with probability at least

1− δ returns a distribution D̂ such that L1(D, D̂) ≤ ǫ.

Let ξ = ǫ2(12n|Σ|ℓ)−1. We define A′ such that with probability at least 1 − δ

A′ returns distribution D′, where L1(D,D′) ≤ ξ. Algorithm A runs A with a sample

S′, where |S′| is polynomial in 1/ξ, 1/δ, n, |Σ| and 1/µ (and it should be noted that

A′ is still polynomial in 1/ǫ, 1/δ and 1/n).

2Note that an incomplete PDA Ai has an equivalent complete PDA Ac, where each edge in Ac

which is not in Ai has a probability of zero associated with it.

114

We define DA to be the distribution over outputs of automaton A and Dn,ℓ to

be the unweighted mixture of the distributions over outputs of automata in PDAn,ℓ,

Dn,ℓ(s) = |PDAn,ℓ|−1
∑

A∈PDAn,ℓ
DA(s).

Now let D′′(s) = (1 − ξ)D′(s) + ξDn,ℓ(s). It follows that L1(D
′,D′′) ≤ 2ξ.

With probability at least 1 − δ, L1(D,D′) ≤ ξ, and therefore with probability at least

1− δ, L1(D,D′′) ≤ ξ.

Let S< = {s ∈ Σ∗|D′′(s) < D(s)}. Members of S< contribute positively to

I(D||D′′). Therefore

I(D||D′′) ≤
∑

s∈S<

D(s) log

(

D(s)

D′′(s)

)

=
∑

s∈S<

(D(s)−D′′(s)) log

(

D(s)

D′′(s)

)

+
∑

s∈S<

D′′(s) log

(

D(s)

D′′(s)

)

. (B.1)

We have shown that L1(D,D′′) ≤ 3ξ, so
∑

s∈S<
(D(s)−D′′(s)) ≤ 3ξ. Analysing

the first term in Equation B.1, it can be seen that

∑

s∈S<

(D(s)−D′′(s)) log

(

D(s)

D′′(s)

)

≤ 3ξ max
s∈S<

{

log

(

D(s)

D′′(s)

)}

.

Note that for all s ∈ Σ∗, D′′(s) ≥ ξ|PDAn,ℓ|−1. It follows that

max
s∈S<

{

log

(

D(s)

D′′(s)

)}

≤ log

((

1

ξ

)

2n|Σ|ℓ.n|Σ|+1

)

= log(n|Σ|+1) + n|Σ|ℓ− log(ξ).

Examining the second term in Equation B.1,

∑

s∈S<

D′′(s) log

(

D(s)

D′′(s)

)

=
∑

s∈S<

D′′(s) log

(

D′′(s) + hs

D′′(s)

)

,

where hs = D(s) − D′′(s), which is a positive quantity for all s ∈ S<. Due to the

concavity of the logarithm function, it follows that

∑

s∈S<

D′′(s) log

(

D′′(s) + hs

D′′(s)

)

≤
∑

s∈S<

D′′(s)hs

[

d

dx
(log(x))

]

x=D′′(s)

=
∑

s∈S<

hs

≤ 3ξ.

Therefore, I(D||D′′) ≤ 3ξ(1 + log(n|Σ|+1) + n|Σ|ℓ− log(ξ)). For values of ξ ≤
ǫ2(12n|Σ|ℓ)−1, and values of ǫ ≤

(

log
(

n|Σ|+1
))−1

, it can be seen that I(D||D′′) ≤ ǫ.

2

115

Bibliography

[1] N. Abe, J. Takeuchi and M. Warmuth. Polynomial Learnability of Stochastic
Rules with respect to the KL-divergence and Quadratic Distance. IEICE Trans.
Inf. and Syst., Vol E84-D(3) pp. 299-315 (2001).

[2] N. Abe and M.K. Warmuth. On the Computational Complexity of Approximating
Distributions by Probabilistic Automata. Machine Learning, 9, pp. 205-260
(1992).

[3] E.L. Allwein, R.E. Schapire and Y. Singer. Reducing Multiclass to Binary: A
Unifying Approach for Margin Classifiers. Journal of Machine Learning Research,
1, pp. 113-141 (2000).

