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Abstract. In many fund-raising situations, a revenue target is speci-
fied. This suggests that the fund-raiser is interested in maximizing the
probability to achieve this revenue target, rather than in maximizing the
expected revenue. We study this topic from the perspective of Bayesian
mechanism design, in a setting where a seller has a certain good that he
can supply at no cost, and there are buyers whose joint valuation for the
good comes from some given prior distribution. We present an algorithm
to find the optimal truthful auction for two buyers with independent val-
uations via a direct characterization of the optimal auction. In contrast,
we show the problem is NP-hard when the number of buyers is arbitrary
or the distributions are correlated. Both negative results can be modified
to show NP-hardness of designing auctions for risk-averse sellers.

Our main results address the design of simple auctions for many buy-
ers, again in the context of a revenue target. For Sequential Posted Price
Auctions, we provide a FPTAS to compute the optimal posted prices
for a given sequence of buyers. For Monopoly Price Auctions, we apply
the results of [8] on sparse covers of distributions to obtain a PTAS in
a setting where the seller has a constraint on discriminatory pricing,
consisting of a fixed set of prices he may use.

1 Introduction

There is a considerable literature on the algorithmic challenge of designing auc-
tions that maximise the expected revenue obtained from a set of buyers. In this
paper we consider a related objective where instead of maximising the expected
revenue, the auctioneer has been given some revenue target T , and wishes to
maximise the probability of raising at least T . This objective gives rise to new
and interesting algorithmic challenges, and has some plausible real-world moti-
vations, discussed below.

We work in the classical Bayesian setting of a collection of buyers whose
valuations (prices they are willing to pay) for items being sold, are assumed to
be drawn from some known prior distribution D. We are interested in design-
ing mechanisms that are incentive compatible and individually rational. D in
combination with a mechanism M results in a distribution over the revenue
R obtained. A standard objective is to choose M to maximise the expected
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value of R. A more general setting assumes a non-decreasing “utility of money”
function u, and aims to maximize the expectation of u(R). In this revenue-target
setting, u is a shifted Heaviside function, equal to 0 for R < T and 1 for R ≥ T .
Certain concave functions u have been used to model risk aversion, however the
functions u considered here are not concave.

In this paper we focus on the “digital goods” setting, where the seller can
supply unlimited copies of some good, at no cost. We also assume that the
buyers have unit demand, so that a buyer’s type is represented by a probability
distribution over his valuation for a copy of the item. This special case is a
simplified model of the fund-raising situations mentioned below. In the context
of digital goods and unit demands, maximisation of the expected revenue can
be decomposed into revenue-maximisation from each buyer independently. In
contrast, when we switch to a revenue target, we find that the deal offered to a
buyer should depend on the outcomes of the deals offered to other buyers.

This revenue-target setting is motivated by various real-world scenarios.
Charitable fund-raising typically identify a target revenue to be raised. Simi-
larly, in Internet crowd-sourcing platforms that support fund-raising for busi-
ness start-ups (Kickstarter, Indiegogo, RocketHub etc.), it is typical to aim for
some amount of money, and if that target is not reached, the would-be investors
get their money back. (Our model doesn’t properly capture this situation; we
mention it to emphasise the importance of revenue targets in practice.) While a
fund-raising effort is not the same thing as an auction, to some extent it can be
modelled as one: an approach to a donor (or investor) corresponds to an attempt
to sell an item to a would-be buyer. In cases where goods are sold at auction, it
may be more desirable to raise a particular amount of money than to maximise
the expected revenue. For example, in a bankruptcy situation, the administrator
may wish to sell a collection of items so as to prioritise repaying the top-tier
creditors. And while the FCC spectrum auction wants to raise as much money
as possible, it is also required to cover its costs.

