

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. 195–259

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM∗

CONSTANTINOS DASKALAKIS† , PAUL W. GOLDBERG‡ , AND

CHRISTOS H. PAPADIMITRIOU†

Abstract. In 1951, John F. Nash proved that every game has a Nash equilibrium [Ann. of
Math. (2), 54 (1951), pp. 286–295]. His proof is nonconstructive, relying on Brouwer’s fixed point
theorem, thus leaving open the questions, Is there a polynomial-time algorithm for computing Nash
equilibria? And is this reliance on Brouwer inherent? Many algorithms have since been proposed
for finding Nash equilibria, but none known to run in polynomial time. In 1991 the complexity class
PPAD (polynomial parity arguments on directed graphs), for which Brouwer’s problem is complete,
was introduced [C. Papadimitriou, J. Comput. System Sci., 48 (1994), pp. 489–532], motivated
largely by the classification problem for Nash equilibria; but whether the Nash problem is complete
for this class remained open. In this paper we resolve these questions: We show that finding a
Nash equilibrium in three-player games is indeed PPAD-complete; and we do so by a reduction from
Brouwer’s problem, thus establishing that the two problems are computationally equivalent. Our
reduction simulates a (stylized) Brouwer function by a graphical game [M. Kearns, M. Littman,
and S. Singh, Graphical model for game theory, in 17th Conference in Uncertainty in Artificial
Intelligence (UAI), 2001], relying on “gadgets,” graphical games performing various arithmetic and
logical operations. We then show how to simulate this graphical game by a three-player game, where
each of the three players is essentially a color class in a coloring of the underlying graph. Subsequent
work [X. Chen and X. Deng, Setting the complexity of 2-player Nash-equilibrium, in 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2006] established, by improving our
construction, that even two-player games are PPAD-complete; here we show that this result follows
easily from our proof.

Key words. complexity, Nash equilibrium, PPAD-completeness, game theory

AMS subject classifications. 91A05, 91A06, 91A10, 91B50, 68Q17, 68W30

DOI. 10.1137/070699652

1. Introduction. Game theory is one of the most important and most vibrant
mathematical fields established during the 20th century. In 1928, John von Neu-
mann, extending work by Borel, showed that any two-person zero-sum game has an
equilibrium—in fact, a min-max pair of randomized strategies [44]. Two decades later
it was understood that this is tantamount to linear programming duality [14] and thus
(as was established another three decades hence [34]) computationally tractable. How-
ever, it became clear with the publication of the seminal book [45] by von Neumann
and Morgenstern that this two-player, zero-sum case is too specialized; for the more
general and important nonzero-sum and multiplayer games no existence theorem was
known.

In 1951, Nash showed that every game has an equilibrium in mixed strategies,
hence called Nash equilibrium [43]. His argument for proving this powerful and mo-
mentous result relies on another famous and consequential result of the early 20th

∗Received by the editors December 13, 2006; accepted for publication (in revised form) June 4,
2008; published electronically May 28, 2009.

http://www.siam.org/journals/sicomp/39-1/69965.html
†Computer Science Division, University of California at Berkeley, Berkeley, CA 94720 (costis@cs.

berkeley.edu, christos@cs.berkeley.edu). The research of these authors was supported by NSF ITR
grants CCR-0121555 and CCF-0515259 and a grant from Microsoft Research.

‡Department of Computer Science, University of Liverpool, Liverpool L69 38X, United King-
dom (P.W.Goldberg@liverpool.ac.uk). This author’s research was supported by the EPSRC grant
GR/T07343/01 “Algorithmics of Network-Sharing Games.” This work was begun while the author
was visiting UC Berkeley.

195

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

196 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

century, Brouwer’s fixed point theorem [35]. The original proof of that result is noto-
riously nonconstructive (Brouwer’s preoccupation with constructive mathematics and
intuitionism notwithstanding); its modern combinatorial proof (based on Sperner’s
lemma; see, e.g., [48]) does suggest an algorithm for the problem of finding an ap-
proximate Brouwer fixed point (and therefore for finding a Nash equilibrium)—albeit
one of exponential complexity. In fact, it can be shown that any “natural” algorithm
for Brouwer’s problem (roughly, treating the Brouwer function as a black box, a prop-
erty shared by all known algorithms for the problem) must be exponential [31]. Over
the past half century there has been a great variety of other algorithmic approaches
to the problem of finding a Nash equilibrium (see section 2.2); unfortunately, none of
these algorithms is known to run in polynomial time. Whether a Nash equilibrium
in a given game can be found in polynomial time had remained an important open
question.

Such an efficient algorithm would have many practical applications; however, the
true importance of this question is conceptual. The Nash equilibrium is a proposed
model and a prediction of social behavior, and Nash’s theorem greatly enhances its
plausibility. This credibility, however, is seriously undermined by the absence of an
efficient algorithm. It is doubtful that groups of rational players are more powerful
than computers—and it would be remarkable, and potentially very useful, if they
were. To put it bluntly, “if your laptop can’t find it, then, probably, neither can the
market.” Hence, whether an efficient algorithm for finding Nash equilibria exists is
an important question in game theory, the field for which the Nash equilibrium is
perhaps the most central concept.

Besides game theory, the 20th century saw the development of another great
mathematical field, which also captured the century’s zeitgeist and has had tremen-
dous growth and impact: computational complexity. However, the mainstream con-
cepts and techniques developed by complexity theorists for classifying computational
problems according to their difficulty—chief among them NP-completeness—are not
directly applicable for fathoming the complexity of the problem of finding Nash equi-
libria, exactly because of Nash’s theorem: Since a Nash equilibrium is always guar-
anteed to exist, NP-completeness does not seem useful in exploring the complexity of
finding one. NP-complete problems seem to draw much of their difficulty from the
possibility that a solution may not exist. What would a reduction from satisfiabil-

ity to Nash (the problem of finding a Nash equilibrium) look like? Any attempt to
define such a reduction quickly leads to NP = coNP.

Motivated mainly by this open question regarding Nash equilibria, Megiddo and
Papadimitriou [42] defined in the 1980s the complexity class TFNP (for “NP total
functions”), consisting exactly of all search problems in NP for which every instance
is guaranteed to have a solution. Nash of course belongs there, and so do many other
important and natural problems, finitary versions of Brouwer’s problem are included.
But here there is a difficulty of a different sort: TFNP is a “semantic class” [47],
meaning that there is no easy way of recognizing nondeterministic Turing machines
which define problems in TFNP—in fact the problem is undecidable; such classes are
known to be devoid of complete problems.

To capture the complexity of Nash, and other important problems in TFNP,
another step is needed: One has to group together into subclasses of TFNP total
functions whose proofs of totality are similar. Most of these proofs work by essentially
constructing an exponentially large graph on the solution space (with edges that are
computed by some algorithm), and then applying a simple graph-theoretic lemma

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 197

establishing the existence of a particular kind of node. The node whose existence is
guaranteed by the lemma is the sought solution of the given instance. Interestingly,
essentially all known problems in TFNP can be shown in total by one of the following
arguments.

• In any dag there must be a sink. The corresponding complexity class, PLS for
“polynomial local search,” had already been defined in [32] and contains many
important complete problems, including certain game-theoretic problems [26].

• In any directed graph with outdegree 1, and with one node with indegree 0,
there must be a node with indegree at least 2. The corresponding class is PPP
(for “polynomial pigeonhole principle”).

• In any undirected graph with one odd-degree node, there must be another
odd-degree node. This defines a class called PPA, for “polynomial parity
argument” [48], containing many important combinatorial problems (unfor-
tunately none of them are known to be complete).

• In any directed graph with one unbalanced node (node with outdegree different
from its indegree), there must be another unbalanced node. The corresponding
class is called PPAD for “polynomial parity argument for directed graphs,”
and it contains Nash, Brouwer, and Borsuk–Ulam (finding approximate
fixed points of the kind guaranteed by Brouwer’s theorem and the Borsuk–
Ulam theorem, respectively; see [48]). The latter two were among the prob-
lems proven PPAD-complete in [48]. Unfortunately, Nash—the one problem
which had motivated this line of research—was not shown PPAD-complete;
it was conjectured that it is.

In this paper we show that Nash is PPAD-complete, thus answering the open
questions discussed above. We show that this holds even for games with three players.
In another result (which is a crucial component of our proof) we show that the same is
true for graphical games. Thus, a polynomial-time algorithm for these problems would
imply a polynomial algorithm for, e.g., computing Brouwer fixed points, despite the
exponential lower bounds for large classes of algorithms [31], and the relativizations
in [2]—oracles for which PPAD has no polynomial-time algorithm.

Our proof gives an affirmative answer to another important question arising
from Nash’s theorem, namely, whether the reliance of its proof on Brouwer’s fixed
point theorem is inherent. Our proof is essentially a reduction in the opposite direc-
tion to Nash’s: An appropriately discretized and stylized PPAD-complete version of
Brouwer’s fixed point problem in three dimensions is reduced to Nash.

The structure of the reduction is the following: We represent a point in the three-
dimensional unit cube by three players, each of which has two strategies. Thus, every
combination of mixed strategies for these players corresponds naturally to a point in
the cube. Now, suppose that we are given a function from the cube to itself represented
as a circuit. We construct a graphical game in which the best responses of the three
players representing a point in the cube implement the given function, so that the
Nash equilibria of the game must correspond to Brouwer fixed points. This is done
by decoding the coordinates of the point in order to find their binary representation
(inputs to the circuit), and then simulating the circuit that represents the Brouwer
function by a graphical game—an important alternative form of games defined in
[33]; see section 2.1. This part of the construction relies on certain “gadgets,” small
graphical games acting as arithmetical gates and comparators. The graphical game
thus “computes” (in the sense of a mixed strategy over two strategies representing a
real number) the value of the circuit at the point represented by the mixed strategies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

198 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

of the original three players, and then induces the three players to add appropriate
increments to their mixed strategy. This establishes a one-to-one correspondence
between Brouwer fixed points of the given function and Nash equilibria of the graphical
game and shows that Nash for graphical games is PPAD-complete.

One difficulty in this part of the reduction is related to brittle comparators. Our
comparator gadget sets its output to 0 if the input players play mixed strategies x, y
that satisfy x < y, to 1 if x > y, and to anything if x = y; moreover, it is not hard to
see that no “robust” comparator gadget is possible, one that outputs a specific fixed
value if the input is x = y. This in turn implies that no robust decoder from real
to binary can be constructed; decoding will always be flaky for a nonempty subset
of the unit cube and, at that set, arbitrary values can be output by the decoder.
On the other hand, real to binary decoding would be very handy since the circuit
representing the given Brouwer function should be simulated in binary arithmetic.
We take care of this difficulty by computing the Brouwer function on a “microlattice”
around the point of interest and averaging the results, thus smoothing out any effects
from boundaries of measure zero.

To continue to our main result for three-player normal form games, we establish
certain reductions between equilibrium problems. In particular, we show by reductions
that the following three problems are equivalent:

• Nash for r-player (normal form) games, for any r > 3.
• Nash for three-player games.
• Nash for graphical games with two strategies per player and maximum degree

3 (that is, of the exact type used in the simulation of Brouwer functions).
Thus, all these problems and their generalizations are PPAD-complete (since the

third one was already shown to be PPAD-complete).
Our results leave open the question of Nash for two-player games. This case

had been thought to be a little easier, since linear-programming-like techniques come
into play and solutions consisting of rational numbers are guaranteed to exist [38]; on
the contrary, as exhibited in Nash’s original paper, there are three-player games with
only irrational equilibria. In the precursors of the current paper [30, 16, 19], it was
conjectured that there is a polynomial algorithm for two-player Nash. Surprisingly,
a few months after our proof was circulated, Chen and Deng [8] came up with a proof
establishing that this problem is PPAD-complete as well. In the last section of the
present paper we show how this result can be obtained by a simple modification of
our proof.

The structure of the paper is as follows. In section 2, we provide some background
on game theory and survey previous work regarding the computation of equilibria. In
section 3, we review the complexity theory of total functions, we define the class PPAD
which is central in our paper, and we describe a canonical version of the Brouwer fixed
point computation problem which is PPAD-complete and will be the starting point for
our main result. In section 4, we present the game-gadget machinery needed for our
proof of the main result and establish the computational equivalence of different Nash
equilibrium computation problems; in particular, we describe a polynomial reduction
from the problem of computing a Nash equilibrium in a normal form game of any
constant number of players or a graphical game of any constant degree to that of
computing a Nash equilibrium of a three-player normal form game. Finally, in section
5 we present our main result which states that computing a Nash equilibrium of a
three-player normal form game is PPAD-hard. Section 6 contains some discussion of
the result and future research directions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 199

2. Background.

2.1. Basic definitions from game theory. A game in normal form has r ≥ 2
players, 1, . . . , r, and for each player p ≤ r a finite set Sp of pure strategies. The set
S of pure strategy profiles is the Cartesian product of the Sp’s. We denote the set of
pure strategy profiles of all players other than p by S−p. Also, for a subset T of the
players we denote by ST the set of pure strategy profiles of the players in T . Finally,
for each p and s ∈ S we have a payoff or utility up

s ≥ 0—also occasionally denoted up
js

for j ∈ Sp and s ∈ S−p. We refer to the set {up
s}s∈S as the payoff table of player p.

Also, for notational convenience and unless otherwise specified, we will denote by [t]
the set {1, . . . , t} for all t ∈ N.

A mixed strategy for player p is a distribution on Sp, that is, real numbers xp
j ≥ 0

for each strategy j ∈ Sp such that
∑

j∈Sp
xp

j = 1. A set of r mixed strategies
{xp

j}j∈Sp , p ∈ [r], is called a (mixed) Nash equilibrium if, for each p,
∑

s∈S up
sxs is max-

imized over all mixed strategies of p—where for a strategy profile s = (s1, . . . , sr) ∈ S,
we denote by xs the product x1

s1
· x2

s2
· · ·xr

sr
. That is, a Nash equilibrium is a set of

mixed strategies from which no player has a unilateral incentive to deviate. It is well
known (see, e.g., [46]) that the following is an equivalent condition for a set of mixed
strategies to be a Nash equilibrium:

∀p ∈ [r], j, j′ ∈ Sp :
∑

s∈S−p

up
jsxs >

∑
s∈S−p

up
j′sxs =⇒ xp

j′ = 0.(1)

The summation
∑

s∈S−p
up

jsxs in the above equation is the expected utility of player
p if p plays pure strategy j ∈ Sp and the other players use the mixed strategies
{xq

j}j∈Sq , q �= p. Nash’s theorem [43] asserts that every normal form game has a
Nash equilibrium.

We next turn to approximate notions of equilibrium. We say that a set of mixed
strategies x is an ε-approximately well-supported Nash equilibrium, or ε-Nash equilib-
rium for short, if the following holds:

∀p ∈ [r], j, j′ ∈ Sp :
∑

s∈S−p

up
jsxs >

∑
s∈S−p

up
j′sxs + ε =⇒ xp

j′ = 0.(2)

Condition (2) relaxes (1) in that it allows a strategy to have positive probability in
the presence of another strategy whose expected payoff is better by at most ε.

This is the notion of approximate Nash equilibrium that we use in this paper.
There is an alternative, and arguably more natural, notion, called ε-approximate Nash
equilibrium [40], in which the expected utility of each player is required to be within ε
of the optimum response to the other players’ strategies. This notion is less restrictive
than that of an approximately well-supported one. More precisely, for any ε, an ε-Nash
equilibrium is also an ε-approximate Nash equilibrium, whereas the opposite need not
be true. Nevertheless, the following lemma, proved in section 4.7, establishes that the
two concepts are computationally related (a weaker version of this fact was pointed
out in [9]).

Lemma 2.1. Given an ε-approximate Nash equilibrium {xp
j}j,p of a game G we

can compute in polynomial time a
√

ε · (
√

ε + 1 + 4(r − 1)umax)-approximately well-
supported Nash equilibrium {x̂p

j}j,p, where r is the number of players and umax is the
maximum entry in the payoff tables of G.

In what follows we shall focus on the notion of approximately well-supported
Nash equilibrium, but all our results will also hold for the notion of approximate

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

200 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Nash equilibrium. Notice that Nash’s theorem ensures the existence of an ε-Nash
equilibrium—and hence of an ε-approximate Nash equilibrium—for every ε ≥ 0; in
particular, for every ε there exists an ε-Nash equilibrium whose probabilities are inte-
ger multiples of ε/(2r × umaxsum), where umaxsum is the maximum, over all players p,
of the sum of all entries in the payoff table of p. This can be established by rounding a
Nash equilibrium {xp

j}j,p to a nearby (in total variation distance) set of mixed strate-
gies {x̂p

j}j,p, all the entries of which are integer multiples of ε/(2r × umaxsum). Note,
however, that an ε-Nash equilibrium may not be close to an exact Nash equilibrium;
see [25] for much more on this important distinction.

A game in normal form requires r|S| numbers for its description, an amount of
information that is exponential in the number of players. A graphical game [33, 41] is
defined in terms of an undirected graph G = (V, E) together with a set of strategies
Sv for each v ∈ V . We denote by N (v) the set consisting of v and v’s neighbors
in G, and by SN (v) the set of all |N (v)|-tuples of strategies, one from each vertex
in N (v). In a graphical game, the utility of a vertex v ∈ V depends only on the
strategies of the vertices in N (v) so it can be represented by just |SN (v)| numbers.
In other words, a graphical game is a succinct representation of a multiplayer game,
advantageous when it so happens that the utility of each player depends only on a few
other players. A generalization of graphical games are the directed graphical games,
where G is directed and N (v) consists of v and the predecessors of v. The two notions
are almost identical; of course, the directed graphical games are more general than
the undirected ones, but any directed graphical game can be represented, albeit less
concisely, as an undirected game whose graph is the same except with no direction on
the edges. In the remainder of the paper, we will not be very careful in distinguishing
the two notions; our results will apply to both. The following is a useful definition.

Definition 2.2. Suppose that GG is a graphical game with underlying graph
G = (V, E). The affects graph G′ = (V, E′) of GG is a directed graph with edge
(v1, v2) ∈ E′ if the payoff to v2 depends on the action of v1, that is, the payoff to v2

is a nonconstant function of the action of v1.
In the above definition, an edge (v1, v2) in G′ represents the relationship “v1

affects v2.” Notice that if (v1, v2) ∈ E′, then {v1, v2} ∈ E, but the opposite need not
be true—it could very well be that some vertex v2 is affected by another vertex v1,
but vertex v1 is not affected by v2.

Since graphical games are representations of multiplayer games, it follows by
Nash’s theorem that every graphical game has a mixed Nash equilibrium. It can be
checked that a set of mixed strategies {xv

j }j∈Sv , v ∈ V , is a mixed Nash equilibrium
if and only if

∀v ∈ V, j, j′ ∈ Sv :
∑

s∈SN(v)\{v}

uv
jsxs >

∑
s∈SN(v)\{v}

uv
j′sxs =⇒ xv

j′ = 0.

Similarly the condition for an approximately well-supported Nash equilibrium can be
derived.

2.2. Related work on computing equilibria. Many papers in the economic,
optimization, and computer science literature over the past 50 years studied the com-
putation of Nash equilibria. A celebrated algorithm for computing equilibria in two-
player games, which appears to be efficient in practice, is the Lemke–Howson algo-
rithm [38]. The algorithm can be generalized to multiplayer games, see, e.g., the work
of Rosenmüller [51] and Wilson [57], albeit with some loss of efficiency. It was re-
cently shown to be exponential in the worst case [53]. Other algorithms are based on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 201

computing approximate fixed points, most notably algorithms that walk on simplicial
subdivisions of the space where the equilibria lie [54, 27, 36, 37, 23]. None of these
algorithms is known to be polynomial time.

Lipton and Markakis [39] study the algebraic properties of Nash equilibria and
point out that standard quantifier elimination algorithms can be used to solve them,
but these are not polynomial time in general. Papadimitriou and Roughgarden [50]
show that, in the case of symmetric games, quantifier elimination results in polynomial
algorithms for a broad range of parameters. Lipton, Markakis, and Mehta [40] show
that if we require only an ε-approximate Nash equilibrium, then a subexponential
algorithm is possible. If the Nash equilibria sought are required to have any special
properties, for example optimize total utility, the problem typically becomes NP-
complete [29, 13]. In addition to our work, as communicated in [30, 16, 19], other
researchers (see, e.g., [5, 1, 11, 55]) have explored reductions between alternative types
of games.

In particular, the reductions by Bubelis [5] in the 1970s comprise a remarkable
early precursor of our work; it is astonishing that these important results had not been
pursued for three decades. Bubelis established that the Nash equilibrium problem for
three players captures the computational complexity of the same problem with any
number of players. In section 4 we show the same result in an indirect way, via the
Nash equilibrium problem for graphical games—a connection that is crucial for our
PPAD-completeness reduction. Bubelis also demonstrated in [5] that any algebraic
number can be the basis of a Nash equilibrium, something that follows easily from
our results (Theorem 6.7).

Etessami and Yannakakis studied in [25] the problem of computing a Nash equilib-
rium exactly (a problem that is well motivated in the context of stochastic games) and
came up with an interesting characterization of its complexity (considerably higher
than PPAD), along with that of several other problems. In section 6.5, we mention
certain interesting results at the interface of [25]’s approach with ours.

3. The class PPAD.

3.1. Total search problems. A search problem S is a set of inputs IS ⊆ Σ∗

on some alphabet Σ such that for each x ∈ IS there is an associated set of solutions
Sx ⊆ Σ|x|k for some integer k, such that for each x ∈ IS and y ∈ Σ|x|k whether
y ∈ Sx is decidable in polynomial time. Notice that this is precisely NP with an
added emphasis on finding a witness.

For example, let us define r-Nash to be the search problem S in which each
x ∈ IS is an r-player game in normal form together with a binary integer A (the
accuracy specification), and Sx is the set of 1

A -Nash equilibria of the game (where
the probabilities are rational numbers of bounded size as discussed). Similarly, d-
graphical Nash is the search problem with inputs the set of all graphical games
with degree at most d, plus an accuracy specification A, and solutions the set of all
1
A -Nash equilibria. (For r > 2 it is important to specify the problem in terms of a
search for approximate Nash equilibrium—exact solutions may need to be high-degree
algebraic numbers, raising the question of how to represent them as bit strings.)

A search problem is total if Sx �= ∅ for all x ∈ IS . For example, Nash’s 1951 the-
orem [43] implies that r-Nash is total. Obviously, the same is true for d-graphical

Nash. The set of all total search problems is denoted TFNP. A polynomial-time
reduction from total search problem S to total search problem T is a pair f, g of
polynomial-time computable functions such that, for every input x of S, f(x) is an

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

202 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

input of T , and furthermore for every y ∈ Tf(x), g(y) ∈ Sx.
TFNP is what in complexity is sometimes called a “semantic” class [47]; i.e.,

it has no generic complete problem. Therefore, the complexity of total functions is
typically explored via “syntactic” subclasses of TFNP, such as PLS [32], PPP, PPA,
and PPAD [48]. In this paper we focus on PPAD.

PPAD can be defined in many ways. As mentioned in the introduction, it is,
informally, the set of all total functions whose totality is established by invoking
the following simple lemma on a graph whose vertex set is the solution space of the
instance:

In any directed graph with one unbalanced node (node with outdegree
different from its indegree), there is another unbalanced node.

This general principle can be specialized, without loss of generality or computa-
tional power, to the case in which every node has both indegree and outdegree at
most 1. In this case the lemma becomes the following:

In any directed graph in which all vertices have indegree and outdegree
at most 1, if there is a source (a node with indegree 0), then there
must be a sink (a node with outdegree 0).

Formally, we shall define PPAD as the class of all total search problems polynomial-
time reducible to the following problem:

end of the line: Given two circuits S and P , each with n input
bits and n output bits, such that P (0n) = 0n �= S(0n), find an input
x ∈ {0, 1}n such that P (S(x)) �= x or S(P (x)) �= x �= 0n.

Intuitively, end of the line creates a directed graph GS,P with vertex set {0, 1}n

and an edge from x to y whenever both y = S(x) and x = P (y); S and P stand for
“successor candidate” and “predecessor candidate.” All vertices in GS,P have indegree
and outdegree at most 1, and there is at least one source, namely 0n, so there must be
a sink. We seek either a sink, or a source other than 0n. Notice that in this problem
a sink or a source other than 0n is sought; if we insist on a sink, another complexity
class called PPADS, apparently larger than PPAD, results.

The other important classes PLS, PPP, and PPA, and others, are defined in a
similar fashion based on other elementary properties of finite graphs. These classes
are of no relevance to our analysis so their definition will be skipped; the interested
reader is referred to [48].

