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Abstract. Bilateral trade is a fundamental economic scenario compris-
ing a strategically acting buyer and seller (holding an item), each hold-
ing valuations for the item, drawn from publicly known distributions. It
was recently shown that the only mechanisms that are simultaneously
dominant strategy incentive compatible, strongly budget balanced, and
ex-post individually rational, are fixed price mechanisms, i.e., mecha-
nisms that are parametrised by a price p, and trade occurs if and only
if the valuation of the buyer is at least p and the valuation of the seller
is at most p. The gain from trade (GFT) is the increase in welfare that
results from applying a mechanism. We study the GFT achievable by
fixed price mechanisms. We explore this question for both the bilateral
trade setting and a double auction setting where there are multiple i.i.d.
unit demand buyers and sellers. We first identify a fixed price mechanism
that achieves a GFT of at least 2/r times the optimum, where r is the
probability that the seller’s valuation does not exceed that of the buyer’s
valuation. This extends a previous result by McAfee. Subsequently, we
improve this approximation factor in an asymptotic sense, by showing
that a more sophisticated rule for setting the fixed price results in a GFT
within a factor O(log(1/r)) of the optimum. This is asymptotically the
best approximation factor possible. For the double auction setting, we
present a fixed price mechanism that achieves for all ε > 0 a gain from

trade of at least (1−ε) times the optimum with probability 1−2/e#Tε2/2,
where #T is the expected number of trades of the mechanism. This can
be interpreted as a “large market” result: Full efficiency is achieved in
the limit, as the market gets thicker.
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1 Introduction

Bilateral trade is a fundamental economic scenario comprising a buyer and a
seller. The seller holds one item, and can possibly trade this item with the buyer
for some price. The buyer and the seller each have a (non-negative real-valued)
valuation for the item that is up for trade. The buyer’s valuation is only known
by the buyer and the seller’s valuation is only known by the seller. The buyer and
seller both want to maximise their utility, which is assumed to be quasi-linear,
i.e., of the form x · v − p, where x is a 0/1-variable that is set to 1 if and only if
the agent holds the item, v is the agent’s value for the item, and p is the price
paid/received by the agent. In the buyer’s case p is non-negative and represents
how much the buyer has to pay. In the seller’s case, the price p is non-positive
because the seller receives money to transfer her item.

The main problem studied for this bilateral trade setting is one in mechanism
design: which mechanism maximises the social welfare (i.e., total utility of both
players)? A direct revelation mechanism for this setting solicits the valuations
of the buyer and the seller. Subsequently it determines whether the buyer and
the seller should trade and which prices they have to pay or receive. We would
like any mechanism to satisfy the following properties:

– Dominant strategy incentive compatibility (DSIC): It should be a dominant
strategy for the buyer and seller to submit their true valuations to the mech-
anism.

– Ex-post individual rationality (ex-post IR): Neither agent should end up with
a negative utility if the agent’s true valuation is submitted to the mechanism.

– Strong budget balance (SBB): The price paid by the buyer is equal to the
price received by the seller, i.e., the mechanism does not extract money from
the market, nor does it inject money into the market.

While the valuations of the buyer and seller are known by the buyer and seller
only, it is assumed that there is still distributional public knowledge about their
valuations. More precisely, it is assumed that there are two publicly known dis-
tributions from which the buyer and seller independently draw their valuations.
The mechanism may use this knowledge in order to determine the outcome.

Ideally, we would want the mechanism to have the seller trade with the buyer
whenever the buyer’s valuation exceeds the seller’s valuation. The expected total
utility that would result from trading as such is referred to as the optimal social
welfare. Unfortunately the optimal social welfare is not achievable, as shown by
Myerson and Satterthwaite [16]: No bilateral trade mechanism is simultaneously
DSIC, IR, weakly budged balanced, and social-welfare optimizing. Weak budget
balance (WBB) is less restrictive than strong budget balance, as WBB only
requires that no money be injected into the market, while the mechanism is
allowed to extract money from the market.

For the classic bilateral trade setting, it was recently shown [5] that the
only direct revelation mechanisms that are simultaneously incentive compatible,
strongly budget balanced, and ex-post individually rational, are fixed price mech-
anisms, i.e., mechanisms that are parametrised by a price p, and trade occurs if
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and only if the valuation of the buyer is at least p and the valuation of the seller
is at most p.