1.1 Our Results

We consider the problem parametrised by the number of buyers n, and the sup-
port size m of their value distributions. With multiple buyers, it is #P-complete
to compute the exact success probability (probability to achieve revenue tar-
get T ) for a given auction (Proposition 2). Given this obstacle, in Sect. 3 we
consider a basic case of two buyers having uncorrelated valuations. We exhibit a
polynomial-time algorithm to exactly compute the optimal truthful auction that
maximises the probability to achieve T , given as input any discrete prior distri-
butions. We do this via a structural characterisation of auctions that optimise
the probability of achieving a given revenue target. This characterisation totally
differs from the one maximising expected revenue and allows us to restrict to
auctions with a geometric property that makes the problem tractable.

We show contrasting hardness results for correlated valuations or n buyers
with independent distributions. Specifically, it is shown to be NP-complete to
compute the optimal auction for three buyers having correlated valuations and
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NP-hard for n buyers with independent distributions. Note that, in the latter
case, a truthful auction may not necessarily be succinctly representable. We
overcome the obstacle via proving the hardness for a class of succinct auctions
and showing there exists a truthful auction with good performance if and only
if there exists a good succinct auction in the constructed instance.

Our main algorithmic results are in Sect. 4, for two prevalent auctions follow-
ing the trend of designing simple auctions. The first one is the Sequential Posted
Price Auction introduced by Chawla et al. [4] to approximate the expected rev-
enue in multi-dimensional Bayesian mechanism design. In this auction, the seller
offers a take-it-or-leave-it price to each buyer sequentially. Given a sequence of
buyers, we are able to provide a fully polynomial-time approximation scheme
(FPTAS) to compute an approximately optimal sequential posted price auction
that maximizes the success probability with an additive error. Second, we con-
sider the Monopoly Price Auction where the seller offers take-it-or-leave-it prices
to buyers simultaneously. This type of auctions was studied in [13] for selling
goods with limited supply. We apply results of [8] on sparse covers of Poisson
binomial distributions to obtain a PTAS when the seller has a limitation on
discriminatory pricing, i.e., is only allowed to use few distinct prices.

1.2 Related Work

There has been a long line of research on maximizing expected revenue in
Bayesian mechanism design starting from the seminal work by Myerson [15].
Recently, Cai et al [3] developed a general framework reducing revenue max-
imization to social welfare maximization. They also applied the framework to
optimize certain non-linear functions [2]. However, the mechanisms they derived
are randomized and Bayesian truthful, not deterministic truthful mechanisms
studied in this paper.

Another line of research studied auction design for risk-averse sellers that
can be regarded as maximizing a concave function of the revenue (cf. [17]).
Sundararajan and Yan [18] studied the auction design problem for a risk averse
seller and gave robust mechanisms (without knowledge of the concave function)
which achieve constant approximations when buyers’ distributions are indepen-
dent. The approximation ratio has been improved to e/(e − 1) by Bhalgat et
al. [1] by using the knowledge of concave functions. Our work complements their
results by providing some corresponding intractability results.

We mention several negative results on revenue maximization in determin-
istic mechanism design. Diakonikolas et al. [10] showed that it is NP-hard to
maximize revenue given a welfare constraint. Chen et al. [6] proved that it is
NP-hard to maximize revenue in a multi-dimensional setting with a single unit-
demand buyer when the valuations of items are independently distributed. For
correlated buyers, Papadimitriou and Pierrakos [16] proved that it is NP-hard to
approximate the optimal expected revenue for a single-item auction. However,
in digital goods setting, the revenue maximizing auction can be constructed eas-
ily by computing the optimal price for each bidder separately based on their
distributions conditioned on others’ bids.
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The study of digital goods auctions was initiated by Goldberg et al. [11].
Recently, Chen et al. [5] derived the optimal competitive auction with the
benchmark defined to measure worst-case over all buyer profiles. In contrast,
our benchmark measure is the average cases based on the prior distribution.
Another related concept is “profit extractor” (see Sect. 6.2.4 in [12]) which is a
decision problem the profit maximization in the prior-free setting.

Threshold probability maximization is a classical objective in stochastic opti-
mization and has been studied for several combinatorial optimization problems
(cf. [14] and references therein). However no incentive issues were considered
before when optimizing this objective. The technique we apply to approximate
the optimal monopoly price auction is based on [8]. These results have been
shown helpful in computing Nash Equilibria [9] and learning sums of random
variables [7]. But to our knowledge, this paper is their first application in auction
design.