A search problem S in PPAD is called PPAD-complete if all problems in PPAD
reduce to it. Obviously, end of the line is PPAD-complete; furthermore, it was
shown in [48] that several problems related to topological fixed points and their combi-
natorial underpinnings are PPAD-complete: Brouwer, Sperner, Borsuk–Ulam,
Tucker. Our main result in this paper (Theorem 5.1) states that so are the problems
3-Nash and 3-graphical Nash.

3.2. Computing a Nash equilibrium is in PPAD. We establish that com-
puting an approximate Nash equilibrium in an r-player game is in PPAD. The r = 2
case was shown in [48].

Theorem 3.1. r-Nash is in PPAD for r ≥ 2.
Proof. We reduce r-Nash to end of the line. Note that Nash’s original proof

[43] utilizes Brouwer’s fixed point theorem—it is essentially a reduction from the
problem of finding a Nash equilibrium to that of finding a Brouwer fixed point of
a continuous function; the latter problem can be reduced, under certain continuity
conditions, to end of the line, and is therefore in PPAD. The (rather elaborate)
proof below makes this simple intuition precise.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 203

Let G be a normal form game with r players, 1, . . . , r, and strategy sets Sp = [n]
for all p ∈ [r], and let {up

s : p ∈ [r], s ∈ S} be the utilities of the players. Also let
ε < 1. In time polynomial in |G| + log(1/ε), we will specify two circuits S and P
each with N = poly(|G|, log(1/ε)) input and output bits and P (0N) = 0N �= S(0N),
so that, given any solution to end of the line on input S, P , one can construct
in polynomial time an ε-approximate Nash equilibrium of G. This is enough for
reducing r-Nash to end of the line by virtue of Lemma 2.1. Our construction
of S, P builds heavily upon the simplicial approximation algorithm of van der Laan
and Talman [37] for computing fixed points of continuous functions from the product
space of unit simplices to itself.

Let Δn = {x ∈ R
n
+|
∑n

k=1 xk = 1} be the (n− 1)-dimensional unit simplex. Then
the space of mixed strategy profiles of the game is Δr

n := ×r
p=1Δn. For notational

convenience we embed Δr
n in R

n·r and we represent elements of Δr
n as vectors in

R
n·r. That is, if (x1, x2, . . . , xr) ∈ Δr

n is a mixed strategy profile of the game, we
identify this strategy profile with a vector x = (x1; x2; . . . ; xr) ∈ R

n·r resulting from
the concatenation of the mixed strategies. For p ∈ [r] and j ∈ [n] we denote by x(p, j)
the ((p − 1)n + j)th coordinate of x, that is, x(p, j) := x(p−1)n+j .

We are about to describe our reduction from finding an ε-approximate Nash equi-
librium to end of the line. The nodes of the end of the line graph will correspond
to the simplices of a triangulation of Δr

n which we describe next.

Triangulation of the product space of unit simplices. For some d to be
specified later, we describe the triangulation of Δr

n induced by the regular grid of size
d. For this purpose, let us denote by Δn(d) the set of points of Δn induced by the
grid of size d, i.e.,

Δn(d) =

⎧⎨⎩x ∈ R
n
+ x =

(y1

d
,
y2

d
, . . . ,

yn

d

)
, yj ∈ N0 and

∑
j

yj = d

⎫⎬⎭ ,

and similarly define Δr
n(d) = ×r

p=1Δn(d). Moreover, let us define the block-diagonal
matrix Q by

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Q1 0 . . . 0 0
0 Q2 0 0
0
...

. . .
...

Qr−1 0
0 0 . . . 0 Qr

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where, for all p ∈ [r], Qp is the n × n matrix defined by

Qp =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 . . . 0 1
1 −1 0 0
0 1
...

. . .
...

−1 0
0 0 . . . 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us denote by q(p, j) the ((p − 1)n + j)th column of Q. It is clear that adding
q(p, j)T/d to a mixed strategy profile corresponds to shifting probability mass of 1/d
from strategy j of player p to strategy (j mod n) + 1 of player p.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

204 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

For all p ∈ [r] and k ∈ [n], let us define a set of indices Ip,k as Ip,k := {(p, j)}j≤k.
Also, let us define a collection T of sets of indices as follows:

T :=

⎧⎨⎩T ⊆
⋃

p∈[r]

Ip,n ∀p ∈ [r], ∃k ∈ [n − 1] : T ∩ Ip,n = Ip,k

⎫⎬⎭ .

Suppose, now, that q0 is a mixed strategy profile in which every player plays strategy
1 with probability 1, that is, q0(p, 1) = 1, for all p ∈ [r], and for T ∈ T define the set

A(T) :=

⎧⎨⎩x ∈ Δr
n x = q0 +

∑
(p,j)∈T

a(p, j)q(p, j)T/d

for nonnegative real numbers a(p, j) ≥ 0

⎫⎬⎭ .

Defining T ∗ := ∪p∈[r]Ip,n−1, it is not hard to verify that

A (T ∗) = Δr
n.

Moreover, if, for T ∈ T , we define B(T) := A(T) \ ∪T ′∈T ,T ′⊂T A(T ′), the collection
{B(T)}T∈T partitions the set Δr

n.
To define the triangulation of Δr

n let us fix some set T ∈ T , some permutation
π : [|T |] → T of the elements of T , and some x0 ∈ A(T) ∩ Δr

n(d). Let us then denote
by σ(x0, π) the |T |-simplex which is the convex hull of the points x0, . . . , x|T | defined
as follows:

xt = xt−1 + q(π(t))T/d ∀ t = 1, . . . , |T |.

The following lemmas, whose proof can be found in [37], describe the triangulation
of Δr

n. We define A(T, d) := A(T)∩Δr
n(d), we denote by PT the set of all permutations

π : [|T |] → T , and we set

ΣT := {σ(x0, π) x0 ∈ A(T, d), π ∈ PT , σ(x0, π) ⊆ A(T)} .

Lemma 3.2 (see [37]). For all T ∈ T , the collection of |T |-simplices ΣT triangu-
lates A(T).

Corollary 3.3 (see [37]). Δr
n is triangulated by the collection of simplices ΣT∗ .

The vertices of the END OF THE LINE graph. The vertices of the graph in
our construction will correspond to the elements of the set

Σ :=
⋃

T∈T
ΣT .

Let us encode the elements of Σ with strings {0, 1}N ; choosing N polynomial in |G|,
the description size of G, and log d is sufficient.

We proceed to define the edges of the end of the line graph in terms of a
labeling of the points of the set Δr

n(d), which we describe next.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 205

Labeling rule. Recall the function f : Δr
n → Δr

n defined by Nash to establish
the existence of an equilibrium [43]. To describe f , let Up

j (x) :=
∑

s∈S−p
up

jsxs be the
expected utility of player p if p plays pure strategy j ∈ [n] and the other players use
the mixed strategies {xq

j}j∈[n], q �= p; also let Up(x) :=
∑

s∈S up
sxs be the expected

utility of player p if every player q ∈ [r] uses mixed strategy {xq
j}j∈[n]. Then, the

function f is described as follows:

f(x1, x2, . . . , xr) = (y1, y2, . . . , yr),

where, for each p ∈ [r], j ∈ [n],

yp
j =

xp
j + max (0, Up

j (x) − Up(x))
1 +

∑
k∈[n] max (0, Up

k (x) − Up(x))
.

It is not hard to see that f is continuous and that f(x) can be computed in time
polynomial in the binary encoding size of x and G. Moreover, it can be verified that
any point x ∈ Δr

n such that f(x) = x is a Nash equilibrium [43]. The following
lemma establishes that f is λ-Lipschitz for λ := [1 + 2Umaxrn(n + 1)], where Umax is
the maximum entry in the payoff tables of the game.

Lemma 3.4. For all x, x′ ∈ Δr
n ⊆ R

n·r such that ||x − x′||∞ ≤ δ,

||f(x) − f(x′)||∞ ≤ [1 + 2Umaxrn(n + 1)]δ.

Proof. We use the following bound shown in section 4.6, Lemma 4.26.
Lemma 3.5. For any game G, for all p ≤ r, j ∈ Sp,∣∣∣∣∣∣

∑
s∈S−p

up
jsxs −

∑
s∈S−p

up
jsx

′
s

∣∣∣∣∣∣ ≤ max
s∈S−p

{up
js}

∑
q 	=p

∑
i∈Sq

|xq
i − x′q

i |.

It follows that for all p ∈ [r], j ∈ [n],

|Up
j (x) − Up

j (x′)| ≤ Umaxrnδ,

|Up(x) − Up(x′)| ≤ Umaxrnδ.

Denoting Bp
j (x) := max (0, Up

j (x) − Up(x)), for all p ∈ [r], j ∈ [n], the above bounds
imply that

|Bp
j (x) − Bp

j (x′)| ≤ 2Umaxrnδ,∣∣∣∣∣∣
∑

k∈[n]

Bp
k(x) −

∑
k∈[n]

Bp
k(x′)

∣∣∣∣∣∣ ≤ 2Umaxrnδ · n.

Combining the above bounds we get that, for all p ∈ [r], j ∈ [n],

|yp
j (x) − yp

j (x′)| ≤ |xp
j − x′p

j | + |Bp
j (x) − Bp

j (x′)| +

∣∣∣∣∣∣
∑

k∈[n]

Bp
k(x) −

∑
k∈[n]

Bp
k(x′)

∣∣∣∣∣∣
≤ δ + 2Umaxrnδ + 2Umaxrnδ · n
≤ [1 + 2Umaxrn(n + 1)]δ,

where we made use of the following lemma.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

206 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Lemma 3.6. For any x, x′, y, y′, z, z′ ≥ 0 such that x+y
1+z ≤ 1,∣∣∣∣x + y

1 + z
− x′ + y′

1 + z′

∣∣∣∣ ≤ |x − x′| + |y − y′| + |z − z′|.

Proof.∣∣∣∣x + y

1 + z
− x′ + y′

1 + z′

∣∣∣∣ =
∣∣∣∣ (x + y)(1 + z′) − (x′ + y′)(1 + z)

(1 + z)(1 + z′)

∣∣∣∣
=
∣∣∣∣ (x + y)(1 + z′) − (x + y)(1 + z) − ((x′ − x) + (y′ − y))(1 + z)

(1 + z)(1 + z′)

∣∣∣∣
≤
∣∣∣∣ (x + y)(1 + z′) − (x + y)(1 + z)

(1 + z)(1 + z′)

∣∣∣∣+ ∣∣∣∣((x′ − x) + (y′ − y))(1 + z)
(1 + z)(1 + z′)

∣∣∣∣
≤
∣∣∣∣ (x + y)(z′ − z)
(1 + z)(1 + z′)

∣∣∣∣+ |x′ − x| + |y′ − y|

≤ x + y

1 + z
|z′ − z| + |x′ − x| + |y′ − y|

≤ |z′ − z| + |x′ − x| + |y′ − y|.

This completes the proof of Lemma 3.4.
We describe a labeling of the points of the set Δr

n(d) in terms of the function f .
The labels that we are going to use are the elements of the set L := ∪p∈[r]Ip,n. In
particular, we have the following:

We assign to a point x ∈ Δr
n the label (p, j) if and only if (p, j) is

the lexicographically least index such that xp
j > 0 and f(x)p

j − xp
j ≤

f(x)q
k − xq

k for all q ∈ [r], k ∈ [n].
This labeling rule satisfies the following properties.

• Completeness: Every point x is assigned a label; hence, we can define a
labeling function � : Δr

n → L.
• Properness: xp

j = 0 implies �(x) �= (p, j).
• Efficiency: �(x) is computable in time polynomial in the binary encoding size

of x and G.
A simplex σ ∈ Σ is called completely labeled if all its vertices have different labels;

a simplex σ ∈ Σ is called p-stopping if it is completely labeled and, moreover, for all
j ∈ [n], there exists a vertex of σ with label (p, j). Our labeling satisfies the following
important property.

Theorem 3.7 (see [37]). Suppose that a simplex σ ∈ Σ is p-stopping for some
p ∈ [r]. Then all points x ∈ σ ⊆ R

n·r satisfy

||f(x) − x||∞ ≤ 1
d
(λ + 1)n(n − 1).

Proof. It is not hard to verify that, for any simplex σ ∈ Σ and for all pairs of
points x, x′ ∈ σ,

||x − x′||∞ ≤ 1
d
.

Suppose now that a simplex σ ∈ Σ is p-stopping for some p ∈ [r] and that, for all
j ∈ [n], z(j) is the vertex of σ with label (p, j). Since, for any x,

∑
i∈[n] x

p
i = 1 =∑

i∈[n] f(x)p
i , it follows from the labeling rule that

f(z(j))p
j − z(j)p

j ≤ 0 ∀j ∈ [n].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 207

Hence, for all x ∈ σ, j ∈ [n],

f(x)p
j − xp

j ≤ f(z(j))p
j − z(j)p

j + (λ + 1)
1
d
≤ (λ + 1)

1
d
,

where we used the fact that the diameter of σ is 1
d (in the infinity norm) and the

function f is λ-Lipschitz. Hence, in the opposite direction, for all x ∈ σ, j ∈ [n], we
have

f(x)p
j − xp

j = −
∑

i∈[n]\{j}
(f(x)p

i − xp
i) ≥ −(n − 1)(λ + 1)

1
d
.

Now, by the definition of the labeling rule, we have, for all x ∈ σ, q ∈ [r], j ∈ [n],

f(x)q
j − xq

j ≥ f(z(1))q
j − z(1)q

j − (λ + 1)
1
d

≥ f(z(1))p
1 − z(1)p

1 − (λ + 1)
1
d

≥ −(n − 1)(λ + 1)
1
d
− (λ + 1)

1
d

= −n(λ + 1)
1
d
,

whereas

f(x)q
j − xq

j = −
∑

i∈[n]\{j}
(f(x)q

i − xq
i)

≤ (n − 1)n(λ + 1)
1
d
.

Combining the above, it follows that, for all x ∈ σ,

||f(x) − x||∞ ≤ 1
d
(λ + 1)n(n − 1).

The approximation guarantee. By virtue of Theorem 3.7, if we choose

d :=
1
ε′

[2 + 2Umaxrn(n + 1)]n(n − 1),

then a p-stopping simplex σ ∈ Σ, for any p ∈ [r], satisfies that, for all x ∈ σ,

||f(x) − x||∞ ≤ ε′,

which implies that x is an n
√

ε′(1 + nUmax)
(
1 +

√
ε′(1 + nUmax)

)
max{Umax, 1}-

approximate Nash equilibrium (by Lemma 3.8). Choosing

ε′ :=
1

1 + nUmax

(
ε

2n max{Umax, 1}

)2

implies that x is an ε-approximate Nash equilibrium.
Lemma 3.8. If a vector x = (x1; x2; . . . ; xr) ∈ R

n·r satisfies

||f(x) − x||∞ ≤ ε′,

then x is an n
√

ε′(1 + nUmax)(1 +
√

ε′(1 + nUmax))max{Umax, 1}-approximate Nash
equilibrium.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

208 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Proof. Let us fix some player p ∈ [r], and assume, without loss of generality, that

Up
1 (x) ≥ Up

2 (x) ≥ · · · ≥ Up
k (x) ≥ Up(x) ≥ Up

k+1(x) ≥ · · · ≥ Up
n(x).

For all j ∈ [n], observe that |f(x)p
j − xp

j | ≤ ε′ implies

xp
j

∑
i∈[n]

Bp
i (x) ≤ Bp

j (x) + ε′

⎛⎝1 +
∑
i∈[n]

Bp
i (x)

⎞⎠ .

Setting ε′′ := ε′(1 + nUmax), the above inequality implies

xp
j

∑
i∈[n]

Bp
i (x) ≤ Bp

j (x) + ε′′.(3)

Let us define t := xp
k+1 + xp

k+2 + · · · + xp
n, and let us distinguish the following cases.

• If t ≥
√

ε′′
Umax

, then summing (3) for j = k + 1, . . . , n implies

t
∑
i∈[n]

Bp
i (x) ≤ (n − k)ε′′,

which gives

Bp
1 ≤

∑
i∈[n]

Bp
i (x) ≤ n

√
ε′′Umax.(4)

• If t ≤
√

ε′′
Umax

, then multiplying (3) by xp
j and summing over j = 1, . . . , n gives∑

j∈[n]

(xp
j)

2
∑
i∈[n]

Bp
i (x) ≤

∑
j∈[n]

xp
jB

p
j (x) + ε′′.(5)

Now observe that for any setting of the probabilities xp
j , j ∈ [n], it holds that

∑
j∈[n]

(xp
j)

2 ≥ 1
n

.(6)

Moreover, observe that, since Up(x) =
∑

j∈[n] x
p
jU

p
j (x), it follows that∑

j∈[n]

xp
j (U

p
j (x) − Up(x)) = 0,

which implies that∑
j∈[n]

xp
jB

p
j (x) +

∑
j≥k+1

xp
j (U

p
j (x) − Up(x)) = 0.

Plugging this into (5) implies∑
j∈[n]

(xp
j)

2
∑
i∈[n]

Bp
i (x) ≤

∑
j≥k+1

xp
j (U

p(x) − Up
j (x)) + ε′′.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 209

Further, using (6) gives

1
n

∑
i∈[n]

Bp
i (x) ≤

∑
j≥k+1

xp
j (U

p(x) − Up
j (x)) + ε′′,

which implies ∑
i∈[n]

Bp
i (x) ≤ n(tUmax + ε′′).

The last inequality then implies

Bp
1 (x) ≤ n(

√
ε′′ + ε′′).(7)

Combining (4) and (7), we have the following uniform bound:

Bp
1 (x) ≤ n(

√
ε′′ + ε′′)max{Umax, 1} =: ε′′′.(8)

Since Bp
1 (x) = Up

1 (x) − U(x), it follows that player p cannot improve her payoff by
more than ε′′′ by changing her strategy. This is true for every player, hence x is an
ε′′′-approximate Nash equilibrium.

The edges of the END OF THE LINE graph. Van der Laan and Talman
[37] described a pivoting algorithm which operates on the set Σ, by specifying the
following:

• a simplex σ0 ∈ Σ, which is the starting simplex; σ0 contains the point q0 and
is uniquely determined by the labeling rule;

• a partial one-to-one function h : Σ → Σ, mapping a simplex to a neighboring
simplex, which defines a pivoting rule; h has the following properties:1

– σ0 has no preimage;
– any simplex σ ∈ Σ that has no image is a p-stopping simplex for some

p; and, any simplex σ ∈ Σ \ {σ0} that has no preimage is a p-stopping
simplex for some p;

– both h(σ) and h−1(σ) are computable in time polynomial in the binary
encoding size of σ, that is N , and G—given that the labeling function �
is efficiently computable.

The algorithm of van der Laan and Talman starts off with the simplex σ0 and employs
the pivoting rule h until a simplex σ with no image is encountered. By the properties
of h, σ must be p-stopping for some p ∈ [r] and, by the discussion above, any point
x ∈ σ is an ε-approximate Nash equilibrium.

In our construction, the edges of the end of the line graph are defined in terms
of the function h: If h(σ) = σ′, then there is a directed edge from σ to σ′. Moreover,
the string 0N is identified with the simplex σ0. Any solution to the end of the

line problem thus defined corresponds, by the above discussion, to a simplex σ such
that any point x ∈ σ is an ε-approximate Nash equilibrium of G. This concludes the
construction.

1More precisely, the pivoting rule h of van der Laan and Talman is defined on a subset Σ′ of
Σ. For our purposes, let us extend their pivoting rule h to the set Σ by setting h(σ) = σ for all
σ ∈ Σ \ Σ′.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

210 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

3.3. The BROUWER problem. In the proof of our main result we use a prob-
lem we call Brouwer, which is a discrete and simplified version of the search problem
associated with Brouwer’s fixed point theorem. We are given a continuous function
φ from the three-dimensional unit cube to itself, defined in terms of its values at the
centers of 23n cubelets with side 2−n, for some n ≥ 0.2 At the center cijk of the
cubelet Kijk defined as

Kijk = {(x, y, z) : i · 2−n ≤ x ≤ (i + 1) · 2−n,

j · 2−n ≤ y ≤ (j + 1) · 2−n,

k · 2−n ≤ z ≤ (k + 1) · 2−n},
where i, j, k are integers in {0, 1, . . . , 2n − 1}, the value of φ is φ(cijk) = cijk + δijk,
where δijk is one of the following four vectors (also referred to as colors):

• δ1 = (α, 0, 0),
• δ2 = (0, α, 0),
• δ3 = (0, 0, α),
• δ0 = (−α,−α,−α).

Here α > 0 is much smaller than the cubelet side, say 2−2n.
Thus, to compute φ at the center of the cubelet Kijk we only need to know which

of the four displacements to add. This is computed by a circuit C (which is the only
input to the problem) with 3n input bits and 2 output bits; C(i, j, k) is the index r such
that, if c is the center of cubelet Kijk, then φ(c) = c+δr. C is such that C(0, j, k) = 1,
C(i, 0, k) = 2, C(i, j, 0) = 3, and C(2n − 1, j, k) = C(i, 2n − 1, k) = C(i, j, 2n − 1) = 0
(with conflicts resolved arbitrarily), so that the function φ maps the boundary to
the interior of the cube. A vertex of a cubelet is called panchromatic if, among the
cubelets adjacent to it, there are four that have all four displacements δ0, δ1, δ2, δ3.
Sperner’s lemma guarantees that, for any circuit C satisfying the above properties, a
panchromatic vertex exists; see, e.g., [48]. An alternative proof of this fact follows as
a consequence of Theorem 3.9 below.

Brouwer is thus the following total problem: Given a circuit C as described
above, find a panchromatic vertex. The relationship with Brouwer fixed points is that
fixed points of φ only ever occur in the vicinity of a panchromatic vertex. We next
show the following theorem.

Theorem 3.9. Brouwer is PPAD-complete.
Proof. That Brouwer is in PPAD follows from the main result of this paper

(Theorem 5.1), which is a reduction from Brouwer to r-Nash, which has been shown
to be in PPAD in Theorem 3.1.

To show hardness, we shall reduce end of the line to Brouwer. Given circuits
S and P with n inputs and outputs, as prescribed in that problem, we shall construct
an “equivalent” instance of Brouwer, that is, another circuit C with 3m = 3(n + 4)
inputs and two outputs that computes the color of each cubelet of side 2−m—that is
to say, the index i such that δi is the correct displacement of the Brouwer function
at the center of the cubelet encoded into the 3m bits of the input. We shall first
describe the Brouwer function φ explicitly and then argue that it can be computed
by a circuit.

Our description of φ proceeds as follows: We shall first describe a one-dimensional
subset L of the three-dimensional unit cube, intuitively an embedding of the path-

2The value of the function near the boundaries of the cubelets could be determined by
interpolation—there are many simple ways to do this, and the precise method is of no importance
to our discussion.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 211

u′
2

u1
u3

v′1

y

v1

u′
1

u6

u4

u5

u2

z

x

Fig. 1. The orthonormal path connecting vertices (u,v); the arrows indicate the orientation of
colors surrounding the path.

like directed graph GS,P implicitly given by S and P . Then we shall describe the
4-coloring of the 23m cubelets based on the description of L. Finally, we shall argue
that colors are easy to compute locally and that panchromatic vertices correspond to
endpoints other than the standard source 0n of GS,P .

We assume that the graph GS,P is such that for each edge (u, v), one of the vertices
is even (ends in 0) and the other is odd; this is easy to guarantee by duplicating the
vertices of GS,P .

L will be orthonormal, that is, each of its segments will be parallel to one of
the axes; all coordinates of endpoints of segments are integer multiples of 2−m, a
factor that we omit in the discussion below. Let u ∈ {0, 1}n be a vertex of GS,P .
By 〈u〉 we denote the integer between 0 and 2n − 1 whose binary representation is u.
Associated with u there are two line segments of length 4 of L. The first, called the
principal segment of u, has endpoints u1 = (8〈u〉 + 2, 3, 3) and u′

1 = (8〈u〉 + 6, 3, 3).
The other auxiliary segment has endpoints u2 = (3, 8〈u〉 + 6, 2m − 3) and u′

2 =
(3, 8〈u〉+10, 2m−3). Informally, these segments form two dashed lines (each segment
being a dash) that run along two edges of the cube and slightly in its interior (see
Figure 1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

212 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Now, for every vertex u of GS,P , we connect u′
1 to u2 by a line with three straight

segments, with joints u3 = (8〈u〉+6, 8〈u〉+6, 3) and u4 = (8〈u〉+6, 8〈u〉+6, 2m− 3).
Finally, if there is an edge (u, v) in GS,P , we connect u′

2 to v1 by a jointed line with
breakpoints u5 = (8〈v〉 + 2, 8〈u〉 + 10, 2m − 3) and u6 = (8〈v〉 + 2, 8〈u〉 + 10, 3).
This completes the description of the line L if we do the following perturbation:
Exceptionally, the principal segment of u = 0n has endpoints 01 = (2, 2, 2) and
0′1 = (6, 2, 2) and the corresponding joint is 03 = (6, 6, 2).