An alternative—and more challenging to approximate—objective to the
social welfare is the gain from trade, which measures the expected increase
in total utility that is achievable by applying the mechanism, with respect to the
initial allocation. For example, if a seller holds an item that she values $4 and
a buyer values the same item $10, whenever a fix price mechanism sets a price
4 ≤ p ≤ 10, the buyer and the seller trade producing a gain from trade of $6.
Whenever the price p is set lower than $4 or greater than $10 no trade occur,
and the gain from trade is 0.

McAfee [15] has shown that if the median of the distribution of the seller’s
valuation is less than the median of the distribution of the buyer’s valuation,
then there is a fixed price mechanism for which the expected gain from trade is
at least half of the optimal gain from trade. In fact, it was shown for this special
case that by setting the fixed price anywhere in between the two medians, half of
the optimal gain from trade is guaranteed. We extend this result by showing that
the optimal gain from trade is at least 2/r times the gain from trade achievable
by a fixed price mechanism, where r is the probability that the seller’s valuation
does not exceed the buyer’s valuation (which is the condition under which a gain
from trade is possible in the first place).

Subsequently, we improve this approximation factor in an asymptotic sense,
by showing that a more sophisticated rule for setting the fixed price results in an
expected gain from trade within a factor O(log(1/r)) of the optimal gain from
trade. This is asymptotically the best approximation factor possible, which is
shown by an appropriate example of a bilateral trade setting for which every fixed
price achieves an expected gain from trade of Ω(log(1/r)) times the optimum.

It follows from our results that our mechanisms cannot approximate the gain
from trade if r is small. Indeed, we prove a general negative result showing that
the ratio between the gain from trade of a DSIC mechanism and the optimal
gain from trade can be arbitrarily small as the support of the distribution grows.
A similar result was proved independently in [2].

We finally extend our study to the double auction setting, where there are
multiple buyers and sellers, each seller holding one item and each buyer having
a demand for obtaining at most one item. The valuations of the n buyers are
independently drawn from a common probability distribution, and the same
holds for the m sellers, although the probability distribution of the sellers may
be distinct from that of the buyers.

1.1 Our Results

The first results presented in this paper concern the bilateral trade problem. It
is known that if a mechanism has to satisfy IR, DSIC, and SBB, then it must
be a fixed price mechanism [5], i.e., the mechanism fixes a price p and posts it
to the buyer and the seller. We want to understand p has to be chosen.

McAfee’s result of [15] states that in case the seller’s median is less than the
buyer’s median, then setting the price in between the medians of the buyer and
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the seller results in a 2-approximation to the optimal gain from trade. Our first
result is a strict generalization of [15] where the approximation to the optimal
gain from trade is given as a function of the probability that a trade is effi-
cient, in other words: the probability that the valuation drawn from the buyer
is greater than the valuation drawn from the seller. This parameter is referred
to as r = Prv∼f,w∼g[v ≥ w], where f is the buyer’s distribution and g is the
seller’s distribution.

In particular, we show that setting the price p such that Prv∼f [v ≥ p] =
Prw∼g[w ≤ p] results in a r/2-approximation to the optimal gain from trade.

Then, we show how that it is possible to improve the approximation factor of
2/r considerably in an asymptotic sense: We prove that by using a more complex
rule for determining the fixed price p, the optimal gain from trade is at most a
factor of O(log(1/r)) times the gain from trade when trading at price p. When r
is small, this results in a big improvement when compared to the approximation
factor that we established in the previous section. Our mechanism works by
showing that we can decompose “roughly” the entire probability space into at
most log(1/r)+1 such events, so that choosing the best fixed price corresponding
to each of these events results in a gain from trade that is an O(log(1/r))-
approximation to the optimal gain from trade. Finally, we want to consider the
double auction setting. In this setting, we extend the definition of a fixed price
mechanism in a natural way: the mechanism computes a single price p, buyers
with a valuation greater than p and sellers with a valuation lower than p will be
allowed to trade. If the sets of allowed buyers and allowed sellers have different
cardinalities, agents will be removed from the biggest set uniformly at random so
that the cardinality of the two sets will be equal. The fixed price mechanism that
we propose for the double auction setting achieves a gain from trade that is a 1−ε
approximation to the optimal gain from trade with probability (1 − 1/eε2#T/2)
where #T is the expected number of trades of the mechanism. This implies that
if the double auction instance is such that a relatively small expected number
of trades can happen at this price, then a reasonably good approximation factor
is achieved by our mechanism (see Sect. 5 for a detailed discussion). One may
also interpret our result as a “large market” result: the approximation factor
approaches 1 as we let the number of buyers and sellers in the market grow
proportionally, since in that case the number of trades grows arbitrarily large.
This is, to the best of our knowledge, the first fixed price mechanism that is
DSIC, SBB, and ex-post IR, and achieves a near-optimal gain from trade under
mild conditions on the size of the market.