2 Preliminaries

Auction Setting. We study an auction environment where a seller wants to sell
copies of an item to n bidders. Each bidder/buyer i is interested in a single
copy of the item and values it at a privately known value vi. A valuation profile
v is the vector of all bidders’ valuations, i.e. v = (v1, . . . , vn). We consider a
deterministic single-round sealed-bid auction where each bidder submits a bid bi

to express how much he is willing to pay for the item. After soliciting submitted
bids b = (b1, . . . , bn), the seller must decide whether each bidder i wins an item
and how much he needs to pay. Bidder i’s utility is the difference between his
value vi and his payment if he wins a item; otherwise he pays 0 and gets utility 0
to guarantee individual rationality, that is, no bidders will get a negative utility
in the auction.

We assume every bidder in the auction is rational and aims to maximize
his own utility by choosing the best bidding strategy. An auction is said to be
truthful if for each bidder i, bidding his true valuation (i.e. bi = vi) is a dominant
strategy no matter what the other bidders bid. It is known that truthful auctions
can be characterized by bid-independent auctions where for each bidder i, the
auction computes a threshold price pi that does not depend on bi but may depend
on the bids of the other bidders b−i = (b1, . . . , bi−1, bi+1, . . . , bn). In other words,
there exists a pricing function for bidder i such that pi = fi(b−i) and i wins
the item iff bi ≥ pi and his payment is pi if he wins. So it suffices to consider
bid-independent auctions when designing truthful auctions.

Thus any truthful or bid-independent auction A can be represented by n
pricing functions (f1, . . . , fn) where fi is the pricing function for bidder i which
maps other bidders’ valuations v−i to the threshold price pi. For convenience,
we use xi(v) to denote the allocation rule of the auction, i.e. xi(v) = 1 if i
wins an item when the valuation profile is v; otherwise xi(v) = 0. Hence, the
revenue of A on profile v is RA(v) =

∑
i∈[n] xi(v)fi(v−i) where [n] denotes the

set {1, . . . , n}. We also use RA
i (v) to denote the revenue of the auction A from
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bidder i, i.e., RA
i (v) = xi(v)fi(v−i). We will omit A from the notation if the

auction is clear from the context.

Representation of Prior Distribution. We assume the seller has prior knowledge
of the bidders’ valuations, which is represented by a distribution on the valuation
profile v. In particular, we use D to denote the distribution on the valuation
profile and V to denote the support of D. We denote the probability that the
valuation profile is v by Pr[v] for all v ∈ V . Obviously, the distribution D can be
represented in the size of V (denoted by |V | or |D|) by explicitly describing Pr[v]
for all v ∈ V . We also use Vi = {v1

i , . . . , vmi
i } to denote the set of all possible

value of vi in D, where mi is |Vi| and v1
i < v2

i < · · · < vmi
i . For convenience, we

define v0
i = 0 and assume 0 ∈ Vi.

We say the bidders’ valuations are independently distributed if D is a product
distribution, i.e. D = ×i∈[n]Di where Di is the distribution on buyer i’s valu-
ations; otherwise they are correlated. For convenience, we say the bidders are
independent (or correlated) according to whether their valuations are indepen-
dently distributed. For independent bidders, D can be represented using space
O(n · m) where m = maxi mi.

We consider a seller with revenue target T and his utility is 1 if the revenue
raised in the auction is at least T ; otherwise his utility is 0. Given an instance
I = (D,T ) with the profile distribution D and revenue target T , the seller’s
utility in an auction A is Prv∼D[RA(v) ≥ T ]. We also call this value the perfor-
mance of auction A on instance I. So an auction is an optimal truthful auction
for an instance I if no truthful auction can outperform A on the instance I.
Similarly, we say A is c-additive approximately optimal if no truthful auction
can perform better than the performance of A plus a parameter c. It is without
loss of generality to assume the range of pricing function for bidder i is Vi as
shown in the following proposition. The intuition is that rounding prices up to
the next valuation of the agent will not decrease the revenue of the auction.