It is easy to see that L traverses the interior of the cube without ever “nearly
crossing itself”; that is, two points p, p′ of L are closer than 3 · 2−m in Euclidean
distance only if they are connected by a part of L that has length 8 ·2−m or less. (This
is important in order for the coloring, described below, of the cubelets surrounding L
to be well defined.) To check this, just notice that segments of different types (e.g.,
[u3, u4] and [u′

2, u5]) come closer than 3 ·2−m only if they share an endpoint; segments
of the same type on the z = 3 or the z = 2m − 3 plane are parallel and at least 4
apart; and segments parallel to the z axis differ by at least 4 in either their x or y
coordinates.

We now describe the coloring of the 23m cubelets by four colors corresponding
to the four displacements. Consistent with the requirements for a Brouwer circuit,
we color any cubelet Kijk where any one of i, j, k is 2m − 1, with 0. Given that, any
other cubelet with i = 0 gets color 1; with this fixed, any other cubelet with j = 0
gets color 2, while the remaining cubelets with k = 0 get color 3. Having colored the
boundaries, we now have to color the interior cubelets. An interior cubelet is always
colored 0 unless one of its vertices is a point of the interior of line L, in which case
it is colored by one of the three other colors in a manner to be explained shortly.
Intuitively, at each point of the line L, starting from (2, 2, 2) (the beginning of the
principle segment of the string u = 0n), the line L is “protected” from color 0 from
all four sides. As a result, the only place where the four colors can meet is vertex u′

2

or u1, u �= 0n, where u is an end of the line. . . .
In particular, near the beginning of L at (2, 2, 2), the 27 cubelets Kijk with

i, j, k ≤ 2 are colored as shown in Figure 2. From then on, for any length-1 segment
of L of the form [(x, y, z), (x′, y′, z′)] consider the four cubelets containing this segment.
Two of these cubelets are colored 3, and the other two are colored 1 and 2, in this
order clockwise (from the point of view of an observer at (x, y, z)). The remaining
cubelets touching L are the ones at the joints where L turns. Each of these cubelets,
a total of two per turn, takes the color of the two other cubelets adjacent to L with
which it shares a face.

Now it remains only to describe, for each line segment [a, b] of L, the direction d
in which the two cubelets that are colored 3 lie. The rules are as follows (in Figure 1
the directions d are shown as arrows):

• If [a, b] = [u1, u
′
1], then d = (0, 0,−1) if u is even and d = (0, 0, 1) if u is odd.

• If [a, b] = [u′
1, u3], then d = (0, 0,−1) if u is even and d = (0, 0, 1) if u is odd.

• If [a, b] = [u3, u4], then d = (0, 1, 0) if u is even and d = (0,−1, 0) if u is odd.
• If [a, b] = [u4, u2], then d = (0, 1, 0) if u is even and d = (0,−1, 0) if u is odd.
• If [a, b] = [u2, u

′
2], then d = (1, 0, 0) if u is even and d = (−1, 0, 0) if u is odd.

• If [a, b] = [u′
2, u5], then d = (0,−1, 0) if u is even and d = (0, 1, 0) if u is odd.

• If [a, b] = [u5, u6], then d = (0,−1, 0) if u is even and d = (0, 1, 0) if u is odd.
• If [a, b] = [u6, v1], then d = (0, 0, 1) if u is even and d = (0, 0,−1) if u is odd.

This completes the description of the construction. Notice that, for this to work,
we need our assumption that edges in GS,P go between odd and even vertices. Regard-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 213

z y

x

Z=2

Z=1

Z=0

1 1 1

2
2

1

2
2

1

1
1

1

2
3

3

2
3

3

1
1

1

2
3

3

2
3

3

Beginning of L

Fig. 2. The 27 cubelets around the beginning of line L.

ing the alternating orientation of colored cubelets around L, note that we could not
simply introduce “twists” to make them always point in (say) direction d = (0, 0,−1)
for all [u1, u

′
1]. That would create a panchromatic vertex at the location of a twist.

The result now follows from the following two claims:
1. A point in the cube is panchromatic in the described coloring if and only if

it is
(a) an endpoint u′

2 of a sink vertex u of GS,P , or
(b) an endpoint u1 of a source vertex u �= 0n of GS,P .

2. A circuit C can be constructed in time polynomial in |S| + |P |, which com-
putes, for each triple of binary integers i, j, k < 2m, the color of cubelet Kijk.

Regarding the first claim, the endpoint u′
2 of a sink vertex u, or the endpoint u1

of a source vertex u other than 0n, will be a point where L meets color 0, hence a
panchromatic vertex. There is no alternative way that L can meet color 0 and no
other way a panchromatic vertex can occur.

Regarding the second claim, circuit C is doing the following. C(0, j, k) = 1 for
j, k < 2m − 1, C(i, 0, k) = 2 for i > 0, i, k < 2m − 1, C(i, j, 0) = 3 for i, j > 0,
i, j < 2m − 1. Then by default, C(i, j, k) = 0. However, the following tests yield
alternative values for C(i, j, k), for cubelets adjacent to L. LSB(x) denotes the least
significant bit of x, equal to 1 if x is odd, 0 if x is even, and undefined if x is not an
integer. For example, a [u′

1, u3], u �= 0n, segment is given by (letting x = 〈u〉):
1. If k = 2 and i = 8x + 5 and LSB(x) = 1 and j ∈ {3, . . . , 8x + 6}, then

C(i, j, k) = 2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

214 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

2. If k = 2 and i = 8x + 6 and LSB(x) = 1 and j ∈ {2, . . . , 8x + 6}, then
C(i, j, k) = 1.

3. If k = 3 and (i = 8x+5 or i = 8x+6) and LSB(x) = 1 and j ∈ {2, . . . , 8x+5},
then C(i, j, k) = 3.

4. If k = 2 and (i = 8x+5 or i = 8x+6) and LSB(x) = 0 and j ∈ {2, . . . , 8x+6},
then C(i, j, k) = 3.

5. If k = 3 and i = 8x + 5 and LSB(x) = 0 and j ∈ {3, . . . , 8x + 5}, then
C(i, j, k) = 1.

6. If k = 3 and i = 8x + 6 and LSB(x) = 0 and j ∈ {2, . . . , 8x + 5}, then
C(i, j, k) = 2.

A [u′
2, u5] segment uses the circuits P and S, and, in the case LSB(x) = 1, x = 〈u〉,

is given by the following:
1. If (k = 2m − 3 or k = 2m − 4) and j = 8x + 10 and S(x) = x′ and P (x′) = x

and i ∈ {2, . . . , 8x′ + 2}, then C(i, j, k) = 3.
2. If k = 2m − 3 and j = 8x + 9 and S(x) = x′ and P (x′) = x and i ∈

{3, . . . , 8x′ + 2}, then C(i, j, k) = 1.
3. If k = 2m − 4 and j = 8x + 9 and S(x) = x′ and P (x′) = x and i ∈

{3, . . . , 8x′ + 1}, then C(i, j, k) = 2.
The other segments are done in a similar way, and so the second claim follows. This
completes the proof of hardness.

4. Reductions among equilibrium problems. In the next section we show
that r-Nash is PPAD-hard by reducing Brouwer to it. Rather than r-Nash, it will
be more convenient to first reduce Brouwer to d-graphical Nash, the problem
of computing a Nash equilibrium in graphical games of degree d. Therefore, we need
to show that the latter reduces to r-Nash. This will be the purpose of the current
section; in fact, we will establish something stronger, namely, the following theorem.

Theorem 4.1. For every fixed d, r ≥ 3,
• Every r-player normal form game and every graphical game of degree d can

be mapped in polynomial time to (a) a three-player normal form game and
(b) a graphical game with degree 3 and two strategies per player, such that
there is a polynomial-time computable surjective mapping from the set of Nash
equilibria of the latter to the set of Nash equilibria of the former.

• There are polynomial-time reductions from r-Nash and d-graphical Nash

to both 3-Nash and 3-graphical Nash.
Note that the first part of the theorem establishes mappings of exact equilibrium

points between different games, whereas the second asserts that computing approxi-
mate equilibrium points in all these games is polynomial-time equivalent. The proof,
which is quite involved, is presented in the following subsections. In subsection 4.1,
we present some useful ideas that enable the reductions described in Theorem 4.1
as well as prepare the necessary machinery for the reduction from Brouwer to d-
graphical Nash in section 5. Subsections 4.2 through 4.6 provide the proof of the
theorem. In subsection 4.7, we establish a polynomial-time reduction from the prob-
lem of computing an approximately well-supported Nash equilibrium to the problem
of computing an approximate Nash equilibrium. A mapping from r-player games to
three-player games was already known by Bubelis [5].

4.1. Preliminaries: Game gadgets. We describe the building blocks of our
constructions. As we have observed earlier, if a player v has two pure strategies, say
0 and 1, then every mixed strategy of that player corresponds to a real number p[v] ∈
[0, 1] which is precisely the probability that the player plays strategy 1. Identifying

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 215

players with these numbers, we are interested in constructing games that perform
simple arithmetical operations on mixed strategies; for example, we are interested
in constructing a game with two “input” players v1 and v2 and another “output”
player v3 so that in any Nash equilibrium the latter plays the sum of the former, i.e.,
p[v3] = min{p[v1] + p[v2], 1}. Such constructions are considered below.

Notation. We use x = y ± ε to denote y − ε ≤ x ≤ y + ε.
Proposition 4.2. Let α be a nonnegative real number. Let v1, v2, w be players

in a graphical game GG with two strategies per player, and suppose that the payoffs to
v2 and w are as follows.

Payoffs to v2:
w plays 0 w plays 1

v2 plays 0 0 1
v2 plays 1 1 0

Payoffs to w:

w plays 0
v2 plays 0 v2 plays 1

v1 plays 0 0 0
v1 plays 1 α α

w plays 1
v2 plays 0 v2 plays 1

v1 plays 0 0 1
v1 plays 1 0 1

Then, for ε < 1, in every ε-Nash equilibrium of game GG, p[v2] = min(αp[v1], 1) ± ε.
In particular, in every Nash equilibrium of game GG, p[v2] = min(αp[v1], 1).

Proof. If w plays 1, then the expected payoff to w is p[v2], and if w plays 0,
the expected payoff to w is αp[v1]. Therefore, in an ε-Nash equilibrium of GG, if
p[v2] > αp[v1]+ε, then p[w] = 1. However, note also that if p[w] = 1, then p[v2] = 0.
(Payoffs to v2 make it prefer to disagree with w.) Consequently, p[v2] cannot be larger
than αp[v1] + ε, so it cannot be larger than min(αp[v1], 1) + ε. Similarly, if p[v2] <
min(αp[v1], 1)− ε, then p[v2] < αp[v1]− ε, so p[w] = 0, which implies—again since v2

has the biggest payoff by disagreeing with w—that p[v2] = 1 ≥ 1− ε, a contradiction
to p[v2] < min(αp[v1], 1)−ε. Hence p[v2] cannot be less than min(αp[v1], 1)−ε.

We will denote by G×α the (directed) graphical game shown in Figure 3, where
the payoffs to players v2 and w are specified as in Proposition 4.2 and the payoff of
player v1 is completely unconstrained: v1 could have any dependence on other players
of a larger graphical game GG that contains G×α or even depend on the strategies of
v2 and w; as long as the payoffs of v2 and w are specified as above, the conclusion
of the proposition will be true. Note in particular that using the above construction
with α = 1, v2 becomes a “copy” of v1; we denote the corresponding graphical game
by G=. These graphical games will be used as building blocks in our constructions;
the way to incorporate them into some larger graphical game is to make player v1

depend (incoming edges) on other players of the game and make v2 affect (outgoing
edges) other players of the game. For example, we can make a sequence of copies
of any vertex, which form a path in the graph. The copies then will alternate with
distinct w vertices.

Proposition 4.3. Let α, β, γ be nonnegative real numbers. Let v1, v2, v3, w be
players in a graphical game GG with two strategies per player, and suppose that the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

216 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

w

v2

v1

Fig. 3. G×α, G=.

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

w

v1

Fig. 4. Gα.

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

v3

w

v2v1

Fig. 5. G+,G∗,G−.

payoffs to v3 and w are as follows.

Payoffs to v3:
w plays 0 w plays 1

v3 plays 0 0 1
v3 plays 1 1 0

Payoffs to w:

w plays 0
v2 plays 0 v2 plays 1

v1 plays 0 0 β
v1 plays 1 α α + β + γ

w plays 1 v3 plays 0 0
v3 plays 1 1

Then, for ε < 1, in any ε-Nash equilibrium of GG, p[v3] = min(αp[v1] + βp[v2] +
γp[v1]p[v2], 1)±ε. In particular, in every Nash equilibrium of GG, p[v3] = min(αp[v1]+
βp[v2] + γp[v1]p[v2], 1).

Proof. If w plays 1, then the expected payoff to w is p[v3], and if w plays 0, then
the expected payoff to w is αp[v1] + βp[v2] + γp[v1]p[v2]. Therefore, in an ε-Nash
equilibrium of GG, if p[v3] > αp[v1]+βp[v2]+γp[v1]p[v2]+ε, then p[w] = 1. However,
note from the payoffs to v3 that if p[w] = 1, then p[v3] = 0. Consequently, p[v3]
cannot be strictly larger than αp[v1] + βp[v2] + γp[v1]p[v2] + ε. Similarly, if p[v3] <
min(αp[v1]+βp[v2]+γp[v1]p[v2], 1)−ε, then p[v3] < αp[v1]+βp[v2]+γp[v1]p[v2]−ε
and, due to the payoffs to w, p[w] = 0. This in turn implies—since v3 has the
biggest payoff by disagreeing with w—that p[v3] = 1 ≥ 1 − ε, a contradiction to
p[v3] < min(αp[v1] + βp[v2] + γp[v1]p[v2], 1) − ε. Hence p[v3] cannot be less than
min(αp[v1] + βp[v2] + γp[v1]p[v2], 1) − ε.

Remark 1. It is not hard to verify that, if v1, v2, v3, w are players of a
graphical game GG and the payoffs to v3, w are specified as in Proposition 4.3
with α = 1, β = −1, and γ = 0, then, in every ε-Nash equilibrium of the game
GG, p[v3] = max(0,p[v1] − p[v2]) ± ε; in particular, in every Nash equilibrium,
p[v3] = max(0,p[v1] − p[v2]).

Let us denote by G+ and G∗ the (directed) graphical game shown in Figure 5,
where the payoffs to players v3 and w are specified as in Proposition 4.3 taking (α, β, γ)
equal to (1, 1, 0) (addition) and (0, 0, 1) (multiplication), respectively. Also, let G− be
the game when the payoffs of v3 and w are specified as in Remark 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 217

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

v6

v1

v2

w1 v5

w3

w2 v3

v4

w4

Fig. 6. Gmax.

Proposition 4.4. Let v1, v2, v3, v4, v5, v6, w1, w2, w3, w4 be vertices in a
graphical game GG with two strategies per player, and suppose that the payoffs to ver-
tices other than v1 and v2 are as follows.

Payoffs to w1:

w1 plays 0
v2 plays 0 v2 plays 1

v1 plays 0 0 0
v1 plays 1 1 1

w1 plays 1
v2 plays 0 v2 plays 1

v1 plays 0 0 1
v1 plays 1 0 1

Payoffs to v5:
w1 plays 0 w1 plays 1

v5 plays 0 1 0
v5 plays 1 0 1

Payoffs to w2 and v3 are chosen using Proposition 4.3 to ensure p[v3] =
p[v1](1 − p[v5]) ± ε, in every ε-Nash equilibrium of game GG.3

Payoffs to w3 and v4 are chosen using Proposition 4.3 to ensure p[v4] =
p[v2]p[v5] ± ε, in every ε-Nash equilibrium of game GG.

Payoffs to w4 and v6 are chosen using Proposition 4.3 to ensure p[v6] =
min(1,p[v3] + p[v4]) ± ε, in every ε-Nash equilibrium of game GG.

Then, for ε < 1, in every ε-Nash equilibrium of game GG, p[v6] = max(p[v1],p[v2])±
4ε. In particular, in every Nash equilibrium, p[v6] = max(p[v1],p[v2]).

The graph of the game looks as in Figure 6. It is actually possible to “merge”
w1 and v5, but we prefer to keep the game as is in order to maintain the bipartite
structure of the graph in which one side of the partition contains all the vertices
corresponding to arithmetic expressions (the vi vertices) and the other side contains
all the intermediate wi vertices.

Proof. If, in an ε-Nash equilibrium, we have p[v1] < p[v2] − ε, then it follows
from w1’s payoffs that p[w1] = 1. It then follows that p[v5] = 1 since v5’s payoffs
induce it to imitate w1. Hence, p[v3] = ±ε and p[v4] = p[v2] ± ε, and, consequently,

3We can use Proposition 4.3 to multiply by (1−p[v5]) in a similar way to multiplication by p[v5];
the payoffs to w2 have v5’s strategies reversed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

218 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

p[v3] +p[v4] = p[v2]± 2ε. This implies that p[v6] = p[v2]± 3ε, as required. A similar
argument shows that, if p[v1] > p[v2] + ε, then p[v6] = p[v1] ± 3ε.

If |p[v1] − p[v2]| ≤ ε, then p[w1] and, consequently, p[v5] may take any value.
Assuming, without loss of generality, that p[v1] ≥ p[v2], we have

p[v3] = p[v1](1 − p[v5]) ± ε,
p[v4] = p[v2]p[v5] ± ε = p[v1]p[v5] ± 2ε,

which implies that

p[v3] + p[v4] = p[v1] ± 3ε,

and, therefore,

p[v6] = p[v1] ± 4ε,

as required.
We conclude the section with the simple construction of a graphical game Gα,

depicted in Figure 4, which performs the assignment of some fixed value α ≥ 0 to a
player. The proof is similar in spirit to our proof of Propositions 4.2 and 4.3 and will
be skipped.

Proposition 4.5. Let α be a nonnegative real number. Let w, v1 be players in
a graphical game GG with two strategies per player and let the payoffs to w, v1 be
specified as follows.

Payoffs to v1:
w plays 0 w plays 1

v1 plays 0 0 1
v1 plays 1 1 0

Payoffs to w:
v1 plays 0 v1 plays 1

w plays 0 α α
w plays 1 0 1

Then, for ε < 1, in every ε-Nash equilibrium of game GG, p[v1] = min(α, 1) ± ε. In
particular, in every Nash equilibrium of GG, p[v1] = min(α, 1).

Before concluding the section we give a useful definition.
Definition 4.6. Let v1, v2, . . . , vk, v be players of a graphical game Gf such

that, in every Nash equilibrium, it holds that p[v] = f(p[v1], . . . ,p[vk]), where f is
some function with k arguments and range [0, 1]. We say that the game Gf has
error amplification at most c if, in every ε-Nash equilibrium, it holds that p[v] =
f(p[v1], . . . ,p[vk]) ± cε.

In particular, the games G=, G+, G−, G∗, Gα described above have error amplifi-
cations at most 1, whereas the game Gmax has error amplification at most 4.

4.2. Reducing graphical games to normal form games. We establish a
mapping from graphical games to normal form games as specified by the following
theorem.

Theorem 4.7. For every d > 1, a graphical game (directed or undirected) GG
of maximum degree d can be mapped in polynomial time to a (d2 + 1)-player normal
form game G so that there is a polynomial-time computable surjective mapping g from
the Nash equilibria of the latter to the Nash equilibria of the former.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 219

Input: Degree d graphical game GG: vertices V , |V | = n′, |Sv| = t for all v ∈ V .
Output: Normal form game G.

1. If needed, rescale the entries in the payoff tables of GG so that they lie in
the range [0, 1]. One way to do so is to divide all payoff entries by max{u},
where max{u} is the largest entry in the payoff tables of GG.

2. Let r = d2 or r = d2 + 1; r chosen to be even.
3. Let c : V −→ {1, . . . , r} be an r-coloring of GG such that no two adjacent

vertices have the same color, and, furthermore, no two vertices having a
common successor—in the affects graph of the game—have the same color.
Assume that each color is assigned to the same number of vertices, adding
to V extra isolated vertices to make up any shortfall; extend mapping c to
these vertices. Let {v(i)

1 , . . . , v
(i)
n/r} denote {v : c(v) = i}, where n ≥ n′.

4. For each p ∈ [r], game G will have a player, labeled p, with strategy set Sp;
Sp will be the union (assumed disjoint) of all Sv with c(v) = p, i.e.,

Sp = {(v, a) : c(v) = p, a ∈ Sv}, |Sp| = t n
r .

5. Taking S to be the Cartesian product of the Sp’s, let s ∈ S be a strategy
profile of game G. For p ∈ [r], up

s is defined as follows:
(a) Initially, all utilities are 0.
(b) For v0 ∈ V having predecessors v1, . . . , vd′ in the affects graph of GG,

if c(v0) = p (that is, v0 = v
(p)
j for some j) and, for i = 0, . . . , d′, s

contains (vi, ai), then up
s = uv0

s′ for s′ a strategy profile of GG in which
vi plays ai for i = 0, . . . , d′.

(c) Let M > 2 n
r .

(d) For odd number p < r, if player p plays (v(p)
i , a) and p + 1 plays

(v(p+1)
i , a′), for any i, a, a′, then add M to up

s and subtract M from
up+1

s .

Fig. 7. Reduction from graphical game GG to normal form game G.

Proof. Overview. Figure 7 shows the construction of G = f(GG). We will explain
the construction in detail and show that it can be computed in polynomial time. We
will also establish that there is a surjective mapping from the Nash equilibria of G to
the Nash equilibria of GG. In the following discussion we will refer to the players of
the graphical game as “vertices” to distinguish them from the players of the normal
form game.

We first rescale all payoffs so that they are nonnegative and at most 1 (Step 1);
it is easy to see that the set of Nash equilibria is preserved under this transformation.
Also, without loss of generality, we assume that all vertices v ∈ V have the same
number of strategies, |Sv| = t. We color the vertices of G, where G = (V, E) is the
affects graph of GG, so that any two adjacent vertices have different colors, but also
any two vertices with a common successor have different colors (Step 3). Since this
type of coloring will be important for our discussion we will define it formally.

Definition 4.8. Let GG be a graphical game with affects graph G = (V, E). We
say that GG can be legally colored with k colors if there exists a mapping c : V →
{1, 2, . . . , k} such that, for all e = (v, u) ∈ E, c(v) �= c(u) and, moreover, for all
e1 = (v, w), e2 = (u, w) ∈ E with v �= u, c(v) �= c(u). We call such coloring a legal
k-coloring of GG.

To get such coloring, it is sufficient to color the union of the underlying undirected

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

220 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

graph G′ with its square (with self-loops removed) so that no adjacent vertices have
the same color; this can be done with at most d2 colors—see, e.g., [6]—since G′ has
degree d by assumption; we are going to use r = d2 or r = d2 + 1 colors, whichever
is even, for reasons to become clear shortly. We assume for simplicity that each color
class has the same number of vertices, adding dummy vertices if needed to satisfy this
property. Henceforth, we assume that n is an integer multiple of r so that every color
class has n

r vertices.
We construct a normal form game G with r ≤ d2 + 1 players. Each of them

corresponds to a color and has tn
r strategies, the t strategies of each of the n

r vertices
in its color class (Step 4). Since r is even, we can divide the r players into pairs and
make each pair play a generalized matching pennies game (see Definition 4.9 below)
at very high stakes, so as to ensure that all players will randomize uniformly over the
vertices assigned to them.4 Within the set of strategies associated with each vertex,
the matching pennies game expresses no preference, and payoffs are augmented to
correspond to the payoffs that would arise in the original graphical game GG (see
Step 5 for the exact specification of the payoffs).

Definition 4.9. The (two-player) game generalized matching pennies is defined
as follows. Call the two players the pursuer and the evader, and let [n] denote their
strategies. If for any i ∈ [n] both players play i, then the pursuer receives a positive
payoff u > 0 and the evader receives a payoff of −u. Otherwise both players receive
0. It is not hard to check that the game has a unique Nash equilibrium in which both
players use the uniform distribution.