[4] M. Anthony and P.L. Bartlett. Neural Network Learning: Theoretical
Foundations. Cambridge University Press (1999).

[5] P. Auer, R.C. Holte and W. Maass. Theory and Applications of Agnostic
PAC-Learning with Small Decision Trees. In Proceedings of the 12th International
Conference on Machine Learning, pp. 21-29 (1995).

[6] G. Bejerano and G. Yona. Variations on Probabilistic Suffix Trees: Statistical
Modeling and Prediction of Protein Families. Bioinformatics, Vol. 17, No. 1,
pp. 23-43 (2001).

[7] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press
(1995).

[8] R.C. Carrasco and J. Oncina. Learning Stochastic Regular Grammars by means of
a State Merging Method. In The 2nd Intl. Collo. on Grammatical Inference and
Applications, pp. 139-152 (1994).

[9] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the Sum of Observations. Annals of Mathematical Statistics, 23 pp. 493-509
(1952).

[10] A. Clark and F. Thollard. PAC-learnability of Probabilistic Deterministic Finite
State Automata. Journal of Machine Learning Research, 5 pp. 473-497 (2004).

116

[11] C. Cortes and Y. LeCun. The MNIST Database of Handwritten Digits.
yann.lecun.com, viewed 13 February 2007,
<http://yann.lecun.com/exdb/mnist>.

[12] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications, John Wiley & Sons (1991).

[13] M. Cryan and L. A. Goldberg and P. W. Goldberg. Evolutionary Trees can be
Learned in Polynomial Time in the Two-State General Markov Model. SIAM
Journal on Computing, 31(2) pp. 375-397 (2001).

[14] S. Dasgupta. Learning Mixtures of Gaussians. 40th IEEE Symposium on
Foundations of Computer Science (1999).

[15] L. Devroye, L. Györfi and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Springer (1996).

[16] G. Druck, C. Pal, A. McCallum and X. Zhu. Semi-supervised classification with
hybrid generative/discriminative methods. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 280-289 (1996).

[17] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley
and Sons (1973).

[18] P. Dupont, F. Denis and Y. Esposito. Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition, 38, pp. 1349-1371 (2005).

[19] P. Dupont and J-C. Amengual. Smoothing Probabilistic Automata: An
Error-Correcting Approach. Lecture Notes in Computer Science, 1891/2000,
pp. 51-64 (2004).

[20] J. Feldman and R. O’Donnell and R. Servedio. Learning Mixtures of Product
Distributions over Discrete Domains. 46th Symposium on Foundations of
Computer Science (FOCS), pp. 501-510 (2005).

[21] I.K. Fodor. A Survey of Dimension Reduction Techniques. Lawrence Livermore
National Laboratory, viewed 13 February 2007,
<http://www.llnl.gov/tid/lof/documents/pdf/240921.pdf> (2002).

[22] P.W. Goldberg. When Can Two Unsupervised Learners Achieve PAC Separation?
In Proceedings of the 14th Annual Conference on Computational Learning
Theory, COLT 2001 and 5th European Conference on Computational Learning
Theory, EuroCOLT 2001, Vol. 2111, pp. 303-319 (2001).

117

[23] P.W. Goldberg. Some Discriminant-based PAC Algorithms. Journal of Machine
Learning Research, Vol.7, pp. 283-306 (2006).

[24] P. Guttman, S.V.N. Vishwanathan and R.C. Williamson. Learnability of
Probabilistic Automata via Oracles. In Proceedings of ALT 05, LNAI 3734,
pp. 171-182 (2005).

[25] P. Guttman, S.V.N. Vishwanathan and R.C. Williamson. On distribution classes
induced by probabilistic automata. Unpublished, viewed 05 September 2007,
<http://users.rsise.anu.edu.au/ oguttman/home/Myhill Nerode PFA.pdf>.

[26] D. Haussler. Probably Approximately Correct Learning. InProceedings of the
Eight National Conference on Artificial Intelligence (AAAI-90), pp. 1101-1108
(1990).