1.2 Related Literature

The impossibility result of [16] proved that no two-sided mechanism can be
simultaneously BIC, IR, WBB, and optimise the social welfare even in the simple
bilateral trade setting. Thus, many subsequent works studied how it is possible
to relax some of the constraints to achieve positive results in the context of
maximise the social welfare or the gain from trade.
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In [3], a BIC mechanism is devised that approximates the expected gain
from trade in bilateral trade up to a factor of 1/e when the buyer’s distribution
function satisfies a property known as the monotone hazard rate condition. The
mechanism of [3] is not DSIC since it achieves this approximation factor from a
Bayes-Nash equilibrium by using the valuation of the seller in the price offered to
the buyer. It is also shown in the same work that no BIC mechanism can achieve
an approximation bound better than 2/e. Mechanisms that are DSIC/BIC, IR,
and SBB have been given for bilateral trade in [1]. In addition to this, the
authors proposed a WBB mechanism for a general class of markets known as
combinatorial exchange markets.

Mechanisms for double auctions with near-optimal gain from trade have been
previously proposed for the prior-free setting. McAfee [14] has shown a WBB,
DSIC, IR mechanism which achieves a 1 − 1/k-approximation to the optimal
gain from trade if the number of trades under the optimum allocation is k. This
rate of convergence requires the prior distributions of traders to be bounded
above zero, over an interval [0, 1], but the mechanism is not a function of the
priors. More recently, Segal-Halevi et al. [20] devised a SBB mechanism with the
same performance guarantee. The mechanisms of [14,20] are direct revelation
mechanisms where the price depends crucially on the reported valuations. In
contrast, the goal in our present paper is to find out how much gain from trade
can be generated by means of setting a single fixed price, independent of the
valuations of the players, at which all agents trade. Such mechanisms have the
advantage that they are conceptually simpler and have a pricing scheme that
is extremely easy to understand. They also can be implemented as sequential
posted price mechanisms.

In [19], the authors present a mechanism that combines random sampling
and random serial dictatorship techniques which is IR, SBB and DSIC, and
asymptotically approaches the optimum gain from trade. Recently, [4] provides
an IR, SBB, and BIC mechanism that achieves a constant approximation to
the best gain from trade achievable among the IR, WBB, and BIC mechanisms,
which is an alternative (more permissive) benchmark. Two recent papers by
Feldman and Gonen [9,10] study a multi-unit variant of double auctions for
online advertising purposes. They design IR, WBB, and DSIC mechanisms that
well-approximate the gain from trade under certain technical conditions, as a
function of the number of trades under the optimum allocation.

Deng et al. [7] study revenue maximisation in a setting of multiple buyers
and sellers with uncorrelated priors and a single type of item being traded. The
same objective was studied by [8] yet in the prior-free model. Gerstgrasser et
al. [11] also study the objective of maximising expected revenue, in a setting
where there is a small number of buyers and seller, who have a prior distribution
whose support size represents the complexity of instances of the problem. In [11],
this distribution is otherwise unrestricted, and in particular may be correlated.
Giannakopoulos et al. [12] study a similar double auction setting to the one
studied here in Sect. 5: there are multiple buyers and sellers and one kind of item,
with unit supply and demand. Buyers have a common prior distribution on their
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valuations, as do sellers. [12] study market intermediation from the perspective of
welfare maximisation, and revenue maximisation. Colini-Baldeschi et al. [6] also
study market intermediation, in the context of buyers and seller of a collection
of heterogenous items, aiming to maximise welfare and achieve a strong notion
of budget balance.

In the context of social welfare in the economics literature, [13] showed that
duplicating the number of agents by τ results in a market where the optimal IR,
IC, WBB mechanism’s expected social welfare approximation factor approaches
1 at a rate of O(log τ/τ2). The papers [17,18] investigated a family of non-
IC double auctions, and study the inefficiency and the extent to which agents
misreport their valuations in these double auctions.

2 Preliminaries

As a general convention, we use [a] to denote the set {1, . . . , a}. We will use
1(X) to denote the indicator function that maps to 1 if and only if event/fact
X holds.