Polynomial size of G = f(GG): The input size is |GG| = Θ(n′ · td+1 · q), where n′

is the number of vertices in GG and q the size of the values in the payoff matrices in
the logarithmic cost model. The normal form game G has r ∈ {d2, d2 + 1} players,
each having tn/r strategies, where n ≤ rn′ is the number of vertices in GG after the
possible addition of dummy vertices to make sure that all color classes have the same
number of vertices. Hence, there are r · (tn/r)r ≤ ((d2 + 1)(tn′)d2+1) payoff entries in
G. This is polynomial in |GG| as long as d is constant. Moreover, each payoff entry
will be of polynomial size since M is of polynomial size and each payoff entry of the
game G is the sum of 0 or M and a payoff entry of GG.

Construction of the mapping g: Given a Nash equilibrium NG = {xp
(v,a)}p,v,a

of G = f(GG), we claim that we can recover a Nash equilibrium {xv
a}v,a of GG,

NGG = g(NG), as follows:

xv
a := x

c(v)
(v,a)

/ ∑
j∈Sv

x
c(v)
(v,j) ∀a ∈ Sv, v ∈ V.(9)

Clearly g is computable in polynomial time.
Proof that g maps Nash equilibria of G to Nash equilibria of GG: Call GG′ the

graphical game resulting from GG by rescaling the utilities so that they lie in the
range [0, 1]. It is easy to see that any Nash equilibrium of game GG is, also, a Nash
equilibrium of game GG′ and vice versa. Therefore, it is enough to establish that the
mapping g maps every Nash equilibrium of game G to a Nash equilibrium of game
GG′.

For v ∈ V , c(v) = p, let “p plays v” denote the event that p plays (v, a) for some
a ∈ Sv. We show that in a Nash equilibrium NG of game G, for every player p and
every v ∈ V with c(v) = p, Pr(p plays v) ∈ [λ − 1

M , λ + 1
M], where λ =

(
n
r

)−1
. Note

that the “fair share” for v is λ.

4A similar trick is used in Theorem 7.3 of [55], a hardness result for a class of circuit games.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 221

Lemma 4.10. For all v ∈ V , in a Nash equilibrium of G, Pr(c(v) plays v) ∈
[λ − 1

M , λ + 1
M].

Proof. Suppose, for contradiction, that in a Nash equilibrium of G, Pr(p plays v
(p)
i)

< λ− 1
M for some i, p. Then there exists some j such that Pr(p plays v

(p)
j) > λ+ 1

M λ.
If p is odd (a pursuer), then p + 1 (the evader) will have utility of at least

−λM + 1 for playing any strategy (v(p+1)
i , a), a ∈ S

v
(p+1)
i

, whereas it will have util-
ity of at most −λM − λ + 1 for playing any strategy (v(p+1)

j , a), a ∈ S
v
(p+1)
j

. Since
−λM + 1 > −λM − λ + 1, in a Nash equilibrium, Pr(p + 1 plays v

(p+1)
j) = 0. There-

fore, there exists some k such that Pr(p + 1 plays v
(p+1)
k) > λ. Now the payoff of

p for playing any strategy (v(p)
j , a), a ∈ S

v
(p)
j

, is at most 1, whereas the payoff for
playing any strategy (v(p)

k , a), a ∈ S
v
(p)
k

, is at least λM . Thus, in a Nash equilibrium,
player p should not include any strategy (v(p)

j , a), a ∈ S
v
(p)
j

, in her support; hence
Pr(p plays v

(p)
j) = 0, a contradiction.

If p is even, then p − 1 will have utility of at most (λ − 1
M)M + 1 for playing

any strategy (v(p−1)
i , a), a ∈ S

v
(p−1)
i

, whereas it will have utility of at least (λ +
1
M λ)M for playing any strategy (v(p−1)

j , a), a ∈ S
v
(p−1)
j

. Hence, in a Nash equilibrium
Pr(p − 1 plays v

(p−1)
i) = 0, which implies that there exists some k such that Pr(p −

1 plays v
(p−1)
k) > λ. But, then, p will have utility of at least 0 for playing any

strategy (v(p)
i , a), a ∈ S

v
(p)
i

, whereas it will have utility of at most −λM + 1 for

playing any strategy (v(p)
k , a), a ∈ S

v
(p)
k

. Since 0 > −λM + 1, in a Nash equilibrium,
Pr(p plays v

(p)
k) = 0. Therefore, there exists some k′ such that Pr(p plays v

(p)
k′) > λ.

Now the payoff of p− 1 for playing any strategy (v(p−1)
k , a), a ∈ S

v
(p−1)
k

, is at most 1,
whereas the payoff for playing any strategy (v(p−1)

k′ , a), a ∈ S
v
(p−1)
k′

, is at least λM .
Thus, in a Nash equilibrium, player p− 1 should not include any strategy (v(p−1)

k , a),
a ∈ S

v
(p−1)
k

, in her support; hence Pr(p − 1 plays v
(p−1)
k) = 0, a contradiction.

From the above discussion, it follows that every vertex is chosen with probability
at least λ− 1

M by the player that represents its color class. A similar argument shows
that no vertex is chosen with probability greater than λ + 1

M . Indeed, suppose, for
contradiction, that in a Nash equilibrium of G, Pr(p plays v

(p)
j) > λ + 1

M for some j,

p; then there exists some i such that Pr(p plays v
(p)
i) < λ− 1

M λ; now, distinguish two
cases depending on whether p is even or odd and proceed in the same fashion as in
the argument used above to show that no vertex is chosen with probability smaller
than λ − 1/M .

To see that {xv
a}v,a, defined by (9), corresponds to a Nash equilibrium of GG′

note that, for any player p and vertex v ∈ V such that c(v) = p, the division of
Pr(p plays v) into Pr(p plays (v, a)), for various values of a ∈ Sv, is driven entirely
by the same payoffs as in GG′; moreover, note that there is some positive probability
p(v) ≥ (λ − 1

M)d > 0 that the predecessors of v are chosen by the other players of
G and the additional expected payoff to p resulting from choosing (v, a), for some
a ∈ Sv, is p(v) times the expected payoff of v in GG′ if v chooses action a and all
other vertices play as specified by (9). More formally, suppose that p = c(v) for some
vertex v of the graphical game GG′ and, without loss of generality, assume that p is
odd (pursuer) and that v is the vertex v

(p)
i in the notation of Figure 7. Then, in a

Nash equilibrium of the game G, we have, by the definition of a Nash equilibrium,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

222 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

that for all strategies a, a′ ∈ Sv of vertex v:

E [payoff to p for playing (v, a)] > E [payoff to p for playing (v, a′)] ⇒ xp
(v,a′) = 0.

(10)

But

E [payoff to p for playing (v, a)] = M · Pr
(
p + 1 plays v

(p+1)
i

)
+

∑
s∈SN(v)\{v}

uv
as

∏
u∈N (v)\{v}

x
c(u)
(u,su),

and similarly for a′. Therefore, (10) implies∑
s∈SN(v)\{v}

uv
as

∏
u∈N (v)\{v}

x
c(u)
(u,su) >

∑
s∈SN(v)\{v}

uv
a′s

∏
u∈N (v)\{v}

x
c(u)
(u,su) ⇒ xp

(v,a′) = 0.

Dividing by
∏

u∈N (v)\{v}
∑

j∈Su
x

c(u)
(u,j) =

∏
u∈N (v)\{v} Pr (c(u) plays u) = p(v) and

invoking (9) gives∑
s∈SN(v)\{v}

uv
as

∏
u∈N (v)\{v}

xu
su

>
∑

s∈SN(v)\{v}

uv
a′s

∏
u∈N (v)\{v}

xu
su

⇒ xv
a′ = 0,

where we used that p(v) ≥ (λ − 1
M)d > 0, which follows by Lemma 4.10.

Mapping g is surjective on the Nash equilibria of GG′ and, therefore, GG: We will
show that, for every Nash equilibrium NGG′ = {xv

a}v,a of GG′, there exists a Nash
equilibrium NG = {xp

(v,a)}p,v,a of G such that (9) holds. The existence can be easily
established via the existence of a Nash equilibrium in a game G′ defined as follows.
Suppose that, in NGG′ , every vertex v ∈ V receives an expected payoff of uv from
every strategy in the support of {xv

a}a. Define the following game G′ whose structure
results from G by merging the strategies {(v, a)}a of player p = c(v) into one strategy
sp

v, for every v such that c(v) = p. So the strategy set of player p in G′ will be
{sp

v | c(v) = p} also denoted as {s(p)
1 , . . . , s

(p)
n/r} for ease of notation. Define now the

payoffs to the players as follows. Initialize the payoff matrices with all entries equal
to 0. For every strategy profile s,

• for v0 ∈ V having predecessors v1, . . . , vd′ in the affects graph of GG′, if, for
i = 0, . . . , d′, s contains s

c(vi)
vi , then add uv0 to u

c(v0)
s ;

• for odd number p < r if player p plays strategy s
(p)
i and player p + 1 plays

strategy s
(p+1)
i , then add M to up

s and subtract M from up+1
s (generalized

matching pennies).
Note the similarity in the definitions of the payoff matrices of G and G′. From Nash’s
theorem, game G′ has a Nash equilibrium {yp

sp
v
}p,v and it is not hard to verify that

{xp
(v,a)}p,v,a is a Nash equilibrium of game G, where xp

(v,a) := yp
sp

v
· xv

a, for all p, v ∈ V

such that c(v) = p, and a ∈ Sv.

4.3. Reducing normal form games to graphical games. We establish the
following mapping from normal form games to graphical games.

Theorem 4.11. For every r > 1, a normal form game with r players can be
mapped in polynomial time to an undirected graphical game of maximum degree 3
and two strategies per player so that there is a polynomial-time computable surjective
mapping g from the Nash equilibria of the latter to the Nash equilibria of the former.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 223

Given a normal form game G having r players, 1, . . . , r, and n strategies per
player, say Sp = [n] for all p ∈ [r], we will construct a graphical game GG, with a
bipartite graph of maximum degree 3 and two strategies per player, say {0, 1}, with
description length polynomial in the description length of G, so that from every Nash
equilibrium of GG we can recover a Nash equilibrium of G. In the following discussion
we will refer to the players of the graphical game as “vertices” to distinguish them
from the players of the normal form game. It will be easy to check that the graph of
GG is bipartite and has degree 3; this graph will be denoted G = (V ∪ W, E), where
W and V are disjoint, and each edge in E goes between V and W . For every vertex
v of the graphical game, we will denote by p[v] the probability that v plays pure
strategy 1.

Recall that G is specified by the quantities {up
s : p ∈ [r], s ∈ S}. A mixed strategy

profile of G is given by probabilities {xp
j : p ∈ [r], j ∈ Sp}. GG will contain a vertex

v(xp
j) ∈ V for each player p and strategy j ∈ Sp, and the construction of GG will

ensure that in any Nash equilibrium of GG, the quantities {p[v(xp
j)] : p ∈ [r], j ∈ Sp},

if interpreted as values {xp
j}p,j, will constitute a Nash equilibrium of G. Extending

this notation, for various arithmetic expressions A involving any xp
j and up

s, vertex
v(A) ∈ V will be used and will be constructed such that in any Nash equilibrium
of GG, p[v(A)] is equal to A evaluated at the given values of up

s and with xp
j equal

to p[v(xp
j)]. Elements of W are used to mediate between elements of V , so that the

latter ones obey the intended arithmetic relationships.
We use Propositions 4.2–4.5 as building blocks of GG, starting with r subgraphs

that represent mixed strategies for the players of G. In the following, we construct
a graphical game containing vertices {v(xp

j)}j∈[n], whose probabilities sum to 1, and
internal vertices vp

j , which control the distribution of the one unit of probability mass
among the vertices v(xp

j). See Figure 8 for an illustration.
Proposition 4.12. Consider a graphical game that contains
• for j ∈ [n] a vertex v(xp

j),
• for j ∈ [n − 1] a vertex vp

j ,
• for j ∈ [n] a vertex v(

∑j
i=1 xp

i),
• for j ∈ [n − 1] a vertex wj(p) used to ensure

p

[
v

(
j∑

i=1

xp
i

)]
= p

[
v

(
j+1∑
i=1

xp
i

)]
(1 − p[vp

j]),

• for j ∈ [n−1] a vertex w′
j(p) used to ensure p[v(xp

j+1)] = p[v(
∑j+1

i=1 xp
i)]p[vp

j],
• a vertex w′

0(p) used to ensure p[v(xp
1)] = p[v(

∑1
i=1 xp

i)].
Also, let v(

∑n
i=1 xp

i) have payoff of 1 when it plays 1, and 0 otherwise. Then, in any
Nash equilibrium of the graphical game,

∑n
i=1 p[v(xp

i)] = 1 and moreover p[v(
∑j

i=1 xp
i)]

=
∑j

i=1 p[v(xp
i)], and the graph is bipartite and of degree 3.

Proof. It is not hard to verify that the graph has degree 3. Most of the degree-
3 vertices are the w vertices used in Propositions 4.2 and 4.3 to connect the pairs
or triples of graph players whose probabilities are supposed to obey an arithmetic
relationship. In a Nash equilibrium, v(

∑n
i=1 xp

i) plays 1. The vertices vp
j split the

probability p[v(
∑j+1

i=1 xp
i)] between p[v(

∑j
i=1 xp

i)] and p[v(xp
j+1)].

Comment. The values p[vp
j] control the distribution of probability (summing to 1)

among the n vertices v(xp
j). These vertices can set to zero any proper subset of the

probabilities p[v(xp
j)].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

224 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

The vertices whose labels include U do not form part of Proposition 4.12; they
have been included to show how the gadget fits into the rest of the construction,
as described in Figure 9. Unshaded vertices belong to V , shaded vertices belong to
W (V and W being the two parts of the bipartite graph). A directed edge from u
to v indicates that u’s choice can affect v’s payoff.

v(
∑n

i=1 xp
i) w′

n−1(p) v(xp
n)

v(Up
n)

wn−1(p) vp
n−1 w(Up

n−1)

v(Up
≤n−1)

v(
∑n−1

i=1 xp
i)

v(
∑3

i=1 xp
i) w′

2(p) v(xp
3)

v(Up
3)

w2(p) vp
2 w(Up

2)

v(Up
≤2)

v(
∑2

i=1 xp
i) w′

1(p) v(xp
2)

v(Up
2)

w1(p) vp
1 w(Up

1)

v(Up
≤1)

v(
∑1

i=1 xp
i) w′

0(p) v(xp
1)

Fig. 8. Diagram of Proposition 4.12.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 225

Notation. For s ∈ S−p let xs = x1
s1

· x2
s2
· · ·xp−1

sp−1
· xp+1

sp+1
· · ·xr

sr
. Also, let Up

j =∑
s∈S−p

up
jsxs be the utility to p for playing j in the context of a given mixed profile

{xs}s∈S−p .
Lemma 4.13. Suppose all utilities up

s (of G) lie in the range [0, 1] for some p ∈ [r].
We can construct a degree-3 bipartite graph having a total of O(rnr) vertices, including
vertices v(xp

j), v(Up
j), v(Up

≤j), for all j ∈ [n], such that in any Nash equilibrium,

p[v(Up
j)] =

∑
s∈S−p

up
js

∏
q 	=p

p[v(xq
sq

)],(11)

p[v(Up
≤j)] = max

i≤j

∑
s∈S−p

up
is

∏
q 	=p

p[v(xq
sq

)].(12)

The general idea is to note that the expressions for p[v(Up
j)] and p[v(Up

≤j)] are
constructed from arithmetic subexpressions using the operations of addition, multi-
plication, and maximization. If each subexpression A has a vertex v(A), then, using
Propositions 4.2 through 4.5, we can assemble them into a graphical game such that in
any Nash equilibrium, p[v(A)] is equal to the value of A with input p[v(xp

j)], p ∈ [r],
j ∈ [n]. We just need to limit our usage to O(rnr) subexpressions and ensure that
their values all lie in [0, 1].

Proof. Note that

Up
≤j = max{Up

j , Up
≤j−1}, Up

j =
∑

s∈S−p

up
jsxs =

∑
s∈S−p

up
jsx

1
s1
· · ·xp−1

sp−1
xp+1

sp+1
· · ·xr

sr
.

Let S−p = {S−p(1), . . . , S−p(nr−1)}, so that

∑
s∈S−p

up
jsxs =

nr−1∑
�=1

up
jS−p(�)xS−p(�).

Include vertex v(
∑z

�=1 up
jS−p(�)xS−p(�)) for each partial sum

∑z
�=1 up

jS−p(�)xS−p(�), 1 ≤
z ≤ nr−1. Similarly, for each partial product of the summands up

js

∏
p	=q≤z xq

sq
, 0 ≤

z ≤ r, include vertex v(up
js

∏
p	=q≤z xq

sq
). So, for each strategy j ∈ Sp, there are

nr−1 partial sums and r + 1 partial products for each summand. Then, there are n
partial sequences over which we have to maximize. Note that, since all utilities are
assumed to lie in the set [0, 1], all partial sums and products must also lie in [0, 1],
so the truncation at 1 in the computations of Propositions 4.2–4.5 is not a problem.
So using a vertex for each of the 2n + (r + 1)nr arithmetic subexpressions, a Nash
equilibrium will compute the desired quantities.

We repeat the construction specified by Lemma 4.13 for all p ∈ [r]. Note that, to
avoid large degrees in the resulting graphical game, each time we need to make use
of a value xq

sq
we create a new copy of the vertex v(xq

sq
) using the gadget G= and,

then, use the new copy for the computation of the desired partial product; an easy
calculation shows that we have to make (r − 1)nr−1 copies of v(xq

sq
) for all q ≤ r,

sq ∈ Sq. To limit the degree of each vertex to 3 we create a binary tree of copies of
v(xq

sq
) with (r − 1)nr−1 leaves and use each leaf once.

Proof of Theorem 4.11. Let G be an r-player of normal form game with n strategies
per player and construct GG = f(G) as shown in Figure 9. The graph of GG has

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

226 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Input: Normal form game G with r players, n strategies per player, utilities {up
s :

p ∈ [r], s ∈ S}.
Output: Graphical game GG with bipartite graph (V ∪ W, E).

1. If needed, rescale the utilities up
s so that they lie in the range [0, 1]. One

way to do so is to divide all utilities by max{up
s}.

2. For each player/strategy pair (p, j) let v(xp
j) ∈ V be a vertex in GG.

3. For each p ∈ [r] construct a subgraph as described in Proposition 4.12 so
that in a Nash equilibrium of GG, we have

∑
j p[v(xp

j)] = 1.
4. Use the construction of Proposition 4.2 with α = 1 to make (r − 1)nr−1

copies of the v(xp
j) vertices (which are added to V). More precisely, create

a binary tree with copies of v(xp
j) which has (r − 1)nr−1 leaves.

5. Use the construction of Lemma 4.13 to introduce (add to V) vertices v(Up
j),

v(Up
≤j), for all p ∈ [r], j ∈ [n]. Each v(Up

j) uses its own set of copies of the
vertices v(xp

j). For p ∈ [r], j ∈ [n] introduce (add to W) w(Up
j) with the

following:
(a) If w(Up

j) plays 0, then w(Up
j) gets payoff 1 whenever v(Up

≤j) plays 1,
else 0.

(b) If w(Up
j) plays 1, then w(Up

j) gets payoff 1 whenever v(Up
j+1) plays 1,

else 0.
6. Give the following payoffs to the vertices vp

j (the additional vertices used
in Proposition 4.12 whose payoffs were not specified).
(a) If vp

j plays 0, then vp
j has a payoff of 1 whenever w(Up

j) plays 0,
otherwise 0.

(b) If vp
j plays 1, then vp

j has a payoff of 1 whenever w(Up
j) plays 1,

otherwise 0.
7. Return the underlying undirected graphical game GG.

Fig. 9. Reduction from normal form game G to graphical game GG.

degree 3, by the graph structure of our gadgets from Propositions 4.2 through 4.5 and
the fact that we use separate copies of the v(xp

j) vertices to influence different v(Up
j)

vertices (see Step 4 and the discussion after Lemma 4.13).
Polynomial size of GG = f(G): The size of GG is polynomial in the description

length r·nrq of G, where q is the size of the values in the payoff tables in the logarithmic
cost model.

Construction of g(NGG) (where NGG denotes a Nash equilibrium of GG): Given
a Nash equilibrium g(NGG) of GG, we claim that we can recover a Nash equilibrium
{xp

j}p,j of G by taking xp
j = p[v(xp

j)]. This is clearly computable in polynomial time.
Proof that the reduction preserves Nash equilibria: Call G′ the game resulting

from G by rescaling the utilities so that they lie in the range [0, 1]. It is easy to see
that any Nash equilibrium of game G is, also, a Nash equilibrium of game G′ and vice
versa. Therefore, it is enough to establish that the mapping g(·) maps every Nash
equilibrium of game GG to a Nash equilibrium of game G′. By Proposition 4.12, we
have that

∑
j xp

j = 1 for all p ∈ [r]. It remains to show that, for all p, j, j′,

∑
s∈S−p

up
jsxs >

∑
s∈S−p

up
j′sxs =⇒ xp

j′ = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 227

We distinguish the following cases:
• If there exists some j′′ < j′ such that

∑
s∈S−p

up
j′′sxs >

∑
s∈S−p

up
j′sxs, then,

by Lemma 4.13, p[v(Up
≤j′−1)] > p[v(Up

j′)]. Thus, p[vp
j′−1] = 0 and, conse-

quently, v(xp
j′) plays 0 as required, since

p[v(xp
j′)] = p[vp

j′−1]p

⎡⎣v

⎛⎝ j′∑
i=1

xp
i

⎞⎠⎤⎦ .

• The case j < j′ reduces trivially to the previous case.
• It remains to deal with the case j > j′, under the assumption that, for all

j′′ < j′,
∑

s∈S−p
up

j′′sxs ≤
∑

s∈S−p
up

j′sxs, or, equivalently,

p[v(Up
j′′)] ≤ p[v(Up

j′)],

which in turn implies that

p[v(Up
≤j′)] ≤ p[v(Up

j′)].

It follows that there exists some k, j′ + 1 ≤ k ≤ j, such that p[v(Up
k)] >

p[v(Up
≤k−1)]. Otherwise, p[v(Up

≤j′)] ≥ p[v(Up
≤j′+1)] ≥ · · · ≥ p[v(Up

≤j)] ≥
p[v(Up

j)] > p[v(Up
j′)], which is a contradiction to p[v(Up

≤j′)] ≤ p[v(Up
j′)].

Since p[v(Up
k)] > p[v(Up

≤k−1)], it follows that p[w(Up
k−1)] = 1 ⇒ p[vp

k−1] = 1
and, therefore,

p

[
v

(
k−1∑
i=1

xp
i

)]
= p

[
v

(
k∑

i=1

xp
i

)]
(1 − p[vp

k−1]) = 0

⇒ p

⎡⎣v

⎛⎝ j′∑
i=1

xp
i

⎞⎠⎤⎦ = 0 ⇒ p
[
v(xp

j′)
]

= 0.

Mapping g is surjective on the Nash equilibria of G′ and, therefore, G: We will
show that given a Nash equilibrium NG′ of G′, there is a Nash equilibrium NGG
of GG such that g(NGG) = NG′ . Let NG′ = {xp

j : p ≤ r, j ∈ Sp}. In NGG , let
p[v(xp

j)] = xp
j . Lemma 4.13 shows that the values p[v(Up

j)] are the expected utilities
to player p for playing strategy j, given that all other players use the mixed strategy
{xp

j : p ≤ r, j ∈ Sp}. We identify values for p[vp
j] that complete a Nash equilibrium

for GG.
Based on the payoffs to vp

j described in Figure 9 we have the following:
• If p[v(Up

≤j)] > p[v(Up
j+1)], then p[w(Up

j)] = 0; p[vp
j] = 0.

• If p[v(Up
≤j)] < p[v(Up

j+1)], then p[w(Up
j)] = 1; p[vp

j] = 1.
• If p[v(Up

≤j)] = p[v(Up
j+1)], then choose p[w(Up

j)] = 1
2 ; p[vp

j] is arbitrary (we
may assign it any value).

Given the above constraints on the values p[vp
j], we must check that we can choose

them (and there is a unique choice) so as to make them consistent with the probabil-
ities p[v(xp

j)]. We use the fact that the values xp
j form a Nash equilibrium of G. In

particular, we know that p[v(xp
j)] = 0 if there exists j′ with Up

j′ > Up
j . We claim that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

228 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

for j satisfying p[v(Up
≤j)] = p[v(Up

j+1)], if we choose

p[vp
j] = p[v(xp

j+1)]/
j+1∑
i=1

p[v(xp
i)],

then the values p[v(xp
j)] are consistent.