Proposition 1. For any distribution profile D and truthful auction A, there
exists another truthful auction A′ such that the range of pricing functions for
bidder i in A′ is Vi for all i ∈ [n] and RA′

(v) ≥ RA(v) for all profiles v.

Simple Auctions. We consider two types of simple auctions called monopoly
price auctions and sequential posted price auctions. A monopoly price auction
is a truthful auction with pricing functions (f1, . . . , fn) where each function fi

depends only on the prior distribution D and not on the other bids b−i. We
say an auction is a sequential posted price auction with respect to an order σ
if fi may depend on D together with the bids of buyers who precede i in σ,
i.e. (b1, . . . , bi−1) if buyers are indexed according to σ. The following proposition
shows the hardness of evaluating the performance of a given monopoly price
auction. This is proved via a reduction from counting the solutions of Knapsack.

Proposition 2. Given a monopoly price auction for independent bidders, it is
#P-complete to compute the probability of achieving a revenue target.
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3 Optimal Truthful Auction for Two Independent
Bidders

Recall that any truthful auction for two bidders can be represented by two pricing
functions f1 and f2. By Proposition 1, we only need to consider f1 : V2 → V1

which maps bidder 2’s valuations to bidder 1’s threshold prices and f2 : V1 → V2.
First of all, we show that the general problem reduces to a restricted version
where bidders’ distributions have support {0, . . . , m}×{0, . . . ,m} and the target
revenue is m, for some positive integer m. The intuition is mapping values of one
agent to indices and mapping values of the second agent to intervals of T − v1.

Lemma 3. Given any instance I = (D,T ) with an independent profile distrib-
ution D = D1 × D2 (Di having support Vi) and a target revenue T , there exists
an integer m ≤ min{|V1|, |V2|} + 1 and another instance I ′ = (D′, T ′) such that

(a) D′ = D′
1 × D′

2 has the support {0, . . . ,m} × {0, . . . , m} and T ′ = m
(b) Given an instance I, the instance I ′ can be found in time linear in m
(c) Given any optimal truthful auction for I ′, it is possible to construct an opti-

mal truthful auction for I in time linear in m.

For the case with two independent bidders, we assume V1 = V2 = {0, . . . , m}
and T = m. We also use qi

1 and qj
2 to denote probabilities Pr[v1 = i] and

Pr[v2 = j] respectively and R(i, j) to be the revenue from the profile (i, j).
Regarding pricing functions, we can assume f1(0) = m and f2(0) = m, since
otherwise we can increase f1(0) or f2(0) to m without loss of the objective. In
the following lemmas, we show that there exists an optimal auction with several
nice properties. The first one is monotonicity of f1 and f2. Intuitively, the lemma
says once one bidder’s valuation increases, the seller will get more revenue from
this bidder and set a lower price for the other bidder as a consequence.

Lemma 4. There exists an optimal truthful auction for two independent bidders
such that the pricing functions are monotonically non-increasing.

By Lemma 3 we assume the valuations of both bidders are in {0, . . . , m} and
the target revenue is m. So for any profile v such that v1 < m and v2 < m, the
seller must sell items to both bidders to achieve the target revenue. Based on
this observation, we are able to show another property of f1 and f2.

Lemma 5. There exists an optimal truthful auction A = (f1, f2) for two inde-
pendent bidders such that f1 is non-increasing and for any i ∈ {0, . . . , m},

f2(i) =

⎧
⎨

⎩

m if ∀j ∈ {0, . . . ,m}, i < f1(j)
j if ∃j ∈ {0, . . . ,m}, f1(j) ≤ i < f1(j − 1)
f2(m − 1) if ∀j ∈ {0, . . . ,m}, i ≥ f1(j), i.e.i = m since f1(0) = m