[27] D. Haussler, M. Kearns, N. Littlestone and M.K. Warmuth. Equivalence of
Models for Polynomial Learnability. Information and Computation, 95[2],
pp. 129-161 (1991).

[28] C. de la Higuera and J. Oncina. Learning Stochastic Finite Automata. In
Proceedings of the 7th International Colloquium on Grammatical Inference
(ICGI), LNAI 3264, pp. 175-186 (2004).

[29] K. Hoffgen. Learning and Robust Learning of Product Distributions. In ACM
COLT, pp. 77-83 (1993).

[30] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire and L. Sellie. On
the Learnability of Discrete Distributions. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, pp. 273-282 (1994).

[31] M.J. Kearns and R.E Schapire. Efficient Distribution-free Learning of Probabilistic
Concepts. Journal of Computer and System Sciences, 48(3), pp. 464-497 (1994).

[32] M.J. Kearns, R.E. Schapire and L.M. Sellie. Toward Efficient Agnostic Learning.
In Proceedings of Computational Learing Theory, 17(2/3), pp. 341-352 (1992).

[33] J. Lasserre, C.M. Bishop and T. Minka. Principled hybrids of generative and
discriminative models. In Proceedings of the 2006 IEEE Conference on Computer
Vision and Pattern Recognition, 1, pp. 87-94 (2006).

[34] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324
(1998).

[35] P.M. Long, R.A. Servedio and H.U. Simon. Discriminative Learning can Succeed
where Generative Learning Fails. Information Processing Letters (2007), 103(4),
pp. 131-135 (2007).

118

[36] E. Mossel and S. Roch. Learning Nonsingular Phylogenies and Hidden Markov
Models. In Proceedings of the Thirty-seventh Annual ACM Symposium on
Theory of Computing, Baltimore (STOC05), MD, USA, pp. 366-376 (2005).

[37] A.Y. Ng and M.I. Jordan. On discriminative vs generative classifiers: A
comparison of logistic regression and naive bayes. In Neural Information
Processing Systems, Vancouver, Canada, pp. 841-848 (2001).

[38] N. Palmer and P.W. Goldberg. PAC Classification via PAC Estimates of Label
Class Distributions. Tech rept. 411, Dept. of Computer Science, University of
Warwick (2004). [Available from arXiv as cs.LG/0607047.]

[39] N. Palmer and P.W. Goldberg. PAC-Learnability of Probabilistic Deterministic
Finite State Automata in terms of Variation Distance. In Proceedings of ALT 05,
LNAI 3734, pp. 157-170 (2005).

[40] N. Palmer and P.W. Goldberg. PAC-Learnability of Probabilistic Deterministic
Finite State Automata in terms of Variation Distance. Theoretical Computer
Science, 387(1), pp. 18-31 (2007).

[41] D. Ron, Y. Singer and N. Tishby. On the Learnability and Usage of Acyclic
Probabilistic Finite Automata. Journal of Computer and System Sciences, 56(2),
pp. 133-152 (1998).

[42] Y.D. Rubinstein and T. Hastie. Discriminative vs Informative Learning. In
Proceedings of the Third International Conference on Knowledge Discovery and
Data Mining (KDD-97), pp. 49-53 (1997).

[43] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 1st Edition (1995).

[44] P.Y. Simard, D. Steinkraus and J. Platt Best Practice for Convolutional Neural
Networks Applied to Visual Document Analysis. International Conference on
Document Analysis and Recogntion (ICDAR), pp. 958-962 (2003).

[45] L.G. Valiant. A Theory of the Learnable. Journal of the Association for
Computing Machinery, 27 pp. 1134-1142 (1984).

[46] V.N. Vapnik and A. Chervonenkis. On the Uniform Convergence of Relative
Frequencies of Events to their Probabilities. Theory of Probability and its
Applications, 16(2) pp. 264-280 (1971).

[47] V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer,
2nd Edition (2000).

[48] X. Zhu. Semi-Supervised Learning Literature Survey. Tech Report no.1530 in
Computer Sciences, University of Wisconsin-Madison (2005).

119