4.4. Combining the reductions. Suppose that we take either a graphical or
a normal form game, and apply to it both of the reductions described in the previous
sections. Then we obtain a game of the same type and a surjective mapping from the
Nash equilibria of the latter to the Nash equilibria of the former.

Corollary 4.14. For any fixed d, a (directed or undirected) graphical game
of maximum degree d can be mapped in polynomial time to an undirected graphical
game of maximum degree 3 so that there is a polynomial-time computable surjective
mapping g from the Nash equilibria of the latter to the Nash equilibria of the former.

Corollary 4.15. For any fixed r > 1, an r-player normal form game can
be mapped in polynomial time to a 10-player normal form game so that there is a
polynomial-time computable surjective mapping g from the Nash equilibria of the latter
to the Nash equilibria of the former.

Proof. Theorem 4.11 converts an r-player game G into a graphical game GG based
on a graph of degree 3. Theorem 4.7 converts GG to a 10-player game G′, whose Nash
equilibria encode the Nash equilibria of GG and hence of G. (Note that for d an odd
number, the proof of Theorem 4.7 implies a reduction to a (d2 + 1)-player normal
form game.)

We next prove a stronger result, by exploiting in more detail the structure of the
graphical games GG constructed in the proof of Theorem 4.11. The technique used
here will be used in section 4.5 to strengthen the result even further.

Theorem 4.16. For any fixed r > 1, an r-player normal form game can be
mapped in polynomial time to a four-player normal form game so that there is a
polynomial-time computable surjective mapping g from the Nash equilibria of the latter
to the Nash equilibria of the former.

Proof. Construct G′ from G as shown in Figure 10.
Polynomial size of G′ = f(G). By Theorem 4.11, GG (as constructed in Figure 10)

is of polynomial size. The size of GG′ is at most three times the size of GG since we
do not need to apply Step 3 to any edges that are themselves constructed by an
earlier iteration of Step 3. Finally, the size of G′ is polynomial in the size of GG′ from
Theorem 4.7.

Construction of g(NG′) (for NG′ a Nash equilibrium of G′). Let g1 be a surjective
mapping from the Nash equilibria of GG to the Nash equilibria of G, which is guaran-
teed to exist by Theorem 4.11. It is trivial to construct a surjective mapping g2 from
the Nash equilibria of GG′ to the Nash equilibria of GG. By Theorem 4.7, there exists
a surjective mapping g3 from the Nash equilibria of G′ to the Nash equilibria of GG′.
Therefore, g3 ◦ g2 ◦ g1 is a surjective mapping from the Nash equilibria of G′ to the
Nash equilibria of G.

4.5. Reducing to three players. We will strengthen Theorem 4.16 to reduce
an r-player normal form game to a three-player normal form game. The following
theorem together with Theorems 4.7 and 4.11 imply the first part of Theorem 4.1.

Theorem 4.17. For any fixed r > 1, an r-player normal form game can be
mapped in polynomial time to a three-player normal form game so that there is a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 229

Input: Normal form game G with r players, n strategies per player, utilities {up
s :

p ≤ r, s ∈ S}.
Output: Four-player normal form game G′.

1. Let GG be the graphical game constructed from G according to Figure 9.
Recall that the affects graph G = (V ∪ W, E) of GG has the following
properties:

• Every edge e ∈ E is from a vertex of set V to a vertex of set W or
vice versa.

• Every vertex of set W has indegree at most 3 and outdegree at most
1 and every vertex of set V has indegree at most 1 and outdegree at
most 2.

2. Color the graph (V ∪W, E) of GG as follows: let c(w) = 1 for all W -vertices
w and c(v) = 2 for all V -vertices v.

3. Construct a new graphical game GG′ from GG as follows. While there exist
v1, v2 ∈ V , w ∈ W , (v1, w), (v2, w) ∈ E with c(v1) = c(v2):
(a) Every W -vertex has at most 1 outgoing edge, so assume (w, v1) �∈ E.
(b) Add v(v1) to V , add w(v1) to W .
(c) Replace (v1, w) with (v1, w(v1)), (w(v1), v(v1)), (v(v1), w(v1)),

(v(v1), w). Let c(w(v1)) = 1, choose c(v(v1)) ∈ {2, 3, 4} �= c(v′) for
any v′ with (v′, w) ∈ E. Payoffs for w(v1) and v(v1) are chosen us-
ing Proposition 4.2 with α = 1 such that in any Nash equilibrium,
p[v(v1)] = p[v1].

4. The coloring c : V ∪ W → {1, 2, 3, 4} has the property that, for every
vertex v of GG′, its neighborhood N (v) in the affects graph of the game—
recall that it consists of v and all its predecessors—is colored with |N (v)|
distinct colors. Rescale all utilities of GG′ to [0,1] and map game GG′ to a
four-player normal form game G′ following Steps 3 through 5 of Figure 7.

Fig. 10. Reduction from normal form game G to four-player game G′.

polynomial-time computable surjective mapping g from the Nash equilibria of the latter
to the Nash equilibria of the former.

Proof. The bottleneck of the construction of Figure 10 in terms of the number
k of players of the resulting normal form game G′ lies entirely on the ability or lack
thereof to color the vertices of the affects graphs of GG with k colors so that, for every
vertex v, its neighborhood N (v) in the affects graph is colored with |N (v)| distinct
colors, i.e., on whether there exists a legal k-coloring. In Figure 10, we show how to
design a graphical game GG′ which is equivalent to GG—in the sense that there exists
a surjective mapping from the Nash equilibria of the former to the Nash equilibria
of the latter—and can be legally colored using four colors. However, this cannot be
improved to three colors since the addition game G+ and the multiplication game G∗,
which are essential building blocks of GG, have vertices with indegree 3 (see Figure 5)
and, therefore, need at least four colors to be legally colored. Therefore, to improve
our result we need to redesign addition and multiplication games which can be legally
colored using three colors.

Notation. In the following,
• x = y ± ε denotes y − ε ≤ x ≤ y + ε;
• v : s denotes “player v plays strategy s.”

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

230 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

v′1

w2

v2

v′2

w3

v3
w

u

v1

w1

Fig. 11. The new addition/multiplication game and its legal 3-coloring.

Proposition 4.18. Let α, β, γ be nonnegative integers such that α + β + γ ≤ 3.
There is a graphical game G+,∗ with two “input players” v1 and v2, one “output
player” v3, and several intermediate players, with the following properties:

• The graph of the game can be legally colored using three colors.
• For any ε ∈ [0, 0.01], at any ε-Nash equilibrium of game G+,∗ it holds that

p[v3] = min{1, αp[v1]+βp[v2]+γp[v1]p[v2]}±81ε; in particular at any Nash
equilibrium p[v3] = min{1, αp[v1] + βp[v2] + γp[v1]p[v2]}.

Proof. The graph of the game and the labeling of the vertices is shown in Figure
11.

All players of G+,∗ have strategy set {0, 1} except for player v′2 who has three
strategies {0, 1, ∗}. Below we give the payoff tables of all the players of the game. For
ease of understanding we partition the game G+,∗ into four subgames.

1. Game played by players v1, w1, v
′
1:

Payoffs to v′1:
w1 : 0 w1 : 1

v1
′ : 0 0 1

v1
′ : 1 1 0

Payoffs to w1:

w1 : 0 :
v1

′ : 0 v1
′ : 1

v1 : 0 0 0
v1 : 1 1/8 1/8

w1 : 1 :
v1

′ : 0 v1
′ : 1

v1 : 0 0 1
v1 : 1 0 1

2. Game played by players v2
′, w3, v3:

Payoffs to v3:
w3 : 0 w3 : 1

v3 : 0 0 1
v3 : 1 1 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 231

Payoffs to w3:

w3 : 0 :

v3 : 0 v3 : 1
v′2 : 0 0 0
v′2 : 1 0 0
v′2 : ∗ 8 8

w3 : 1 :

v3 : 0 v3 : 1
v′2 : 0 0 1
v′2 : 1 0 1
v′2 : ∗ 0 1

3. Game played by players v2, w2, v
′
2:

Payoffs to w2:

w2 : 0 :

v2 : 0 v2 : 1
v′2 : 0 0 1/8
v′2 : 1 0 1/8
v′2 : ∗ 0 1/8

w2 : 1 :

v2 : 0 v2 : 1
v′2 : 0 0 0
v′2 : 1 1 1
v′2 : ∗ 0 0

Payoffs to v′2:

v′2 : 0 :
w2 : 0 w2 : 1

u : 0 0 1
u : 1 0 0

v′2 : 1 :
w2 : 0 w2 : 1

u : 0 1 0
u : 1 1 0

v′2 : ∗ :
w2 : 0 w2 : 1

u : 0 0 0
u : 1 0 1

4. Game played by players v′1, v
′
2, w, u:

Payoffs to w:

w : 0 :

v′1 : 0 v′1 : 1
v′2 : 0 0 α
v′2 : 1 1 + β 1 + α + β + 8γ
v′2 : ∗ 0 α

w : 1 :

v′1 : 0 v′1 : 1
v′2 : 0 0 0
v′2 : 1 1 1
v′2 : ∗ 1 1

Payoffs to u:

w : 0 w : 1
u : 0 0 1
u : 1 1 0

Claim 1. At any ε-Nash equilibrium of G+,∗, p[v′1] = 1
8p[v1] ± ε.

Proof. If w1 plays 0, then the expected payoff to w1 is 1
8p[v1], whereas if w1

plays 1, the expected payoff to w1 is p[v′1]. Therefore, in an ε-Nash equilibrium, if
1
8p[v1] > p[v′1] + ε, then p[w1] = 0. However, note also that if p[w1] = 0, then
p[v′1] = 1, which is a contradiction to 1

8p[v1] > p[v′1]+ ε. Consequently, 1
8p[v1] cannot

be strictly larger than p[v′1] + ε. On the other hand, if p[v′1] > 1
8p[v1] + ε, then

p[w1] = 1 and consequently p[v′1] = 0, a contradiction. The claim follows from the
above observations.

Claim 2. At any ε-Nash equilibrium of G+,∗, p[v′2 : 1] = 1
8p[v2] ± ε.

Proof. If w2 plays 0, then the expected payoff to w2 is 1
8p[v2], whereas, if w2 plays

1, the expected payoff to w2 is p[v′2 : 1].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

232 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

If, in an ε-Nash equilibrium, 1
8p[v2] > p[v′2 : 1]+ε, then p[w2] = 0. In this regime,

the payoff to player v′2 is 0 if v′2 plays 0, 1 if v′2 plays 1, and 0 if v′2 plays ∗. Therefore,
p[v′2 : 1] = 1 and this contradicts the hypothesis that 1

8p[v2] > p[v′2 : 1] + ε.
On the other hand, if, in an ε-Nash equilibrium, p[v′2 : 1] > 1

8p[v2] + ε, then
p[w2] = 1. In this regime, the payoff to player v′2 is p[u : 0] if v′2 plays 0, 0 if v′2
plays 1, and p[u : 1] if v′2 plays ∗. Since p[u : 0] + p[u : 1] = 1, it follows that
p[v′2 : 1] = 0 because at least one of p[u : 0], p[u : 1] will be greater than ε. This
contradicts the hypothesis that p[v′2 : 1] > 1

8p[v2] + ε and the claim follows from the
above observations.

Claim 3. At any ε-Nash equilibrium of G+,∗, p[v′2 : ∗] = α
8 p[v1] + β

8 p[v2] +
γ
8p[v1]p[v2] ± 10ε.

Proof. If w plays 0, then the expected payoff to w is αp[v′1] + (1 + β)p[v′2 : 1] +
8γp[v′1]p[v′2 : 1], whereas, if w plays 1, the expected payoff to w is p[v′2 : 1]+p[v′2 : ∗].

If, in an ε-Nash equilibrium,

αp[v′1] + (1 + β)p[v′2 : 1] + 8γp[v′1]p[v′2 : 1] > p[v′2 : 1] + p[v′2 : ∗] + ε,

then p[w] = 0 and, consequently, p[u] = 1. In this regime, the payoff to player
v′2 is 0 if v′2 plays 0, p[w2 : 0] if v′2 plays 1, and p[w2 : 1] if v′2 plays ∗. Since
p[w2 : 0] + p[w2 : 1] = 1, it follows that at least one of p[w2 : 0], p[w2 : 1] will be
larger than ε so that p[v′2 : 0] = 0 or, equivalently, that p[v′2 : 1] + p[v′2 : ∗] = 1. So
the hypothesis can be rewritten as αp[v′1] + (1+ β)p[v′2 : 1]+ 8γp[v′1]p[v′2 : 1] > 1 + ε.
Using Claims 1 and 2 and the fact that ε ≤ 0.01, this inequality implies that

α

8
p[v1] +

1 + β

8
p[v2] +

γ

8
p[v1]p[v2] + (α + 1 + β + 3γ)ε > 1 + ε

and further that α+1+β+γ
8 + (α + 1 + β + 3γ)ε > 1 + ε. We supposed α + β + γ ≤ 3;

therefore, the previous inequality implies that 1
2 + 10ε > 1 + ε, a contradiction since

we assumed ε ≤ 0.01.
On the other hand, if, in an ε-Nash equilibrium, p[v′2 : 1] + p[v′2 : ∗] > αp[v′1] +

(1 + β)p[v′2 : 1] + 8γp[v′1]p[v′2 : 1] + ε, then p[w] = 1 and consequently p[u] = 0. In
this regime, the payoff to player v′2 is p[w2 : 1] if v′2 plays 0, p[w2 : 0] if v′2 plays 1,
and 0 if v′2 plays ∗. Since p[w2 : 0]+p[w2 : 1] = 1, it follows that p[v′2 : ∗] = 0. So the
hypothesis can be rewritten as 0 > αp[v′1] + βp[v′2 : 1] + 8γp[v′1]p[v′2 : 1] + ε, which is
a contradiction.

Therefore, in any ε-Nash equilibrium,

p[v′2 : 1] + p[v′2 : ∗] = αp[v′1] + (1 + β)p[v′2 : 1] + 8γp[v′1]p[v′2 : 1] ± ε,

or, equivalently,

p[v′2 : ∗] = αp[v′1] + βp[v′2 : 1] + 8γp[v′1]p[v′2 : 1] ± ε.

Using Claims 1 and 2, this can be restated as p[v′2 : ∗] = α
8 p[v1]+β

8p[v2]+γ
8p[v1]p[v2]±

10ε.
Claim 4. At any ε-Nash equilibrium of G+,∗,

p[v3] = min{1, αp[v1] + βp[v2] + γp[v1]p[v2]} ± 81ε.

Proof. If w3 plays 0, the expected payoff to w3 is 8p[v′2 : ∗], whereas, if w3

plays 1, the expected payoff to w3 is p[v3]. Therefore, in an ε-Nash equilibrium,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 233

if p[v3] > 8p[v′2 : ∗] + ε, then p[w3] = 1 and, consequently, p[v3] = 0, which is a
contradiction to p[v3] > 8p[v′2 : ∗] + ε.

On the other hand, if 8p[v′2 : ∗] > p[v3] + ε, then p[w3] = 0 and consequently
p[v3] = 1. Hence, p[v3] cannot be less than min{1, 8p[v′2 : ∗] − ε}.

From the above observations it follows that p[v3] = min{1, 8p[v′2 : ∗]} ± ε and,
using Claim 3, p[v3] = min{1, αp[v1] + βp[v2] + γp[v1]p[v2]} ± 81ε.

It remains to show that the graph of the game can be legally colored using three
colors. The coloring is shown in Figure 11.

Now that we have our hands on the game G+,∗ of Proposition 4.18, we can reduce
r-player games to three-player games, for any fixed r, using the algorithm of Figure 10
with the following tweak: In the construction of game GG at Step 1 of the algorithm,
instead of using the addition and multiplication gadgets G+, G∗ of section 4.1, we use
our more elaborate G+,∗ gadget. Let us call the resulting game GG. We will show that
we can construct a graphical game GG′ which is equivalent to GG in the sense that
there is a surjective mapping from the Nash equilibria of GG′ to the Nash equilibria
of GG and which, moreover, can be legally colored using three colors. Then we can
proceed as in Step 4 of Figure 10 to get the desired three-player normal form game
G′.

The construction of GG′ and its coloring can be done as follows: Recall that all our
gadgets have some distinguished vertices which are the inputs and one distinguished
vertex which is the output. The gadgets are put together to construct GG by identifying
the output vertices of some gadgets as the input vertices of other gadgets. It is easy to
see that we get a graphical game with the same functionality if, instead of identifying
the output vertex of some gadget with the input of another gadget, we interpose a
sequence of two G= games between the two gadgets to be connected, as shown in
Figure 12. If we “glue” our gadgets in this way, then the resulting graphical game
GG′ can be legally colored using three colors:

i. (Stage 1) Legally color the vertices inside the “initial gadgets” using three
colors.

ii. (Stage 2) Extend the coloring to the vertices that serve as “connections”
between gadgets; any 3-coloring of the initial gadgets can be extended to a
3-coloring of GG′ because, for any pair of gadgets G1, G2 which are connected
(Figure 12) and for any colors assigned to the output vertex a of gadget G1

and the input vertex e of gadget G2, the intermediate vertices b, c, and d can
be also colored legally. For example, if vertex a gets color 1 and vertex e color
2 at stage 1, then, at stage 2, b can be colored 2, c can be colored 3, and d
can be colored 1.

This completes the proof of the theorem.

4.6. Preservation of approximate equilibria. Our reductions so far map
exact equilibrium points. In this section we generalize to approximate equilibria and
prove the second part of Theorem 4.1. We claim that the reductions of the previous
sections translate the problem of finding an ε-Nash equilibrium of a game to the
problem of finding an ε′-Nash equilibrium of its image, for ε′ polynomial in ε and
inverse polynomial in the size of the game. As a consequence, we obtain polynomial-
time equivalence results for the problems r-Nash and d-graphical Nash. To prove
the second part of Theorem 4.1, we extend Theorems 4.7, 4.11, and 4.17 of the previous
sections.

Theorem 4.19. For every fixed d > 1, there is a polynomial-time reduction from
d-graphical Nash to (d2 + 1)-Nash.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

234 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���Gadget Gadget

���
���
���
���
���

���
���
���
���
���

G1

a b c d e

G2

Input node of

Output node of

gadget G2

gadget G1

G= game
G= game

Fig. 12. The interposition of two G= games between gadgets G1 and G2 does not change the game.

Proof. Let G̃G be a graphical game of maximum degree d and GG the resulting
graphical game after rescaling all utilities by 1/ max{ũ}, where max {ũ} is the largest
entry in the utility tables of game G̃G, so that they lie in the set [0, 1], as in the
first step of Figure 7. Assume that ε < 1. In time polynomial in |GG| + log(1/ε),
we will specify a normal form game G and an accuracy ε′ with the property that,
given an ε′-Nash equilibrium of G, one can recover in polynomial time an ε-Nash
equilibrium of GG. This will be enough, since an ε-Nash equilibrium of GG is trivially
an ε · max {ũ}-Nash equilibrium of game G̃G and, moreover, |GG| is polynomial in
|G̃G|.

We construct G using the algorithm of Figure 7; recall that M ≥ 2n
r , where r is

the number of color classes specified in Figure 7 and n is the number of vertices in GG
after the possible addition of dummy vertices to make sure that all color classes have
the same number of vertices (as in Step 3 of Figure 7). Let us choose ε′ ≤ ε(r

n − 1
M)d;

we will argue that from any ε′-Nash equilibrium of game G one can construct in
polynomial time an ε-Nash equilibrium of game GG.

Suppose that p = c(v) for some vertex v of the graphical game GG. As in the
proof of Theorem 4.7, Lemma 4.10, it can be shown that in any ε′-Nash equilibrium
of the game G,

Pr(p plays v) ∈
[

r

n
− 1

M
,
r

n
+

1
M

]
.

Now, without loss of generality, assume that p is odd (pursuer) and suppose that v is
vertex v

(p)
i in the notation of Figure 7. Then, in an ε′-Nash equilibrium of the game

G, we have, by the definition of a Nash equilibrium, that for all strategies a, a′ ∈ Sv

of vertex v,

E [payoff to p for playing (v, a)] > E [payoff to p for playing (v, a′)] + ε′ ⇒ xp
(v,a′) = 0.

But

E [payoff to p for playing (v, a)] = M · Pr
(
p + 1 plays v

(p+1)
i

)
+

∑
s∈SN(v)\{v}

uv
as

∏
u∈N (v)\{v}

x
c(u)
(u,su),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 235

and similarly for a′. Therefore, the previous inequality implies∑
s∈SN(v)\{v}

uv
as

∏
u∈N (v)\{v}

x
c(u)
(u,su) >

∑
s∈SN(v)\{v}

uv
a′s

∏
u∈N (v)\{v}

x
c(u)
(u,su) + ε′ ⇒ xp

(v,a′) = 0.

So, letting

xv
a = x

c(v)
(v,a)

/ ∑
j∈Sv

x
c(v)
(v,j) ∀v ∈ V, a ∈ Sv,

as we did in the proof of Theorem 4.7, we get that, for all v ∈ V , a, a′ ∈ Sv,

∑
s∈SN(v)\{v}

uv
as

∏
u∈N (v)\{v}

xu
su

>
∑

s∈SN(v)\{v}

uv
a′s

∏
u∈N (v)\{v}

xu
su

+ ε′/T ⇒ xv
a′ = 0,

(13)

where T =
∏

u∈N (v)\{v}
∑

j∈Su
x

c(u)
(u,j) =

∏
u∈N (v)\{v} Pr[c(u) plays u] ≥ (r

n − 1
M)d.

By the definition of ε′ it follows that ε′/T ≤ ε. Hence, from (13) it follows that
{xv

a}v,a is an ε-Nash equilibrium of the game GG.
We have the following extension of Theorem 4.11.
Theorem 4.20. For every fixed r > 1, there is a polynomial-time reduction from

r-Nash to 3-graphical Nash with two strategies per vertex.
Proof. Let G̃ be a normal form game with r players, 1, 2, . . . , r, and strategy sets

Sp = [n] for all p ∈ [r], and let {ũp
s : p ∈ [r], s ∈ S} be the utilities of the players.

Denote by G the game constructed at the first step of Figure 9 which results from G̃
after rescaling all utilities by 1/ max{ũp

s} so that they lie in [0, 1]; let {up
s : p ∈ [r], s ∈

S} be the utilities of the players in game G. Also, let ε < 1. In time polynomial
in |G| + log(1/ε), we will specify a graphical game GG and an accuracy ε′ with the
property that, given an ε′-Nash equilibrium of GG, one can recover in polynomial time
an ε-Nash equilibrium of G. This will be enough, since an ε-Nash equilibrium of G is
trivially an ε ·max {ũp

s}-Nash equilibrium of game G̃ and, moreover, |G| is polynomial
in |G̃|. In our reduction, the graphical game GG will be the same as the one described
in the proof of Theorem 4.11 (Figure 9), while the accuracy specification will be of
the form ε′ = ε/p(|G|), where p(·) is a polynomial that will be specified later. We
will use the same labels for the vertices of the game GG that we used in the proof of
Theorem 4.11.

Suppose NGG is some ε′-Nash equilibrium of the game GG and let {p[v(xp
j)]}j,p

denote the probabilities with which the vertices v(xp
j) of GG play strategy 1. In the

proof of Theorem 4.11 we considered the following mapping from the Nash equilibria
of game GG to the Nash equilibria of game G:

xp
j := p[v(xp

j)] ∀p and j.(14)

Although (14) succeeds in mapping exact equilibrium points, it fails for approximate
equilibria, as specified by the following remark—its justification follows from the proof
of Lemma 4.21.

Remark 2. For any ε′ > 0, there exists an ε′-Nash equilibrium of game GG such
that

∑
j p[v(xp

j)] �= 1, for some player p ≤ r, and, moreover, p[v(Up
j)] > p[v(Up

j′)]+ε′,
for some p ≤ r, j and j′, and, yet, p[v(xp

j′)] > 0.
Recall from section 4.3, that, for all p, j, the probability p[v(Up

j)] represents the
utility of player p for playing pure strategy j, when the other players play according to

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

236 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

{xq
j := p[v(xq

j)]}j,q 	=p.5 Therefore, not only do the {xp
j := p[v(xp

j)]}j not necessarily
constitute a distribution—this could be easily fixed by rescaling—but also the defining
property of an approximate equilibrium (2) is in question. The following lemma
bounds the deviation from the approximate equilibrium conditions.