Intuitively, the optimal auction described in the above lemma divides all
profiles into four areas. In area one, the auction allocates nothing and in area
two it sells both items. In area three (or four), the auction only sells a single
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copy with a price m to bidder 1 (or bidder 2). In addition, as shown in Fig. 1,
the values of f2 in this auction only depend on f1. Thus, in order to design
the optimal auction, we only need to find the optimal f1, then a suitable f2
follows by Lemma 5. Before characterizing the optimal f1, we introduce some
new notations. Given a non-increasing function f1, let J ⊆ [m] be the set of
indices such that f2(j) < f2(j −1). We denote the set J by {j1, j2, . . . , j|J|} with
an increasing order, i.e. j� < j�+1. Let i� = f1(j�) as illustrated in Fig. 2. We
also define i0 = j|J|+1 = m + 1 for simplicity. Then for all � = 1, . . . , |J | and
j� ≤ j < j�+1, f1(j) = i� by the definition of j�. In addition, for all � = 1, . . . , |J |
and i� ≤ i < i�−1, f2(i) = j� by Lemma 5. This is because j� is the j such that
f1(j) ≤ i < f1(j − 1). Then we can prove the following lemma.

4

2

1 3

bidder 1 value

reddib
eulav

2

m

m

0

0

Fig. 1. Illustration of the computation
of f2 for a given f1 based on Lemma 5.
Again, the vertical bold lines are f1
and the horizontal dashed lines are the
resulting f2. We also mark the four areas
mentioned in the text.

bidder 1 value

reddib
eulav

2

i1i2i3

j1

j2

j3

Fig. 2. Illustration of the definition of the
set J , the values j� and i� when the pricing
functions f1 and f2 are given as vertical
and horizontal bold lines respectively. The
shawed squares illustrate the profiles with
revenue at least m.

Lemma 6. There exists an optimal auction A = (f1, f2) such that i� + j� = m
for all � = 1, . . . , |J | where i� and j� are defined by f1 as above.

By the above lemma, we can characterize the optimal auction by only using
the set J , i.e. the values of {j1, . . . , j|J|}. Given the set J , we can compute f1
and f2 by Lemmas 6 and 5 respectively. Based on this characterization, we are
able to show the main theorem in this section.

Theorem 7. Given a distribution D = D1 × D2 for two independent bidders
and a target revenue for the seller, an optimal truthful auction can be found in
time O(m3) where m = min{|D1|, |D2|}.

We have contrasting NP-hardness for more general cases. Both results can
be modified for the cases with risk-averse sellers.
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Theorem 8. It is NP-complete to compute an optimal auction for three corre-
lated bidders, having a joint prior distribution presented as a set of probabilities
on a finite set of support points.

Theorem 9. It is NP-hard to compute the optimal auction for n independent
bidders even when each bidder has only two possible valuations, i.e. |Vi| = 2.

4 Near-Optimal Simple Auctions for Independent
Bidders

In this section, we study the following simple auctions for sellers with a target
revenue when the bidders are independent. In Sect. 4.1, we present an additive
FPTAS for computing approximately optimal sequential posted price auctions
with respect to a fixed order σ. Then in Sect. 4.2 we show an additive PTAS for
optimal monopoly price auctions, in a setting where the seller is restricted to
using a constant number of distinct prices.

4.1 Approximately Optimal Sequential Posted Price Auction

We first present a pseudo-polynomial time algorithm to compute optimal sequen-
tial posted prices via dynamic programming. Then we show that this algorithm
can be modified to be a FPTAS with respect to additive error. We order the
bidders with respect to the fixed order σ.

Recall that in a sequential posted price mechanism, the seller offers take-it-
or-leave-it prices to the buyers sequentially with respect to a given order σ and
the computation of the price for buyer i is based on the results of all buyers
preceding i, together with the valuation distributions. Note that the optimal
sequential posted price for any sequence of buyers, performs at least as well as
the optimal monopoly price auction. In contrast with the objective of expected
revenue maximization, our objective of a target revenue means that the price
offered to bidder i may depend on the revenue gained from the first i−1 bidders.
This allows us to solve the problem by the following dynamic programming. Let
Q[i, r] be the maximal probability to achieve revenue r by selling items to buyers
from i to n. By Proposition 1, it is sufficient to consider the case that pi ∈ Vi

where Vi is the support of buyer i’s valuation distribution. It is easy to see
Q[i, r] = 1 if r ≤ 0 and Q[i, r] = 0 if i > n and r > 0. For the other cases when
i ≤ n and r > 0 we have

Q[i, r] = max
pi∈Vi

{Q[i + 1, r − pi] · Pr[vi ≥ pi] + Q[i + 1, r] · (1 − Pr[vi ≥ pi])}.