Lemma 4.21. In any ε′-Nash equilibrium of the game GG,
(i) for all p ∈ [r], |

∑
j p[v(xp

j)] − 1| ≤ 2cnε′, and
(ii) for all p ∈ [r], j, j′ ∈ [n], p[v(Up

j)] > p[v(Up
j′)] + 5cnε′ ⇒ p[v(xp

j′)] ∈ [0, cnε′],
where c ≥ 1 is the maximum error amplification of the gadgets used in the construction
of GG.

Proof. Note that at an ε′-Nash equilibrium of game GG the following properties
are satisfied for all p ∈ [r] by the vertices of game GG, since the error amplification of
the gadgets is at most c:

p

[
v

(
n∑

i=1

xp
i

)]
= 1,(15)

p

[
v

(
j∑

i=1

xp
i

)]
= p

[
v

(
j+1∑
i=1

xp
i

)]
· (1 − p[vp

j]) ± cε′ ∀j < n,(16)

p
[
v(xp

j+1)
]

= p

[
v

(
j+1∑
i=1

xp
i

)]
· p[vp

j] ± cε′ ∀j < n,(17)

p [v(xp
1)] = p

[
v

(
1∑

i=1

xp
i

)]
± cε′.(18)

Proof of (i). By successive applications of (16) and (17), we deduce

n∑
j=1

p[v(xp
j)] =

n∑
j=2

{
p

[
v

(
j∑

i=1

xp
i

)]
· p[vp

j−1]

}
+ p

[
v

(
1∑

i=1

xp
i

)]
± cnε′

=
n∑

j=2

{
p

[
v

(
j∑

i=1

xp
i

)]
· p[vp

j−1]

}

+

(
p

[
v

(
2∑

i=1

xp
i

)]
· (1 − p[vp

1]) ± cε′

)
± cnε′

=
n∑

j=3

{
p

[
v

(
j∑

i=1

xp
i

)]
· p[vp

j−1]

}
+ p

[
v

(
2∑

i=1

xp
i

)]
± c(n + 1)ε′

= . . .

= p

[
v

(
n∑

i=1

xp
i

)]
± c(2n − 1)ε′

= 1 ± c(2n − 1)ε′.

Proof of (ii). Let us first observe the behavior of vertices w(Up
j) and vp

j in an
ε′-Nash equilibrium.

5Note, however, that, since we are considering an ε′-Nash equilibrium of game GG, (11) of sec-
tion 4.3 will be satisfied only approximately as specified by Lemma 4.23.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 237

• Behavior of w(Up
j) vertices: The utility of vertex w(Up

j) for playing strategy
0 is p[v(Up

≤j)], whereas for playing 1 it is p[v(Up
j+1)]. Therefore,

p[v(Up
≤j)] > p[v(Up

j+1)] + ε′ ⇒ p[w(Up
j)] = 0,

p[v(Up
j+1)] > p[v(Up

≤j)] + ε′ ⇒ p[w(Up
j)] = 1,

|p[v(Up
j+1)] − p[v(Up

≤j)]| ≤ ε′ ⇒ p[w(Up
j)] can be anything.

• Behavior of vp
j vertices: The utility of vertex vp

j for playing strategy 0 is
1 − p[w(Up

j)], whereas for playing 1 it is p[w(Up
j)]. Therefore,

p[w(Up
j)] < 1−ε′

2 ⇒ p[vp
j] = 0,

p[w(Up
j)] > 1+ε′

2 ⇒ p[vp
j] = 1,

|p[w(Up
j)] − 1

2 | ≤
ε′
2 ⇒ p[vp

j] can be anything.
Note that, since the error amplification of the gadget Gmax is at most c and computing
p[v(Up

≤j)] for all j requires j applications of Gmax,

p[v(Up
≤j)] = max

i≤j
p[v(Up

i)] ± cε′j.(19)

To establish the second part of the claim, we need to show that, for all p, j, j′,

p[v(Up
j)] > p[v(Up

j′)] + 5cnε′ ⇒ p[v(xp
j′)] ∈ [0, ncε′].

1. Note that, if there exists some j′′ < j′ such that p[v(Up
j′′)] > p[v(Up

j′)]+ cε′n,
then

p[v(Up
≤j′−1)] = max

i≤j′−1
p[v(Up

i)] ± cε′(j′ − 1)

≥ p[v(Up
j′′)] − cε′(j′ − 1)

> p[v(Up
j′)] + cnε′ − cε′(j′ − 1) ≥ p[v(Up

j′)] + ε′.

Then, because p[v(Up
≤j′−1)] > p[v(Up

j′)] + ε′, it follows that p[w(Up
j′−1)] = 0

and p[vp
j′−1] = 0. Therefore,

p[v(xp
j′)] = p

⎡⎣v

⎛⎝ j′∑
i=1

xp
i

⎞⎠⎤⎦ · p[vp
j′−1] ± cε′ = ±cε′.

2. The case j < j′ reduces to the previous for j′′ = j.
3. It remains to deal with the case j > j′, under the assumption that, for all

j′′ < j′,

p[v(Up
j′′)] ≤ p[v(Up

j′)] + cε′n,

which, in turn, implies

p[v(Up
≤j′)] < p[v(Up

j′)] + 2cε′n (by (19)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

238 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Let us further distinguish the following subcases.
(a) If there exists some k, j′+1 ≤ k ≤ j, such that p[v(Up

k)] > p[v(Up
≤k−1)]+

ε′, then

p[w(Up
k−1)] = 1

⇒ p[vp
k−1] = 1

⇒ p

[
v

(
k−1∑
i=1

xp
i

)]
= p

[
v

(
k∑

i=1

xp
i

)]
(1 − p[vp

k−1]) ± cε′ = ±cε′

⇒ p

⎡⎣v

⎛⎝ j′∑
i=1

xp
i

⎞⎠⎤⎦ = ±(k − j′)cε′
(by successive applications
of (16)

)
⇒ p

[
v(xp

j′)
]

= ±ncε′ (by (17), (18)).

(b) If, for all k, j′ + 1 ≤ k ≤ j, it holds that p[v(Up
k)] ≤ p[v(Up

≤k−1)] + ε′,
we will show a contradiction; hence, only the previous case can hold.
Towards a contradiction, we argue first that

p[v(Up
≤j′+1)] ≥ p[v(Up

j)] − 2cnε′.

To show this, we distinguish the cases j = j′ + 1, j > j′ + 1.
• In the case j = j′ + 1, we have

p[v(Up
≤j′+1)] ≥ max {p[v(Up

j′+1)],p[v(Up
≤j′)]} − cε′ ≥ p[v(Up

j′+1)] − cε′

= p[v(Up
j)] − cε′.

• In the case j > j′ + 1, we have, for all k, j′ + 2 ≤ k ≤ j,

p[v(Up
≤k−1)] ≥ max {p[v(Up

≤k−1)],p[v(Up
k)]}−ε′ ≥ p[v(Up

≤k)]−cε′−ε′,

where the last inequality holds since the game Gmax has error am-
plification at most c. Summing these inequalities for j′ +2 ≤ k ≤ j,
we deduce that

p[v(Up
≤j′+1)] ≥ p[v(Up

≤j)] − (cε′ + ε′)(n − 2)

≥ max {p[v(Up
j)],p[v(Up

≤j−1)]} − cε′ − (cε′ + ε′)(n − 2)

≥ p[v(Up
j)] − 2cε′n.

It follows that

p[v(Up
≤j′+1)] > p[v(Up

j′)] + 3cnε′.

But

p[v(Up
≤j′+1)] ≤ max {p[v(Up

j′+1)],p[v(Up
≤j′)]} + cε′,

and recall that

p[v(Up
≤j′)] < p[v(Up

j′)] + 2cε′n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 239

We can deduce that

max {p[v(Up
j′+1)],p[v(Up

≤j′)]} = p[v(Up
j′+1)],

which, combined with the above, implies

p[v(Up
j′+1)] ≥ p[v(Up

j′)] + 3cnε′ − cε′ > p[v(Up
≤j′)] + ε′.

From Lemma 4.21, it follows that the extraction of an ε-Nash equilibrium of game
G from an ε′-Nash equilibrium of game GG cannot be done by just interpreting the
values {xp

j := p[v(xp
j)]}j as the mixed strategy of player p. What we show next is

that, for the right choice of ε′, a trim and renormalize transformation succeeds in
deriving an ε-Nash equilibrium of game G from an ε′-Nash equilibrium of game GG.
Indeed, for all p ≤ r, suppose that {x̂p

j}j are the values derived from {xp
j}j by setting

x̂p
j =

{
0 if xp

j ≤ cnε′,

xp
j otherwise

and then renormalizing the resulting values {x̂p
j}j so that

∑
j x̂p

j = 1.
Lemma 4.22. There exists a polynomial p(·) such that, if {{xp

j}j}p is an ε/p(|G|)-
Nash equilibrium of game GG, then the trimmed and renormalized values {{x̂p

j}j}p

constitute an ε-Nash equilibrium of game G.
Proof. We first establish the following useful lemma.
Lemma 4.23. At an ε′-Nash equilibrium of game GG, for all p, j, it holds that

p[v(Up
j)] =

∑
s∈S−p

up
jsx

1
s1
· · ·xp−1

sp−1
xp+1

sp+1
· · ·xr

sr
± 2nr−1ζr,

where c is the maximum error amplification of the gadgets used in the construction of
GG, ζr = cε′ + ((1 + ζ)r − 1)(cε′ + 1), ζ = 2r log n cε′.

Proof. Using the same notation as in section 4.3, let S−p = {S−p(1), . . . , S−p(nr−1)},
so that

∑
s∈S−p

up
jsxs =

nr−1∑
�=1

up
jS−p(�)xS−p(�).

Recall that in GG, for each partial sum
∑z

�=1 up
jS−p(�)xS−p(�), 1 ≤ z ≤ nr−1, we have

included vertex v(
∑z

�=1 up
jS−p(�)xS−p(�)). Similarly, for each partial product of the

summands up
js

∏
p	=q≤z xq

sq
, 0 ≤ z ≤ r, we have included vertex v(up

js

∏
p	=q≤z xq

sq
).

Note that, since we have rescaled the utilities to the set [0, 1], all partial sums and
products must also lie in [0, 1]. Note, moreover, that to avoid large degrees in the
resulting graphical game, each time we need to make use of a value xq

sq
we create a

new copy of the vertex v(xq
sq

) using the gadget G= and, then, use the new copy for the
computation of the desired partial product; an easy calculation shows that we have to
make (r − 1)nr−1 copies of v(xq

sq
), for all q ≤ r, sq ∈ Sq. To limit the degree of each

vertex to 3, we create a binary tree of copies of v(xq
sq

) with (r−1)nr−1 leaves and use
each leaf once. Then, because of the error amplification of G=, this already induces
an error of ±�log (r − 1)nr−1�cε′ to each of the factors of the partial products. The
following lemma characterizes the error that results from the error amplification of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

240 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

our gadgets in the computation of the partial products and can be proved easily by
induction.

Lemma 4.24. For all p ≤ r, j ∈ Sp, s ∈ S−p, and z ≤ r,

p

⎡⎣v

⎛⎝up
js

∏
p	=�≤z

x�
s�

⎞⎠⎤⎦ = up
js

∏
p	=�≤z

x�
s�
± ζz ,(20)

where ζz = cε′ + ((1 + ζ)z − 1)(cε′ + 1), ζ = 2r log n cε′.
The following lemma characterizes the error in the computation of the partial

sums and can be proved by induction using the previous lemma for the base case.
Lemma 4.25. For all p ≤ r, j ∈ Sp, and z ≤ nr−1,

p

[
v

(
z∑

�=1

up
jS−p(�)xS−p(�)

)]
=

z∑
�=1

up
jS−p(�)xS−p(�) ± (zζr + (z − 1)cε′),(21)

where ζr is defined as in Lemma 4.24.
From Lemma 4.25 we can deduce, in particular, that for all p ≤ r, j ∈ Sp,

p[v(Up
j)] =

∑
s∈S−p

up
jsxs ± 2nr−1ζr.

Lemma 4.26. For all p ≤ r, j ∈ Sp,∣∣∣∣∣∣
∑

s∈S−p

up
jsxs −

∑
s∈S−p

up
jsys

∣∣∣∣∣∣ ≤ max
s∈S−p

{up
js}

∑
q 	=p

∑
i∈Sq

|xq
i − yq

i |.

Proof. We have∣∣∣∣∣∣
∑

s∈S−p

up
jsxs −

∑
s∈S−p

up
jsys

∣∣∣∣∣∣ ≤
∑

s∈S−p

up
js |xs − ys| ≤ max

s∈S−p

{up
js}

∑
s∈S−p

|xs − ys| .(22)

Let us denote by X q the random variable, ranging over the set Sq, which represents
the mixed strategy {xq

i }i∈Sq , q ≤ r. Similarly, define the random variable Yq from the
mixed strategy {yq

i }i∈Sq , q ≤ r. Note, then, that 1
2

∑
s∈S−p

|xs − ys| is precisely the
total variation distance between the vector random variable (X q)q 	=p and the vector
random variable (Yq)q 	=p. That is,

1
2

∑
s∈S−p

|xs − ys| = ||(X q)q 	=p − (Yq)q 	=p||TV .(23)

By the coupling lemma, we have that

||(X q)q 	=p − (Yq)q 	=p||TV ≤ Pr ((X q)q 	=p �= (Yq)q 	=p)

for any coupling of (X q)q 	=p and (Yq)q 	=p. Applying a union bound to the right-hand
side of the above implies

||(X q)q 	=p − (Yq)q 	=p||TV ≤
∑
q 	=p

Pr (X q �= Yq) .(24)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 241

Now let us fix a coupling between (X q)q 	=p and (Yq)q 	=p so that, for all q �= p,

Pr (X q �= Yq) = ||X q − Yq||TV .

Such a coupling exists by the coupling lemma for each q �= p individually, and for the
whole vectors (X q)q 	=p and (Yq)q 	=p it exists because also the X q’s are independent,
and so are the Yq’s. Then (24) implies that

||(X q)q 	=p − (Yq)q 	=p||TV ≤
∑
q 	=p

||X q − Yq||TV ,

so that from (22), (23) we get∣∣∣∣∣∣
∑

s∈S−p

up
jsxs −

∑
s∈S−p

up
jsys

∣∣∣∣∣∣ ≤ max
s∈S−p

{up
js}2

∑
q 	=p

||X q − Yq||TV .(25)

Now, note that, for all q,

||X q − Yq||TV =
1
2

∑
i∈Sq

|xq
i − yq

i |.

Hence, (25) implies∣∣∣∣∣∣
∑

s∈S−p

up
jsxs −

∑
s∈S−p

up
jsys

∣∣∣∣∣∣ ≤ max
s∈S−p

{up
js}

∑
q 	=p

∑
i∈Sq

|xq
i − yq

i |.

We can conclude the proof of Lemma 4.22 by invoking Lemmas 4.23 and 4.26.
Indeed, by the definition of the {x̂p

j}, it follows that for all p, j ∈ Sp,

x̂p
j =

{
xp

j

Λp , xp
j > cnε′,

0, xp
j ≤ cnε′,

where

1 ≥ Λp =
∑
j∈Sp

xp
jX{xp

j >cnε′} = 1 −
∑
j∈Sp

xp
jX{xp

j≤cnε′} ≥ 1 − n · cnε′,

where X{·} is the indicator function. Therefore,

|x̂p
j − xp

j | =

{
xp

j

Λp − xp
j , xp

j > cnε′,

xp
j , xp

j ≤ cnε′,

which implies

|x̂p
j − xp

j | ≤
{

1
Λp − 1, xp

j > cnε′,

cnε′, xp
j ≤ cnε′.

Thus,

|x̂p
j − xp

j | ≤ max
{

cnε′,
n2cε′

1 − n2cε′

}
=: δ1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

242 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

which by Lemma 4.26 implies that∣∣∣∣∣∣
∑

s∈S−p

up
jsxs −

∑
s∈S−p

up
jsx̂s

∣∣∣∣∣∣ ≤ max
s∈S−p

{up
js}(r − 1)nδ1 ≤ (r − 1)nδ1 =: δ2,(26)

where the second inequality follows from the fact that we have rescaled the utilities
so that they lie in [0, 1].

Choosing ε′ = ε
40cr2nr+1 , we will argue that the conditions of an ε-Nash equilib-

rium are satisfied by the mixed strategies {x̂p
j}p,j. First, note that

(1 + 2r log n cε′)r − 1 ≤
(
1 +

ε

20rnr

)r

− 1 ≤ exp
{ ε

20nr

}
− 1 ≤ ε

10nr
,

which implies that

2nr−1ζr ≤ 2nr−1
(
cε′ +

ε

10nr
(cε′ + 1)

)
≤ 2nr−1 1.5ε

10nr
=

3ε

10n
≤ 0.3ε

n
.

Also, note that

δ1 = max
{

cnε′,
n2cε′

1 − n2cε′

}
≤ 2n2cε′,

which gives

δ2 = (r − 1)nδ1 ≤ rn2n2c
ε

40cr2nr+1
≤ ε

20r
.

Thus, for all p ≤ r, j, j′ ∈ Sp, we have that∑
s∈S−p

up
jsx̂s >

∑
s∈S−p

up
j′sx̂s + ε

⇒
∑

s∈S−p

up
jsxs + δ2 >

∑
s∈S−p

up
j′sxs − δ2 + ε (using (26))

⇒
∑

s∈S−p

up
jsxs >

∑
s∈S−p

up
j′sxs + ε − 2δ2

⇒ p[v(Up
j)] + 2nr−1ζr > p[v(Up

j′)] − 2nr−1ζr + ε − 2δ2 (using Lemma 4.23)

⇒ p[v(Up
j)] > p[v(Up

j′)] − 4nr−1ζr + ε − 2δ2

⇒ p[v(Up
j)] > p[v(Up

j′)] + 5cnε′

⇒ xp
j′ ≤ cnε′ (using Lemma 4.21)

⇒ x̂p
j′ = 0.

Therefore, {x̂p
j} is indeed an ε-Nash equilibrium of game G, which concludes the proof

of Lemma 4.22.
Thus, the proof of Theorem 4.20 is completed.
We have the following extension of Theorem 4.17.
Theorem 4.27. For every fixed r > 1, there is a polynomial-time reduction from

r-Nash to 3-Nash.
Proof. The proof follows immediately from the proofs of Theorems 4.19 and

4.20. Indeed, observe that the reduction of Theorem 4.20 still holds when we use

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 243

the gadget G+,∗ of section 4.5 for the construction of our graphical games, since the
gadget G+,∗ has constant error amplification. Therefore, the problem of computing an
ε-Nash equilibrium of an r-player normal form game G can be polynomially reduced
to computing an ε′-Nash equilibrium of a graphical game GG′ which can be legally
colored with three colors (after performing the “glueing” step described in the end of
the proof of Theorem 4.17 and appropriately adjusting the ε′ specified in the proof
of Theorem 4.20). Observe, further, that the reduction of Theorem 4.19 can be used
to map the latter to computing an ε′′-Nash equilibrium of a three-player normal form
game G′′, since the number of players that are required for G′′ is equal to the minimum
number of colors needed for a legal coloring of GG′. The claim follows by combining
the reductions.

4.7. Reductions between different notions of approximation. We estab-
lish a polynomial-time reduction from the problem of computing an approximately
well-supported Nash equilibrium to the problem of computing an approximate Nash
equilibrium. As pointed out in section 2, the reduction in the opposite direction is triv-
ial, since an ε-approximately well-supported Nash equilibrium is also an ε-approximate
Nash equilibrium.

Lemma 4.28. Given an ε-approximate Nash equilibrium {xp
j}j,p of a game G,

we can compute in polynomial time a
√

ε · (√ε + 1 + 4(r − 1)max {u})-approximately
well-supported Nash equilibrium {x̂p

j}j,p, where r is the number of players in G and
max {u} is the maximum entry in the payoff tables of G.

Proof. Since {xp
j}j,p is an ε-approximate Nash equilibrium, it follows that for

every player p ≤ r and every mixed strategy {yp
j }j for that player∑

s∈S

up
s · xs−p · xp

sp
≥
∑
s∈S

up
s · xs−p · yp

sp
− ε.

Equivalently,

(27)
∀p ≤ r, ∀ {yp

j }j∈Sp :

∑
j∈Sp

⎡⎣ ∑
s−p∈S−p

up
js−p

xs−p

⎤⎦xp
j ≥

∑
j∈Sp

⎡⎣ ∑
s−p∈S−p

up
js−p

xs−p

⎤⎦ yp
j − ε.

For all p ≤ r, denote Up
j =

∑
s−p∈S−p

up
js−p

xs−p for all j ∈ Sp, and Up
max = maxj Up

j .
Then, if we choose {yp

j }j to be some pure strategy from the set arg maxj Up
j , (27)

implies

∀p ≤ r :
∑
j∈Sp

Up
j xp

j ≥ Up
max − ε.(28)

Now, let us fix some player p ≤ r. We want to upper-bound the probability mass
that the distribution {xp

j}j assigns to pure strategies j ∈ Sp which give expected
utility Up

j more than an additive εk smaller than Up
max, for some k to be specified

later. The following bound is easy to derive using (28).
Claim 5. For all p, set

zp =
∑
j∈Sp

xp
j · X{Up

j <Up
max−εk},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

244 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

where XA is the characteristic function of the event A. Then

zp ≤ 1
k

.

Let us consider then the strategy profile {x̂p
j}j,p defined as follows:

∀p, j ∈ Sp : x̂p
j =

⎧⎪⎨⎪⎩
xp

j

1−zp , Up
j ≥ Up

max − εk,

0 otherwise.

We establish the following bound on the L1 distance between the strategy profiles
{xp

j}j and {x̂p
j}j .

Claim 6. For all p,
∑

j∈Sp
|xp

j − x̂p
j | ≤ 2

k−1 .
Proof. Denote Sp,1 := {j | j ∈ Sp,Up

j ≥ Up
max − εk} and Sp,2 := Sp \ Sp,1. Then∑

j∈Sp

|xp
j − x̂p

j | =
∑

j∈Sp,1

|xp
j − x̂p

j | +
∑

j∈Sp,2

|xp
j − x̂p

j |

=
∑

j∈Sp,1

∣∣∣∣∣xp
j −

xp
j

1 − zp

∣∣∣∣∣+ ∑
j∈Sp,2

|xp
j |

=
∑

j∈Sp,1

∣∣∣∣∣xp
j −

xp
j

1 − zp

∣∣∣∣∣+ zp

≤ zp

1 − zp

∑
j∈Sp,1

xp
j + zp

≤ 1
k − 1

+
1
k
≤ 2

k − 1
.

Now, for all players p, let Ûp
j and Ûp

max be defined similarly to Up
j and Up

max.
Recall Lemma 4.26 from section 4.6.

Lemma 4.29. For all p, j ∈ Sp,

|Up
j − Ûp

j | ≤ max
s∈S−p

{up
js}

∑
p′ 	=p

∑
j∈Sp′

|xp′
j − x̂p′

j |.

Let us then take Δ2 = 2 r−1
k−1 maxp,j∈Sp,s∈S−p {u

p
js}. Claim 6 and Lemma 4.29

imply that the strategy profile {x̂p
j}j,p satisfies

∀p, ∀j ∈ Sp : |Up
j − Ûp

j | ≤ Δ2.

We will establish that {x̂p
j}j,p is an (εk + 2Δ2)-Nash equilibrium. Equivalently, we

shall establish that

∀p, ∀i, j ∈ Sp : Ûp
j < Ûp

i − (εk + 2Δ2) ⇒ x̂p
j = 0.

Indeed,

Ûp
j < Ûp

i − (εk + 2Δ2) ⇒ Up
j − Δ2 < Up

i + Δ2 − (εk + 2Δ2)

⇒ Up
j < Up

i − (εk + 2Δ2 − 2Δ2)

⇒ Up
j < Up

max − εk

⇒ x̂p
j = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 245

Taking k = 1+ 1√
ε
, it follows that {x̂p

j}j,p is a
√

ε · (
√

ε+ 1+4(r− 1)max{up
js})-Nash

equilibrium.

5. The main reduction. We prove our main result, namely, the following the-
orem.

Theorem 5.1. Both 3-Nash and 3-graphical Nash are PPAD-complete.
Proof. That 3-Nash is in PPAD follows from Theorem 3.1. That 3-graphical

Nash is in PPAD follows by reducing it to 3-Nash, by Theorem 4.1, and then
invoking Theorem 3.1. We hence focus on establishing the PPAD-hardness of the
problems.