Thus the maximal probability to achieve target revenue T from all buyers is
Q[1, T ]. Note that solving the above dynamic programming gives a pseudo-
polynomial time algorithm for the problem. Actually, we can get an additive
FPTAS by rounding the dynamic programming properly.
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Theorem 10. There exists an additive FPTAS for computing approximately
optimal sequential posted price auctions with respect to a fixed order of the buy-
ers. In particular, given ε ∈ (0, 1), an instance I = (D,T ) with n independent
buyers and a buyer sequence σ, an ε-additive approximately optimal sequential
posted price auction with respect to σ can be computed in time O(m2n2 log n ·
1/ε log(1/ε)) where m is the maximal support size, i.e. maxi∈[n]{|Di|}.

4.2 Approximately Optimal Monopoly Price Auction

In this section, we present a PTAS for computing the optimal monopoly price
auction when the seller is restricted to a given constant-sized set of distinct
prices, and for each buyer has to select one of those prices for that buyer. Recall
that in a monopoly price auction, the seller offers those take-it-or-leave-it prices
to the buyers simultaneously, and the prices are only based on the valuation
distributions. Our PTAS uses results of [8] on Poisson Binomial Distributions.
First of all, we review the definitions and results. For any two random variables
X and Y supported on a finite set A, their total variation distance is defined as

dTV(X,Y ) =
1
2

∑

a∈A

|Pr[X = a] − Pr[Y = a]|.

We use the following result in the proof of Theorems 14 and 15.

Lemma 11 (Lemma 2 in [8]). Let X1, . . . , Xn be mutually independent ran-
dom variables, and let Y1, . . . , Yn be mutually independent random variables.
Then

dTV(
n∑

i=1

Xi,

n∑

i=1

Yi) ≤
n∑

i=1

dTV(Xi, Yi).

A distribution is said to be a Poisson Binomial Distribution (PBD) of order
n if it is a discrete probability distribution consisting of the sum of n indepen-
dent indicator random variables. The distribution is parameterized by a vector
(ri)n

i=1 ∈ [0, 1]n of probabilities and is denoted by PBD(r1, . . . , rn). Let Sn be
the set of all PBDs of order n. We review a construction of an efficient and
proper ε-cover for Sn.

Theorem 12 (Theorem 1 in [8]). For all n, ε > 0, there exists a set Sn,ε ⊂ Sn

such that

1. Sn,ε is an ε-cover of Sn in total variation distance; that is, for all D ∈ Sn,
there exists some D′ ∈ Sn,ε such that dTV(D,D′) ≤ ε,

2. |Sn,ε| ≤ n2 + n · ( 1ε )O(log2 1/ε),
3. Sn,ε can be computed in time O(n2 log n) + O(n log n) · (1ε )O(log2 1/ε).

Moreover, all distributions PBD(r1, . . . , rn) ∈ Sn,ε in the cover satisfy at least
one of the following properties, for some positive integer t = t(ε) = O(1/ε).

– (t-sparse form) there is some � ≤ t3 such that, for all i ≤ �, ri ∈
{ 1

t2 , 2
t2 , . . . , t2−1

t2 } and for all i > �, ri ∈ {0, 1}; or
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– ((n, t)-Binomial form) there is some � ∈ [n] and q ∈ { 1
n , 2

n , . . . , n
n} such that,

for all i ≤ �, ri = q and for all i > �, ri = 0; moreover � and q satisfy �q ≥ t2

and �q(1 − q) ≥ t2 − t − 1.

In words, every PBD can be approximated by either a sparse PBD or a binomial
distribution. Moreover, the following theorem tells us that if the first O(log 1/ε)
moments of two PBDs are the same, then the total variation distance between
them is at most ε.

Theorem 13 (Theorem 3 in [8]). Let P := (pi)n
i=1 ∈ [0, 1/2]n and Q :=

(qi)n
i=1 ∈ [0, 1/2]n be two collections of probability values. Let also X := (Xi)n

i=1

and Y := (Yi)n
i=1 be two collections of mutually independent indicators with

E[Xi] = pi and E[Yi] = qi, for all i ∈ [n]. If for some d ∈ [n] the fol-
lowing condition is satisfied:

∑n
i=1 p�

i =
∑n

i=1 q�
i for all � = 1, . . . , d, then

dTV(
∑

i Xi,
∑

i Yi) ≤ 13(d + 1)1/42−(d+1)/2.

It is easy to see that Theorem 13 holds if we replace [0, 1/2] with [1/2, 1]. More-
over, by setting d = O(log 1/ε), this bound becomes at most ε. Theorem 12 shows
that there exists an efficient cover for the set of all PBDs. However, we cannot
directly apply this theorem to our problem, since (given prices and prior distri-
butions of a problem instance) the set of associated PBDs (call it S) is a proper
subset of Sn, and we need to find a cover that consists of a subset of S. The-
orem 14 is intended to overcome this obstacle. Given n finite sets W1, . . . ,Wn

where Wi ⊂ [0, 1] for all i ∈ [n], let W = ×n
i=1Wi, and let Sn(W ) denote the set

of all PBDs such that the probability of the indicator i is in Wi for all i ∈ [n].
That is Sn(W ) = {PBD(r1, . . . , rn)|(ri)n

i=1 ∈ W}.

Theorem 14. For all n, ε > 0 and any n finite subsets of [0, 1], W1, . . . ,Wn let
W = ×n

i=1Wi. Then there exists a set Sn,ε(W ) ⊂ Sn(W ) such that

1. Sn,ε(W ) is an ε-cover of Sn(W ) in total variation distance; that is, for all
D ∈ Sn(W ), there exists some D′ ∈ Sn,ε(W ) such that dTV(D,D′) ≤ ε,

2. Sn,ε(W ) can be computed in time (n
ε )O(log2 1/ε) and has size at most

(n
ε )O(log2 1/ε).

Given the above theorem, we can obtain an additive PTAS for computing approx-
imately optimal monopoly price auctions, given a fixed set of allowed prices.

Theorem 15. There exists an additive PTAS for computing approximately opti-
mal monopoly price auctions when the seller is restricted to a fixed number of
distinct prices. In particular, given ε ∈ (0, 1), an instance with n independent
bidders and k distinct prices the seller may use, an ε-additive approximately
optimal monopoly price auction can be computed in time (nk

ε )O(k log2 1/ε).

Proof. We use a1, . . . , ak to denote the k distinct prices the seller may use.
Given a monopoly price auction with price vector (p1, p2, . . . , pn), we use an
indicator random variable Hij to indicate that the seller gets revenue aj from
buyer i, that is Hij = 1 iff pi = aj and vi ≥ aj . Let Hj =

∑
i∈[n] Hij and
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H =
∑

j∈[k] ajHj . Note that H is the random variable for the total revenue
raised in this auction. Since the Hij are indicator random variables, the Hj are
Poisson Binomial random variables due to the independence among bidders. So
H can be viewed as a weighted sum of k Poisson Binomial random variables. Let
rij denote the probability of getting revenue exactly aj from buyer i. Then the
distribution of Hj is PBD(r1j , · · · , rnj). The distribution of H can be represented
by the vector r = (rij)i∈[n],j∈[k]. Let Wi be the set of all possible (ri1, . . . , rin)
such that rij = Pr[vi ≥ aj ] if the seller use price aj for bidder i and rij = 0
otherwise . It is clear that the set W = ×i∈[n]Wi is the set of all probability
vector r corresponding to a feasible pricing vector p.