The reduction is from the problem Brouwer defined in section 3.3. Given an
instance of Brouwer, that is, a circuit C with 3n input bits and 2 output bits
describing a Brouwer function as specified in section 3.3, we construct a graphical game
G, with maximum degree 3 that simulates the circuit C, and specify an accuracy ε, so
that, given an ε-Nash equilibrium of G, one can find in polynomial time a panchromatic
vertex of the Brouwer instance. Then, since, by Theorem 4.1, 3-graphical Nash

reduces to 3-Nash, this completes the proof.
The graphical game G that we construct will be binary, in that each vertex v in

it will have two strategies, and thus, at equilibrium, will represent a real number in
[0, 1], denoted p[v]. (Letting 0 and 1 denote the strategies, p[v] is the probability
that v plays 1.) There will be three distinguished vertices vx, vy, and vz which will
represent the coordinates of a point in the three-dimensional cube and the construction
will guarantee that in any Nash equilibrium of game G this point will be close to a
panchromatic vertex of the given Brouwer instance.

The building blocks of G will be the game gadgets Gα,G×α,G=,G+,G−,G∗ that we
constructed in section 4.1 plus a few new gadgets. Recall the following lemma from
Propositions 4.2, 4.3, and 4.5 and Figures 4, 3, and 5.

Lemma 5.2. There exist binary graphical games Gα, where α is any rational in
[0, 1], G×α, where α is any nonnegative rational, G=,G+,G−,G∗, with at most four
players a, b, c, d each, such that, in all games, the payoffs of a and b do not depend
on the choices of the other vertices c, d, and, for ε < 1,

1. in every ε-Nash equilibrium of game Gα, we have p[d] = α ± ε;
2. in every ε-Nash equilibrium of game G×α, we have p[d] = min(1, αp[a]) ± ε;
3. in every ε-Nash equilibrium of game G=, we have p[d] = p[a] ± ε;
4. in every ε-Nash equilibrium of game G+, we have p[d] = min{1,p[a]+p[b]}±ε;
5. in every ε-Nash equilibrium of game G−, we have p[d] = max{0,p[a]−p[b]}±ε;
6. in every ε-Nash equilibrium of game G∗, we have p[d] = p[a] · p[b] ± ε;

where by x = y ± ε we denote y − ε ≤ x ≤ y + ε.
Let us further define a comparator game G<.
Lemma 5.3. There exists a binary graphical game G< with three players a, b, and

d such that the payoffs of a and b do not depend on the choices of d and, in every
ε-Nash equilibrium of the game, with ε < 1, it holds that p[d] = 1 if p[a] < p[b] − ε,
and p[d] = 0 if p[a] > p[b] + ε.

Proof. Let us define the payoff table of player d as follows: d receives a payoff of
1 if d plays 0 and a plays 1; and d receives a payoff of 1 if d plays 1 and b plays 1;
otherwise d receives a payoff of 0. Equivalently, d receives an expected payoff of p[a]
if d plays 0, and an expected payoff of p[b] if d plays 1. It immediately follows that
if in an ε-Nash equilibrium p[a] < p[b] − ε, then p[d] = 1, whereas, if p[a] > p[b] + ε,
p[d] = 0.

Notice that, in G<, p[d] is arbitrary if |p[a]−p[b]| ≤ ε; hence we call it the brittle

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

246 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

b

<

d

f

a

e

=

1

Fig. 13. Brittleness of comparator games.

comparator. As an aside, it is not hard to see that a robust comparator, one in which
d is guaranteed, in an exact Nash equilibrium, to be, say, 0 if p[a] = p[b], cannot exist,
since it could be used to produce a simple graphical game with no Nash equilibrium,
contradicting Nash’s theorem. For completeness we present such a game in Figure 13,
where vertices e and b constitute a G1 game so that, in any Nash equilibrium, p[b] = 1,
vertices d, f , a constitute a G= game so that, in any Nash equilibrium, p[a] = p[d]
and vertices a, b, d constitute a comparator game with the hypothetical behavior that
p[d] = 1 if p[a] < p[b] and p[d] = 0 if p[a] ≥ p[b]. Then it is not hard to argue that,
contrary to Nash’s theorem, the game of Figure 13 does not have a Nash equilibrium:
Indeed if, in a Nash equilibrium, p[a] = 1, then p[d] = 0, since p[a] = 1 = p[b], and so
p[a] = p[d] = 0, by G=, a contradiction. On the other hand, if, in a Nash equilibrium,
p[a] < 1, then p[d] = 1, since p[a] < 1 = p[b], and so p[a] = p[d] = 1, by G=, again a
contradiction.

To continue with our reduction from Brouwer to 3-graphical nash, we include
the following vertices to the graphical game G:

• the three coordinate vertices vx, vy, vz ;
• for i ∈ {1, 2, . . . , n}, vertices vbi(x), vbi(y), and vbi(z), whose p values corre-

spond to the ith most significant bit of p[vx], p[vy], p[vz];
• for i ∈ {1, 2, . . . , n}, vertices vxi , vyi , and vzi , whose p values correspond to

the fractional number resulting from subtracting from p[vx], p[vy], p[vz] the
fractional numbers corresponding to the i − 1 most significant bits of p[vx],
p[vy], p[vz], respectively.

We can extract these values by computing the binary representation of �p[vx]2n�
and similarly for vy and vz , that is, the binary representations of the integers i, j, k
such that (x, y, z) = (p[vx],p[vy],p[vz]) lies in the cubelet Kijk. This is done by a
graphical game that simulates, using the arithmetical gadgets of Lemmas 5.2 and 5.3,
the following algorithm (< (a, b) is 1 if a ≤ b and 0 if a > b):

x1 = x;
for i = 1, . . . , n do:

{bi(x) :=< (2−i, xi); xi+1 := xi − bi(x) · 2−i};
similarly for y and z;

This is accomplished in G by connecting these vertices as prescribed by Lemmas 5.2
and 5.3, so that p[vxi],p[vbi(x)], etc., approximate the value of xi, bi(x), etc., as
computed by the above algorithm. The following lemma (when applied with m = n)
shows that this device properly decodes the first n bits of the binary expansion of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 247

x = p[vx], as long as x is not too close to a multiple of 2−n (suppose ε � 2−n to be
fixed later).

Lemma 5.4. For m ≤ n, if
∑m

i=1 bi2−i+3mε < p[vx] <
∑m

i=1 bi2−i+2−m−3mε
for some b1, . . . , bm ∈ {0, 1}, then, in every ε-Nash equilibrium of G, p[vbj(x)] = bj,
and p[vxj+1] = p[vx] −

∑j
i=1 bi2−i ± 3jε, for all j ≤ m.

Proof. The proof is by induction on j. For j = 1, the hypothesis
∑m

i=1 bi2−i +
3mε < p[vx] <

∑m
i=1 bi2−i + 2−m − 3mε implies, in particular, that

b1

2
+ 3ε ≤

m∑
i=1

bi2−i + 3mε < p[vx] <

m∑
i=1

bi2−i + 2−m − 3mε ≤ b1

2
+

1
2
− 3ε,

and since p[vx1] = p[vx] ± ε, it follows that

b1

2
+ 2ε < p[vx1] <

b1

2
+

1
2
− 2ε.

By Lemma 5.3, this implies that p[vb1(x)] = b1; note that the preparation of the
constant 1

2—against which a comparator game compares the value p[vx1]—is done
via a G 1

2
game which introduces an error of ±ε. For the computation of p[vx2],

the multiplication of p[vb1(x)] by 1
2 and the subtraction of the product from p[vx1]

introduce an error of ±ε each and, therefore, p[vx2] = p[vx1] − b1
1
2 ± 2ε. And, since

p[vx1] = p[vx] ± ε, it follows that p[vx2] = p[vx] − b1
1
2 ± 3ε, as required.

Supposing that the claim holds up to j−1 ≤ m−1, we will show that it holds for
j. By the induction hypothesis, we have that p[vxj] = p[vx]−

∑j−1
i=1 bi2−i ± 3(j − 1)ε.

Combining this with
∑m

i=1 bi2−i + 3mε < p[vx] <
∑m

i=1 bi2−i + 2−m − 3mε, it follows
that

m∑
i=j

bi2−i + 3(m − (j − 1))ε < p[vxj] <

m∑
i=j

bi2−i + 2−m − 3(m − (j − 1))ε,

which implies

bj

2j
+ 2ε < p[vxj] <

bj

2j
+

1
2j

− 2ε.

Continue as in the base case.
Assuming that x = p[vx], y = p[vy], z = p[vz] are all at distance greater than

3nε from any multiple of 2−n, the part of G that implements the above algorithm
computes i, j, k such that the point (x, y, z) lies in the cubelet Kijk; that is, there
are 3n vertices of the game G whose p values are equal to the n bits of the binary
representation of i, j, k. Once we have the binary representations of i, j, k, we can
feed them into another part of G that simulates the circuit C. We could simulate
the circuit by having vertices that represent gates, using addition (with ceiling 1)
to simulate or, multiplication for and, and 1 − x for negation. However, there is
a simpler way, one that avoids the complications related to accuracy, to simulate
Boolean functions under the assumption that the inputs are 0 or 1.

Lemma 5.5. There are binary graphical games G∨,G∧,G¬ with two input players
a, b (one input player a for G¬) and an output player c such that the payoffs of a and
b do not depend on the choices of c, and, at any ε-Nash equilibrium with ε < 1/4 in
which p[a],p[b] ∈ {0, 1}, p[c] is also in {0, 1}, and is in fact the result of applying the
corresponding Boolean function to the inputs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

248 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Proof. These games are in the same spirit as G<. In G∨, for example, the payoff
to c is 1/2 if it plays 0; if c plays 1 its payoff is 1 if at least one of a, b plays 1, and it
is 0 if they both play 0. Similarly for G∧ and G¬.

It would seem that all we have to do now is to close the loop as follows: In addition
to the part of G that computes the bits of i, j, k, we could have a part that simulates
circuit C in the neighborhood of Kijk and decides whether, among the vertices of the
cubelet Kijk, there is a panchromatic one; if not, the vertices vx, vy, and vz could be
incentivized to change their p values, say in the direction δC(i,j,k), or otherwise stay
put. To simulate a circuit evaluation in G we could have one vertex for each gate of
the circuit so that, in any ε-Nash equilibrium in which all the p[vbi(x)]’s are 0 − 1,
the vertices corresponding to the outputs of the circuit also play pure strategies, and,
furthermore, these strategies correspond correctly to the outputs of the circuit.

But, as we mentioned above, there is a problem: Because of the brittle compara-
tors, at the boundaries of the cubelets the vertices that should represent the values
of the bits of i, j, k hold in fact arbitrary reals and, therefore, so do the vertices
that represent the outputs of the circuit, and this noise in the calculation can create
spurious Nash equilibria. Suppose for example that (x, y, z) lies on the boundary
between two cubelets that have color 1, i.e., their centers are assigned vector δ1 by C,
and none of these cubelets has a panchromatic vertex. Then there ought not to be a
Nash equilibrium with p[vx] = x, p[vy] = y, p[vz] = z. We would want that, when
p[vx] = x, p[vy] = y, p[vz] = z, the vertices vx, vy, vz have the incentive to shift their
p values in direction δ1, so that vx prefers to increase p[vx]. However, on a boundary
between two cubelets, some of the “bit values” that get loaded into the vertices vbi(x)

could be other than 0 and 1, and then there is nothing we can say about the output
of the circuit that processes these values.

To overcome this difficulty, we resort to the following averaging maneuver : We
repeat the above computation not just for the point (x, y, z) but also for all M =
(2m + 1)3 points of the form (x + p · α, y + q · α, z + s · α) for −m ≤ p, q, s ≤ m,
where m is a large enough constant to be fixed later (we show below that m = 20
is sufficient). The vertices vx, vy, vz are then incentivized to update their values
according to the consensus of the results of these computations, most of which are
reliable, as we shall show next.

Let us first describe this averaging in more detail. It will be convenient to assume
that the output of C is a little more explicit than three bits: let us say that C computes
six bits Δx+, Δx−, Δy+, Δy−, Δz+, Δz−, such that at most one of Δx+, Δx− is 1,
at most one of Δy+, Δy− is 1, and similarly for z, and the increment of the Brouwer
function at the center of Kijk is α · (Δx+ −Δx−, Δy+ −Δy−, Δz+ −Δz−), equal to
one of the vectors δ0, δ1, δ2, δ3 specified in the definition of Brouwer, where recall
α = 2−2n.

The game G has the following structure: Starting from (x, y, z), some part of the
game is devoted to calculating the points (x+p·α, y+q ·α, z+s·α), −m ≤ p, q, s ≤ m.
Then, another part evaluates the circuit C on the binary representation of each of
these points yielding 6M output bits, Δx+

1 , . . . , Δz−M . A final part calculates the
following averages:

(δx+, δy+, δz+) =
α

M

M∑
t=1

(Δx+
t , Δy+

t , Δz+
t),(29)

(δx−, δy−, δz−) =
α

M

M∑
t=1

(Δx−
t , Δy−

t , Δz−t),(30)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 249

which correspond to the average positive, respectively negative, shift of all M points.
We have already described above how to implement the bit extraction and the

evaluation of a circuit using the gadgets of Lemmas 5.2, 5.3, and 5.5. The computation
of points (x+p·α, y+q·α, z+s·α) for all −m ≤ p, q, s ≤ m, is also easy to implement by
preparing the values α|p|, α|q|, α|s|, using gadgets Gα|p|, Gα|q|, Gα|s|, and then adding,
or subtracting, the results to x, y, and z, respectively—depending on whether p is
positive or not—and similarly for q and s. Of course, these computations are subject
to truncations at 0 and 1 (see Lemma 5.2).

To implement the averaging of (29) and (30) we must be careful on the order of
operations. Specifically, we first have to multiply the six outputs, Δx+

t , Δx−
t , Δy+

t ,
Δy−

t , Δz+
t , Δz−t , of each circuit evaluation by α

M using the G× α
M

gadget and, having
done so, we then implement the additions (29) and (30). Since α will be a very small
constant, by doing so we avoid undesired truncations at 0 and 1.

We can now close the loop by inserting equality, addition, and subtraction gadgets,
G=, G+, G−, that force, at equilibrium, x to be equal to (x′ + δx+)− δx−, where x′ is
a copy of x created using G=, and similarly for y and z. Note that in G we respect the
order of operations when implementing (x′+δx+)−δx− to avoid undesired truncations
at 0 or 1 as we shall see next. This concludes the reduction; it is clear that it can be
carried out in polynomial time.

Our proof is concluded by the following claim. For the following lemma we choose
ε = α2. Recall from our definition of Brouwer that α = 2−2n.

Lemma 5.6. In any ε-Nash equilibrium of the game G, one of the vertices of the
cubelet(s) that contain (p[vx],p[vy],p[vz]) is panchromatic.

Proof. We start by pointing out a simple property of the increments δ0, . . . , δ3.
Lemma 5.7. Suppose that for nonnegative integers k0, . . . , k3 all three coordinates

of
∑3

i=0 kiδi are smaller in absolute value than αK
5 , where K =

∑3
i=0 ki. Then all

four ki are positive.
Proof. For the sake of contradiction, suppose that k1 = 0. It follows that k0 < K/5

(otherwise the negative x coordinate of
∑3

i=0 kiδi would be too large), and thus one
of k2, k3 is larger than 2K/5, which makes the corresponding coordinate of

∑3
i=0 kiδi

too large, a contradiction. Similarly if k2 = 0 or k3 = 0. Finally, if k0 = 0, then one of
k1, k2, k3 is at least K/3 and the associated coordinate of

∑3
i=0 kiδi is at least αK/3,

again a contradiction.
Let us denote by vδx+ , {vΔx+

t
}1≤t≤M the vertices of G that represent the values

δx+, {Δx+
t }1≤t≤M . To implement the averaging

δx+ =
α

M

M∑
t=1

Δx+
t

inside G, we first multiply each p[vΔx+
t
] by α

M using a G α
M

gadget and we then sum
the results by a sequence of addition gadgets. Since each of these operations induces
an error of ±ε and there are 2M − 1 operations, it follows that

p[vδx+] =
α

M

M∑
t=1

p[vΔx+
t
] ± (2M − 1)ε.(31)

Similarly, denoting by vδx− , {vΔx−
t
}1≤t≤M the vertices of G that represent the values

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

250 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

δx−, {Δx−
t }1≤t≤M , it follows that

p[vδx−] =
α

M

M∑
t=1

p[vΔx−
t
] ± (2M − 1)ε,(32)

and similarly for directions y and z.
We continue the proof by distinguishing two subcases for the location of (x, y, z) =

(p[vx],p[vy],p[vz]):
(a) the point (p[vx],p[vy],p[vz]) is further than (m + 1)α from every face of the

cube [0, 1]3;
(b) the point (p[vx],p[vy],p[vz]) is at distance at most (m + 1)α from some face

of the cube [0, 1]3.
Case (a). Denoting by vx+p·α the player of G that represents x + p · α, the small

value of ε relative to α implies that at most one of the values p[vx+p·α], −m ≤ p ≤ m,
can be 3nε-close to a multiple of 2−n, and similarly for the directions y and z. Indeed,
recall that x + p · α is computed from x by first preparing the value |p|α via a G|p|α
gadget and then adding or subtracting the result to x—depending on whether p is
positive or not—using G+ or G−. It follows that

p[vx+p·α] = p[vx] + p · α ± 2ε,(33)

since each gadget introduces an error of ±ε, where there are no truncations at 0 or 1,
because, by assumption, (m + 1)α < p[vx] < 1 − (m + 1)α. Consequently, for p > p′,

p[vx+p·α] − p[vx+p′·α] ≥ (p − p′) · α − 4ε > 6nε,

and, moreover,

p[vx+m·α] − p[vx−m·α] ≤ 2m · α + 4ε � 2−n,(34)

since m is a constant, α = 2−2n, ε = α2, and n is assumed to be large enough. Hence,
from among the M = (2m + 1)3 circuit evaluations, all but at most 3(2m + 1)2, or at
least K = (2m − 2)(2m + 1)2, compute legitimate, i.e., binary, Δx+, etc. values.

Let us denote by K ⊆ {−m, . . . , m}3, |K| ≥ K, the set of values (p, q, r) for which
the bit extraction from (p[vx+p·α],p[vy+q·α],p[vz+r·α]) results in binary outputs and,
consequently, so does the circuit evaluation. Let

SK =
α

M

∑
t∈K

(p[vΔx+
t
] − p[vΔx−

t
],p[vΔy+

t
] − p[vΔy−

t
],p[vΔz+

t
] − p[vΔz−

t
]),(35)

SKc =
α

M

∑
t/∈K

(p[vΔx+
t
] − p[vΔx−

t
],p[vΔy+

t
] − p[vΔy−

t
],p[vΔz+

t
] − p[vΔz−

t
]).(36)

Recall that we have inserted gadgets G+, G−, and G= in G to enforce that in a Nash
equilibrium x = x′ + δx+ − δx−, where x′ is a copy of x. Because of the defection of
the gadgets this will not be exactly tight in an ε-Nash equilibrium. More precisely,
denoting by vx′ the player of G corresponding to x′, the following are true in an ε-Nash
equilibrium:

p[vx′] = p[vx] ± ε,

p[vx] = p[v′x] + p[vδx+] − p[vδx−] ± 2ε,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 251

where for the second observe that both p[vδx+] and p[vδx−] are bounded above by
α + (2M − 1)ε so there will be no truncations at 0 or 1 when adding p[vδx+] to p[v′x]
and then subtracting p[vδx−]. By combining the above, we get

p[vδx+] − p[vδx−] = ±3ε

and, similarly, for y and z

p[vδy+] − p[vδy−] = ±3ε,

p[vδz+] − p[vδz−] = ±3ε.

Now, if we use (31), (32), (35), (36), we derive∣∣SK�
+ SKc

�

∣∣ ≤ (4M + 1)ε for � = x, y, z,

where SK�
, SKc

�
is the � coordinate of SK, SKc . Moreover, since |K| ≥ K, the

summation SKc
�

has at most M −K summands and because each of them is at most
α
M in absolute value, it follows that |SKc

�
| ≤ α

M (M −K) for all � = x, y, z. Therefore,
we have that ∣∣SK�

∣∣ ≤ (4M + 1)ε +
M − K

M
α for � = x, y, z.

Finally, note by the definition of the set K that, for all (p, q, r) ∈ K, the bit extraction
from (p[vx+p·α],p[vy+q·α],p[vz+r·α]) and the following circuit evaluation result in bi-
nary outputs. Therefore, SK = 1

M

∑3
i=0 kiδi for some nonnegative integers k0, . . . , k3

adding up to |K|. From the above we get that∣∣∣∣∣
3∑

i=0

kiδi

∣∣∣∣∣
∞

≤ (4M + 1)Mε + (M − K)α ≤ (4M + 1)Mε + 3(2m + 1)2α.

By choosing m = 20, the bound becomes less than αK/5, and so Lemma 5.7 applies.
It follows that, among the results of the |K| circuit computations, all four δ0, . . . , δ3

appeared. And, since every point on which the circuit C is evaluated is within �1

distance at most 3mα + 6ε � 2−n from the point (x, y, z), as (33) dictates, this
implies that among the corners of the cubelet(s) containing (x, y, z) there must be
one panchromatic corner, completing the proof of Lemma 5.6 for case (a).

Case (b). We will show that there is no ε-Nash equilibrium in which (p[vx],p[vy],
p[vz]) is within distance (m + 1)α from a face of [0, 1]3. We will argue so only for the
case

p[vx] ≤ (m + 1)α,

(m + 1)α < p[vy] < 1 − (m + 1)α,

(m + 1)α < p[vz] < 1 − (m + 1)α;

the other cases follow similarly.
First, we show that, for all −m ≤ p ≤ m, the bit extraction from p[vx+p·α] results

in binary outputs. From the proof of Lemma 5.4 it follows that, to show this, it is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

252 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

enough to establish that p[vx+pα] < 2−n − 3nε, for all p. Indeed, for p ≥ 0, (33)
applies because there are no truncations at 1 at the addition gadget. So for p ≥ 0 we
get

p[vx+p·α] ≤ p[vx] + p · α + 2ε ≤ (m + 1)α + mα + 2ε � 2−n − 3nε.

On the other hand, for p < 0, there might be a truncation at 0 when we subtract the
value |p|α from p[vx]. Nevertheless, we have that

p[vx+p·α] = max{ 0 , p[vx] − (|p|α ± ε) } ± ε

≤ p[vx] + 2ε ≤ (m + 1)α + 2ε � 2−n − 3nε.

Therefore, for all −m ≤ p ≤ m, the bit extraction from p[vx+p·α] is successful, i.e.,
results in binary outputs.

For the directions y and z the picture is exactly the same as in case (a) and,
therefore, there exists at most one q,−m ≤ q ≤ m, and at most one r, −m ≤ r ≤
m, for which the bit extraction from p[vy+q·α] and p[vz+r·α] fails. Therefore, from
among the M = (2m + 1)3 points of the form (p[vx+p·α],p[vy+q·α],p[vz+r·α]), the bit
extraction succeeds in all but at most 2(2m + 1)2 of them.

Therefore, at least K ′ = (2m−1)(2m+1)2 circuit evaluations are successful, i.e.,
in binary arithmetic, and, moreover, they correspond to points inside cubelets of the
form Kijk with i = 0. In particular, from (34) and the analogous equations for the
y and z coordinates, it follows that the successful circuit evaluations correspond to
points inside at most four neighboring cubelets of the form K0jk. Since these cubelets
are adjacent to the x = 0 face of the cube, from the properties of the circuit C in
the definition of the problem Brouwer, it follows that, among the outputs of these
evaluations, one of the vectors δ0, δ1, δ2, δ3 is missing. Without loss of generality, let
us assume that δ0 is missing. Then, since there are K ′ successful evaluations, one of
δ1, δ2, δ3 appears at least K ′/3 times.