Note that for any two random variables X,Y and any value T , |Pr[X ≥
T ] − Pr[Y ≥ T ]| ≤ dTV(X,Y ). So if there exists an ε-cover for the set
of all possible distribution of H parameterized by r ∈ W , we can explore
the pricing rules in the cover instead of all possible pricing rules to find
a sequence of monopoly prices which approximately maximize Pr[H ≥ T ].
In order to get such a cover, we need to modify the dynamic programming
used in the proof of Theorem14 to be k-dimensional. The moment profile
(μ1, . . . , μk, ν1, . . . , νk) is defined as μj = (μj

1, . . . , μ
j
d), ν

j = (νj
1 , . . . , ν

j
d) and

μj
� , ν

j
� ∈ {0, ( ε

nk )�, 2( ε
nk )�, . . . , n} for all � ∈ [d] and j ∈ [k]. By a similar argu-

ment to Theorem 14 and Lemma 11, all the possible moment profiles is already
an ε-cover. Define A[i, μ1, . . . , μk, ν1, . . . , νk] to be the indicator such that it is
equal to 1 iff there exists r1 ∈ W1, . . . , ri ∈ Wi such that for all j ∈ [k] and
� ∈ [d],

∑
i′≤i:r′

i′j∈[0,1/2](r
′
i′j)

� = μj
� and

∑
i′≤i:r′

i′j∈(1/2,1](r
′
i′j)

� = νj
� where r′ is

a ε
nk -rounding of r such that r′

ij is a multiple of ε
nk and rij − ε

nk < r′
ij ≤ rij for

all i ∈ [n] and j ∈ [k].
Similarly to the proof of Theorem14, A can be computed by the following

dynamic programming. Inductively, to compute layer i + 1, we consider all the
non-zero entries of layer i and for every such non-zero entry and every possible
prices aj , we find which entry of layer i + 1 we would transition to if we choose
pi = aj , i.e. rij = Pr[vi ≥ aj ] and rij′ = 0 for all j′ 
= j. It is easy to see the
overall running time to compute A is (nk

ε )O(k log2 1/ε). In addition, we can find
the corresponding monopoly prices for any distribution in this cover by tracing
the pointers in the computation of A. Therefore, we can enumerate all possible
pricing rules in this cover with size at most (nk

ε )O(k log2 1/ε) to find the optimal
pricing which maximize Pr[H ≥ T ].

The final step is to compute Pr[H ≥ T ] given a price vector p. By Theorem 12,
we know any PBD can be approximated by a sparse PBD or a binomial distribu-
tion. For the given price vector, we can get the corresponding Hj for all j ∈ [k].
We use Theorem 12 to compute H ′

j from Hj such that H ′
j is either a k/ε-sparse

PBD or a binomial distribution and dTV(H ′
j ,Hj) ≤ ε/k for all j ∈ [k]. Then we

compute Pr[H ′
j = Tj ] for any value Tj ∈ [0, . . . , n] and j ∈ [k]. This computation

can be done efficiently since H ′
j is either a k/ε-sparse PBD or a binomial distri-

bution. By Lemma 11, we have dTV(H ′,H) ≤ ε where H ′ =
∑

j ajHj . Finally
we compute Pr[H ′ ≥ T ] =

∑
(Tj)j :

∑
j ajTj≥T

∏
j Pr[H ′

j = Tj ] by enumerating all
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possible T1, . . . , Tk. Since the distance between H and H ′ is at most ε, we have
Pr[H ≥ T ] ≥ Pr[H ′ ≥ T ] − ε. Combine all these together, we get the additive
PTAS with running time (nk

ε )O(k log2 1/ε). ��

5 Conclusion

We see several promising directions for future work. For independent buyers, a
direct open problem is to generalize our characterization to three or more buyers.
That may be achievable via an induction on the number of buyers, character-
izing the optimal auction for three buyers by using the case with two buyers
as a substructure. Another direction is to approximate the optimal auction via
designing simple auctions. We find several examples to show the lower bounds
(see full version for more details) but the upper bound is still open. Finally, we
point out an interesting problem of computing optimal monopoly prices without
the limitation on distinct prices.
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