If this is vector δ1 (a similar argument applies for the cases δ2, δ3), then denoting
by vx′+δx+ the player corresponding to x′ + δx+, the following should be true in an
ε-Nash equilibrium:

p[vx] + ε ≥ p[vx′] ≥ p[vx] − ε,

α + (2M − 1)ε ≥ p[vδx+] ≥ K ′

3M
α − (2M − 1)ε,

p[vx′+δx+] ≥ min(1,p[vx′] + p[vδx+]) − ε ≥ p[vx′] + p[vδx+] − ε,

M − K ′

M
α + (2M − 1)ε ≥ p[vδx−],

p[vx] ≥ max(0,p[vx′+δx+] − p[vδx−]) − ε ≥ p[vx′+δx+] − p[vδx−] − ε;

in the second inequality of the third line above, we used that p[vx] ≤ (m + 1)α.
Combining the above we get

p[vx] ≥ p[vx′] + p[vδx+] − p[vδx−] − 2ε

≥ p[vx] + p[vδx+] − p[vδx−] − 3ε

or equivalently that

p[vδx−] ≥ p[vδx+] − 3ε,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 253

which implies

M − K ′

M
α + (4M + 1)ε ≥ K ′

3M
α,

which is not satisfied by our selection of parameters.
To conclude the proof of Theorem 5.1, if we find any ε-Nash equilibrium of G,

Lemma 5.6 has shown that by reading off the first n binary digits of p[vx], p[vy], and
p[vz], we obtain a solution to the corresponding instance of Brouwer.

6. Further results and open problems.

6.1. Two players. Soon after our proof became available, Chen and Deng [7]
showed that our PPAD-completeness result can be extended to the important two-
player case. Here we present a rather simple modification of our proof from the
previous section establishing this result.

Theorem 6.1 (see [7]). 2-Nash is PPAD-complete.
Proof. Let us define d-additive graphical Nash to be the problem d-graphical

Nash restricted to bipartite graphical games with additive utility functions defined
next.

Definition 6.2. Let GG be a graphical game with underlying graph G = (V, E).
We call GG a bipartite graphical game with additive utility functions if G is a bipartite
graph and, moreover, for each vertex v ∈ V and for every pure strategy sv ∈ Sv of that
player, the expected payoff of v for playing the pure strategy sv is a linear function of
the mixed strategies of the vertices in Nv \ {v} with rational coefficients; that is, there
exist rational numbers {αsv

u,su
}u∈Nv\{v},su∈Su

, αsv
u,su

∈ [0, 1] for all u ∈ N (v) \ {v},
su ∈ Su, such that the expected payoff to vertex v for playing pure strategy sv is∑

u∈Nv\{v},su∈Su

αsv
u,su

p[u : su],

where p[u : su] denotes the probability that vertex u plays pure strategy su.
The proof is based on the following lemmas.
Lemma 6.3. Brouwer is poly-time reducible to 3-additive graphical Nash.
Lemma 6.4. 3-additive graphical Nash is poly-time reducible to 2-Nash.
Proof of Lemma 6.3. The reduction is almost identical to the one in the proof

of Theorem 5.1. Recall that given an instance of Brouwer, a graphical game was
constructed using the gadgets Gα,G×α,G=,G+,G−,G∗, G∨,G∧,G¬, and G>. In fact,
gadget G∗ is not required, since only multiplication by a constant is needed which
can be accomplished via the use of gadget G×α. Moreover, it is not hard to see, by
looking at the payoff tables of the gadgets defined in section 4.1 and Lemma 5.3, that
in gadgets Gα, G×α, G=, G+, G−, and G>, the noninput vertices have the additive utility
functions property of Definition 6.2. Let us further modify the games G∨,G∧,G¬ so
that their output vertices have the additive utility functions property.

Lemma 6.5. There are binary graphical games G∨,G∧,G¬ with two input players
a, b (one input player a for G¬) and an output player c such that the payoffs of a and
b do not depend on the choices of c, c’s payoff satisfies the additive utility functions
property, and, in any ε-Nash equilibrium with ε < 1/4 in which p[a],p[b] ∈ {0, 1},
p[c] is also in {0, 1}, and is in fact the result of applying the corresponding Boolean
function to the inputs.

Proof. For G∨, the payoff of player c is 0.5p[a] + 0.5p[b] for playing 1 and 1
4 for

playing 0. For G∧, the payoff of player c is 0.5p[a] + 0.5p[b] for playing 1 and 3
4 for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

254 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

playing 0. For G¬, the payoff of player c is p[a] for playing 0 and p[a : 0] for playing
1.

If the modified gadgets G∨,G∧,G¬ specified by Lemma 6.5 are used in the construc-
tion of Theorem 5.1, all vertices of the resulting graphical game satisfy the additive
utility functions property of Definition 6.2. To make sure that the graphical game is
also bipartite, we modify the gadgets G∨,G∧,G¬, and G> with the insertion of an extra
output vertex. The modification is the same for all four gadgets: Let c be the output
vertex of any of these gadgets; we introduce a new output vertex e, whose payoff
depends only on the strategy of c, but c’s payoff does not depend on the strategy of
e, and such that the payoff of e is p[c] for playing 1 and p[c : 0] for playing 0 (i.e.,
e “copies” c, if c’s strategy is pure). It is not hard to see that, for every gadget, the
new output vertex has the same behavior with regards to the strategies of the input
vertices as the old output vertex, as specified by Lemmas 5.3 and 6.5. Moreover, it is
not hard to verify that the graphical game resulting from the construction of Theorem
5.1 with the use of the modified gadgets G∨,G∧,G¬, and G> is bipartite; indeed, it
is sufficient to color blue the input and output vertices of all G×α, G=, G+, G−, G∨,
G∧, G¬, and G> gadgets used in the construction, blue the output vertices of all Gα

gadgets used, and red the remaining vertices.
Proof of Lemma 6.4. Let G̃G be a bipartite graphical game of maximum degree

3 with additive utility functions and GG the graphical game resulting after rescaling
all utilities to the set [0, 1], e.g., by dividing all utilities by max {ũ}, where max {ũ}
is the largest entry in the payoff tables of game G̃G. Also, let ε < 1. In time poly-
nomial in |GG| + log(1/ε), we will specify a two-player normal form game G and an
accuracy ε′ with the property that, given an ε′-Nash equilibrium of G, one can re-
cover in polynomial time an ε-Nash equilibrium of GG. This will be enough, since an
ε-Nash equilibrium of GG is trivially an ε ·max {ũ}-Nash equilibrium of game G̃G and,
moreover, |GG| is polynomial in |G̃G|.

The construction of G from GG is almost identical to the one described in Figure 7.
Let V = V1�V2 be the bipartition of the vertices of set V so that all edges are between
a vertex in V1 and a vertex in V2. Let us define c : V → {1, 2} as c(v) = 1 if and only if
v ∈ V1 and let us assume, without loss of generality, that |v : c(v) = 1| = |v : c(v) = 2|;
otherwise, we can add to GG isolated vertices to make up any shortfall. Suppose that
n is the number of vertices in GG (after the possible addition of isolated vertices) and
t the cardinality of the strategy sets of the vertices in V , and let ε′ = ε/n. Let us
then employ Steps 4 and 5 of the algorithm in Figure 7 to construct the normal form
game G from the graphical game GG; however, we choose M = 6tn

ε and we modify
Step 5(b) to read as follows:

(b)′ for v ∈ V and sv ∈ Sv, if c(v) = p and s contains (v, sv) and (u, su) for some
u ∈ N (v) \ {v}, su ∈ Su, then up

s = αsv
u,su

,
where we used the notation from Definition 6.2.

We argue next that, given an ε′-Nash equilibrium {xp
(v,a)}p,v,a of G, {xv

a}v,a is an
ε-Nash equilibrium of GG, where

xv
a = x

c(v)
(v,a)

/ ∑
j∈Sv

x
c(v)
(v,j) ∀v ∈ V, a ∈ Sv.

Suppose that p = c(v) for some vertex v of the graphical game GG. As in the proof
of Theorem 4.7, Lemma 4.10, it can be shown that in any ε′-Nash equilibrium of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 255

game G,

Pr(p plays v) ∈
[

2
n
− 1

M
,
2
n

+
1
M

]
.

Now, without loss of generality, assume that p = 1 (the pursuer) and suppose v is
vertex v

(p)
i , in the notation of Figure 7. Then, in an ε′-Nash equilibrium of the game

G, we have, by the definition of a Nash equilibrium, that for all strategies sv, s
′
v ∈ Sv

of vertex v,

(37)
E [payoff to p for playing (v, sv)] > E [payoff to p for playing (v, s′v)] + ε′ ⇒ xp

(v,s′
v) = 0.

But

E [payoff to p for playing (v, sv)] = M · Pr
(
p + 1 plays v

(p+1)
i

)
+

∑
u∈Nv\{v},su∈Su

αsv
u,su

x
c(u)
(u,su),

and similarly for s′v. Therefore, (37) implies∑
u∈Nv\{v},su∈Su

αsv
u,su

x
c(u)
(u,su) >

∑
u∈Nv\{v},su∈Su

α
s′

v
u,sux

c(u)
(u,su) + ε′ ⇒ xp

(v,s′
v) = 0.(38)

Lemma 6.6. For all v, a ∈ Sv,∣∣∣∣∣∣xv
a −

x
c(v)
(v,a)

2/n

∣∣∣∣∣∣ ≤ n

2M
.

Proof.∣∣∣∣∣∣xv
a −

x
c(v)
(v,a)

2/n

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x

c(v)
(v,a)

Pr(c(v) plays v)
−

x
c(v)
(v,a)

2/n

∣∣∣∣∣∣
=

x
c(v)
(v,a)

Pr(c(v) plays v)
|Pr(c(v) plays v) − 2/n|

2/n
≤ n

2M
,

where we used that
∑

j∈Sv
x

c(v)
(v,j) = Pr(c(v) plays v) and |Pr(c(v) plays v) − 2/n| ≤

1
M .

By (38) and Lemma 6.6, we get that, for all v ∈ V , sv, s
′
v ∈ Sv,∑

u∈Nv\{v},su∈Su

αsv
u,su

xu
su

>
∑

u∈Nv\{v},su∈Su

α
s′

v
u,suxu

su
+

n

2
ε′ + |Nv \ {v}|t n

M
⇒ xv

s′
v

= 0.

Since n
2 ε′ + |Nv \ {v}|t n

M ≤ ε, it follows that {xv
a}v,a is an ε-Nash equilibrium of the

game GG.
Thus, the proof of Theorem 6.1 is completed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

256 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

6.2. Approximate Nash equilibria. Our proof establishes that it is PPAD-
hard to find an approximate Nash equilibrium when the desired additive approxima-
tion ε is an inverse exponential in the size of the instance. What happens for larger
ε’s? Chen, Deng, and Teng [9] showed that, for any ε which is inverse polynomial in
n, computing an ε-Nash equilibrium in two-player games with n strategies per player
remains PPAD-complete; this is done by a modification of our reduction in which the
starting Brouwer problem is defined not on the three-dimensional cube, but in the
n-dimensional hypercube. Intuitively, the difference is this: In order to create the
exponentially many cells needed to embed the “line,” our construction had to resort
to exponentially small cell size; in contrast, the n-dimensional hypercube contains
exponentially many cells, all of reasonably large size.

The result of [9] implies that there is no fully polynomial-time approximation
scheme (a family of approximation algorithms that are polynomial in both the input
size and 1

ε). But is there a polynomial-time approximation scheme (family of poly-
nomial algorithms with 1

ε in the exponent)? This is a major question that is left
open.

And how about finitely large ε’s? Since the establishment of PPAD-completeness
of Nash, we have seen a sequence of polynomial algorithms for finding ε-approximate
Nash equilibria with ε = 0.5 [17], 0.39 [18], 0.37 [4]; the best known ε at the time of
writing is 0.34 [56].

6.3. Nash equilibria in graphical games. Besides normal form games, our
work settles the complexity of computing a Nash equilibrium in graphical games of
degree at most 3, again in the negative direction. Elkind, L. Goldberg, and P. Gold-
berg [24] showed that a Nash equilibrium of graphical games with maximum degree
2 and two strategies per player can be computed in polynomial time. Daskalakis and
Papadimitriou [20] described a polynomial-time approximation scheme for graphical
games with a constant number of strategies per player, bounded degree, and treewidth
at most logarithmic in the number of players. Can approximate Nash equilibria in
general graphical games be computed efficiently?

6.4. Special cases. Are there important and broad classes of games for which
the Nash equilibrium problem can be solved efficiently? It has been shown that finding
Nash equilibria in normal form games with all utilities either 1 or −1 (the so-called
win-lose games) remains PPAD-complete [1, 10]. Rather surprisingly, it was also
recently shown that, essentially, it is PPAD-complete to play even repeated games [3]
(the so-called “Folk theorem for repeated games” [52] notwithstanding).

On the positive side, Daskalakis and Papadimitriou [21, 22] developed a polynomial-
time approximation scheme for anonymous games (games in which the utility of each
player depends on her own strategy and the number of other players playing various
strategies, but not the identities of these players), when the number of strategies per
player is bounded. Although their algorithm is too inefficient to have a direct effect in
practice, it does remove the intractability obstacle for a very large class of multiplayer
games. Note that finding a Nash equilibrium in anonymous games is not known to
be PPAD-complete.

6.5. Further applications of our techniques. What is the complexity of the
Nash equilibrium problem in other classes of succinctly representable games with
many players (besides the graphical problems resolved in this paper)? For example,
are these problems even in PPAD? (It is typically easy to see that they cannot be easier
than the normal form problem.) Daskalakis, Fabrikant, and Papadimitriou [15] gave a

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 257

general sufficient condition, satisfied by all known succinct representations of games,
for membership of the Nash equilibrium problem in the class PPAD. The basic idea
is using the “arithmetical” gadgets in our present proof to simulate the calculation of
utilities in these succinct games. However, whether computing a sequential equilibrium
[46] in an extensive form game is in PPAD is left open.

Our technique can be used to treat two other open problems in complexity. One is
that of the complexity of simple stochastic games defined in [12], heretofore known to
be in TFNP, but not in any of the more specialized classes like PPAD or PLS. Now,
it is known that this problem is equivalent to evaluating combinational circuits with
max, min, and average gates. Since all three kinds of gates can be implemented
by the graphical games in our construction, it follows that solving simple stochastic
games is in PPAD.6

Similarly, by an explicit construction we can show the following.
Theorem 6.7. Let p : [0, 1] → R be any polynomial function such that p(0) < 0

and p(1) > 0. Then there exists a graphical game in which all vertices have two
strategies, 0 and 1, and in which the mixed Nash equilibria correspond to a particular
vertex v playing strategy 1 with probability equal to the roots of p(x) between 0 and 1.

Sketch of the Proof. Let p be described by its coefficients α0, α1, . . . , αn, so that

p(x) := αnxn + αn−1x
n−1 + · · · + α1x + α0.

Taking A := (
∑n

i=0 |αi|)−1, it is easy to see that the range of the polynomial q(x) :=
1
2Ap(x) + 1

2 is [0, 1], that q(0) < 1
2 , q(1) > 1/2, and that every point r ∈ [0, 1] such

that q(r) = 1
2 is a root of p. We define next a graphical game GG in which all vertices

have two strategies, 0 and 1, and a designated vertex v of GG satisfies the following:
(i) In any mixed Nash equilibrium of GG the probability xv

1 by which v plays
strategy 1 satisfies q(xv

1) = 1/2.
(ii) For any root r of p in [0, 1], there exists a mixed Nash equilibrium of GG in

which xv
1 = r.

The graphical game has the following structure:
• There is a component graphical game GGq with an “input vertex” v and

an “output vertex” u such that, in any Nash equilibrium of GG, the mixed
strategies of u and v satisfy xu

1 = q(xv
1); a graphical game which progressively

performs the computations required for the evaluation of q(·) on xv
1 can be

easily constructed using our game gadgets; note that the computations can
be arranged in such an order that no truncations at 0 or 1 happen (recall the
rescaling by 1

2A and the shifting around 1/2 done above).
• A comparator game G> (see Lemma 5.3) compares the mixed strategy of u

with the value 1
2 , prepared by a G1/2 gadget (see section 4.1), so that the

output vertex of the comparator game plays 0 if xu
1 > 1

2 , 1 if xu
1 < 1

2 , and
anything if xu

1 = 1
2 .

• We identify the output player of G> with player v.
It is not hard to see that GG satisfies properties (i) and (ii).

As a corollary of Theorem 6.7, it follows that fixed points of polynomials can be
computed by computing (exact) Nash equilibria of graphical games. Computing fixed
points of polynomials via exact Nash equilibria in graphical games can be extended
to the multivariate case again via the use of game gadgets to evaluate the polynomial
and the use of a series of G= gadgets to set the output equal to the input.

6One has to pay some attention to the approximation; see [25] for details.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

258 C. DASKALAKIS, P. GOLDBERG, AND C. PAPADIMITRIOU

Both this result and the result about simple stochastic games noted above were
shown independently by [25], while Theorem 6.7 was already shown by Bubelis [5].

REFERENCES

[1] T. G. Abbott, D. Kane, and P. Valiant, On the complexity of two-player win-lose games,
in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2005.

[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi, The relative complexity
of NP search problems, J. Comput. System Sci., 57 (1998), pp. 13–19.

[3] C. Borgs, J. Chayes, N. Immorlica, A. T. Kalai, V. Mirrokni, and C. H. Papadimitriou,
The myth of the folk theorem, in 40th ACM Symposium on Theory of Computing (STOC),
2008.

[4] H. Bosse, J. Byrka, and E. Markakis, New algorithms for approximate Nash equilibria
in bimatrix games, in 3rd International Workshop on Internet and Network Economics
(WINE), 2007.

[5] V. Bubelis, On equilibria in finite games, Internat. J. Game Theory, 8 (1979), pp. 65–79.
[6] G. J. Chang, W. Ke, D. Kuo, D. D. Liu, and R. K. Yeh, On L(d, 1)-labelings of graphs,

Discrete Math., 220 (2000), pp. 57–66.
[7] X. Chen and X. Deng, 3-NASH is PPAD-Complete, Technical report TR05-134, Electronic

Colloquium on Computational Complexity, 2005.
[8] X. Chen and X. Deng, Settling the complexity of 2-player Nash-equilibrium, in 47th Annual

IEEE Symposium on Foundations of Computer Science (FOCS), 2006.
[9] X. Chen, X. Deng, and S. Teng, Computing Nash equilibria: Approximation and smoothed

complexity, in 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2006.

[10] X. Chen, S. Teng, and P. Valiant, The approximation complexity of win-lose games, in 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[11] B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye, Leontief economies encode nonzero
sum two-player games, in 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006.

[12] A. Condon, The complexity of stochastic games, Inform. and Comput., 96 (1992), pp. 203–224.
[13] V. Conitzer and T. Sandholm, Complexity results about Nash equilibria, in 18th International

Joint Conference on Artificial Intelligence (IJCAI), 2003.
[14] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton,

NJ, 1963.
[15] C. Daskalakis, A. Fabrikant, and C. H. Papadimitriou, The game world is flat: The

complexity of Nash equilibria in succinct games, in 33rd International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2006.

[16] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, The complexity of computing
a Nash equilibrium, in 38th ACM Symposium on Theory of Computing (STOC), 2006.

[17] C. Daskalakis, A. Mehta, and C. H. Papadimitriou, A note on approximate Nash equilibria,
in 2nd International Workshop on Internet and Network Economics (WINE), 2006.

[18] C. Daskalakis, A. Mehta, and C. H. Papadimitriou, Progress in approximate Nash equilib-
ria, in 8th ACM Conference on Electronic Commerce (EC), 2007.

[19] C. Daskalakis and C. H. Papadimitriou, Three-Player Games Are Hard, Technical report
TR05-139, Electronic Colloquium on Computational Complexity, 2005.

[20] C. Daskalakis and C. H. Papadimitriou, Computing pure Nash equilibria via Markov random
fields, in 7th ACM Conference on Electronic Commerce (EC), 2006.

[21] C. Daskalakis and C. H. Papadimitriou, Computing equilibria in anonymous games, in 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2007.

[22] C. Daskalakis and C. H. Papadimitriou, Discretized multinomial distributions and Nash
equilibria in anonymous games, in 49th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2008.

[23] B. C. Eaves, Homotopies for computation of fixed points, Math. Program., 3 (1972), pp. 1–22.
[24] E. Elkind, L. A. Goldberg, and P. W. Goldberg, Nash equilibria in graphical games on

trees revisited, in 7th ACM Conference on Electronic Commerce (EC), 2006.
[25] K. Etessami and M. Yannakakis, On the complexity of Nash equilibria and other fixed points,

in 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2007.
[26] A. Fabrikant, C. H. Papadimitriou, and K. Talwar, The complexity of pure Nash equilibria,

in 36th ACM Symposium on Theory of Computing (STOC), 2004.
[27] C. B. Garcia, C. E. Lemke, and H. J. Luthi, Simplicial approximation of an equilibrium

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE COMPLEXITY OF COMPUTING A NASH EQUILIBRIUM 259

point of noncooperative N-person games, Math. Program., 4 (1973), pp. 227–260.
[28] J. Geanakoplos, Nash and Walras equilibrium via Brouwer, Econom. Theory, 21 (2003), pp.

385–603.
[29] I. Gilboa and E. Zemel, Nash and correlated equilibria: Some complexity considerations,

Games Econom. Behav., 1 (1989), pp. 80–93.
[30] P. W. Goldberg and C. H. Papadimitriou, Reducibility among equilibrium problems, in 38th

ACM Symposium on Theory of Computing (STOC), 2006.
[31] M. Hirsch, C. H. Papadimitriou, and S. Vavasis, Exponential lower bounds for finding

Brouwer fixed points, J. Complexity, 5 (1989), pp. 379–416.
[32] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy is local search?, J.

Comput. System Sci., 37 (1988), pp. 79–100.
[33] M. Kearns, M. Littman, and S. Singh, Graphical models for game theory, in 17th Conference

in Uncertainty in Artificial Intelligence (UAI), 2001.
[34] L. G. Khachiyan, A polynomial algorithm in linear programming, Soviet Math. Dokl., 20

(1979), pp. 191–194.
[35] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für

n-dimensionale Simplexe, Fund. Math., 14 (1929), pp. 132–137.
[36] G. van der Laan and A. J. J. Talman, A restart algorithm for computing fixed points without

an extra dimension, Math. Program., 17 (1979), pp. 74–84.
[37] G. van der Laan and A. J. J. Talman, On the computation of fixed points in product space

of unit simplices and an application to noncooperative N person games, Math. Oper. Res.,
7 (1982), pp. 1–13.

[38] C. E. Lemke and J. T. Howson, Jr., Equilibrium points of bimatrix games, SIAM J. Appl.
Math., 12 (1964), pp. 413–423.

[39] R. Lipton and E. Markakis, Nash equilibria via polynomial equations, in 6th Latin American
Symposium (LATIN), 2004.

[40] R. Lipton, E. Markakis, and A. Mehta, Playing large games using simple strategies, in 4th
ACM Conference on Electronic Commerce (EC), 2003.

[41] M. Littman, M. Kearns, and S. Singh, An efficient, exact algorithm for single connected
graphical games, in 15th Annual Conference on Neural Information Processing Systems
(NIPS), 2001.

[42] N. Megiddo and C. H. Papadimitriou, On total functions, existence theorems and computa-
tional complexity, Theoret. Comput. Sci., 81 (1991), pp. 317–324.

[43] J. Nash, Non-cooperative games, Ann. of Math. (2), 54 (1951), pp. 286–295.
[44] J. von Neumann, Zur Theorie der Gesellshaftsspiele, Math. Ann., 100 (1928), pp. 295–320.
[45] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton

University Press, Princeton, NJ, 1944.
[46] M. J. Osborne and A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, MA,

1994.
[47] C. H. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994.
[48] C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs

of existence, J. Comput. System Sci., 48 (1994), pp. 498–532.
[49] C. H. Papadimitriou, Computing correlated equilibria in multiplayer games, in 37th ACM

Symposium on Theory of Computing (STOC), 2005.
[50] C. H. Papadimitriou and T. Roughgarden, Computing equilibria in multi-player games, in

16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.
[51] J. Rosenmüller, On a generalization of the Lemke–Howson algorithm to noncooperative N-

person games, SIAM J. Appl. Math., 21 (1971), pp. 73–79.
[52] A. Rubinstein, Equilibrium in supergames with the overtaking criterion, J. Econom. Theory,

21 (1979), pp. 1–9.
[53] R. Savani and B. von Stengel, Exponentially many steps for finding a Nash equilibrium in

a bimatrix game, in 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2004.

[54] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math.,
15 (1967), pp. 1328–1343.

[55] G. Schoenebeck and S. Vadhan, The computational complexity of Nash equilibria in concisely
represented games, in 7th ACM Conference on Electronic Commerce (EC), 2006.

[56] H. Tsaknakis and P. G. Spirakis, An optimization approach for approximate Nash equilibria,
in 3rd International Workshop on Internet and Network Economics (WINE), 2007.

[57] R. Wilson, Computing equilibria of N-person games, SIAM J. Appl. Math., 21 (1971), pp. 80–
87.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