Double Auction Setting. In a double auction setting there are n buyers and m
sellers. Initially, each seller j ∈ [m] holds one item and has a valuation wj for it.
The sellers are not interested in possess more than one item. Each buyer i ∈ [n]
is interested in obtaining no more than one item and has a valuation vi for it.
Moreover, they are indifferent among the different items.

The valuations of the buyers and the sellers are private knowledge, but they
are independently drawn from publicly known distributions f and g, where f is
the probability distribution for the valuation of a buyer and g is the probability
distribution for the valuation of a seller. We treat f and g as probability density
functions. All the buyers share the same distribution f and all the sellers share
the same mass probability distribution g, but f and g may be distinct. Moreover,
let G be the corresponding cumulative distribution functions of g and let F̄ be
the corresponding complementary cumulative distribution function (or survival
function) of f .

Given a double auction setting (n,m, f, g), our goal is to redistribute the
items from the sellers to the buyers. An allocation for a double auction setting
(n,m, f, g) is a pair of vectors (X,Y ) = ((X1, . . . , Xn), (Y1, . . . , Ym)) such that
all the elements X1, . . . , Xn, Y1, . . . , Ym ∈ {0, 1}, and

∑
i∈[n] Xi+

∑
j∈[m] Yj = m.

The set A represents the set of all allocations for the double auction setting.
The redistribution of the items from sellers to buyers is done by running

a mechanism M. A mechanism receives input from the agents, and outputs an
allocation (X,Y ) and a price p. The allocation (X,Y ) and the price p represents
the outcome of the mechanism M. Thus, an outcome is a tuple (X,Y , p). The
price p represents how much a buyer has to pay to obtain an item and how much
a seller has to receive to sell her item.1
1 More generally, we may define the notion of a mechanism such that more complex

pricing schemes are possible, but our definition suffices for the mechanisms that we
will define later in this paper.
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Agents are assumed to be utility maximisers. The utility is defined as the
valuation for the items that they possess with respect to the allocation vector,
minus the payment charged by the mechanism. Specifically, the utility of a buyer
i will be uB

i (X,Y , p) = (vi − p) · Xi. Similarly, the utility of a seller j will be
uS

j (X,Y , p) = wjYj + p · (1 − Yj).
Furthermore, agents are assumed to be fully rational, so that they will strate-

gically interact with the mechanism to achieve their goal of maximising utility.
Our goal is to design a mechanism that is DSIC, IR, SBB (as defined in the intro-
duction) such that the the gain from trade is high. For an outcome (X,Y , p),
the gain from trade GFT(X,Y , p) is defined as the increase in total utility as a
result of running the mechanism. It can be expressed as follows.

GFT(X,Y , p) =
n∑

i=1

viXi +
m∑

j=1

wj(Yj − 1)

For a double auction setting (n,m, f, g), the expected optimal gain from trade
is defined as

OPTn,m,f,g = Ev∼fn,w∼gm

[

max

{
n∑

i=1

viXi +
m∑

i=1

wj(Yj − 1)

∣
∣
∣
∣
∣

(X,Y ) ∈ A
}]

.

We will sometimes omit the subscript, as in those cases the instance being dis-
cussed will be clear from context.

We say that a mechanism M α-approximates the optimal gain from trade for
some α > 1 if and only if OPT ≤ αE[GFT(X,Y , p)], where (X,Y , p) is the
random allocation that the mechanism generates, when valuations v and w are
drawn from fn and gm respectively. Our goal is to find a DSIC, ex-post IR, and
SBB mechanism that α-approximates the optimal gain from trade for a low α.

Bilateral Trade Setting. The bilateral trade setting is a special case of the double
auction setting where there is only one unit-demand buyer and one unit-supply
seller. Thus, we can represent a bilateral trade setting as a pair of valuation
distribution function, one for the buyer f and one for the seller g, i.e., (f, g). It
is known that if a mechanism has to satisfy IR, DSIC, and SBB, then it must be
a fixed price mechanism [5], i.e., the mechanism fixes a price p a priori, and trade
happens if and only if both the buyer’s valuation is at least p and the seller’s
valuation is at most p.

For a bilateral trade instance, the gain from trade of a fixed price mechanism
with fixed price p will be denoted by GFTf,g(p). That is,

GFTf,g(p) = Ev∼f,w∼g[max{0, v − w}1(w ≤ p ≤ v)].

Moreover, note that for the bilateral trade setting we can express OPTf,g as
Ev∼f,w∼g[max{0, v − w}].

For the bilateral trade setting, the goal of this paper is to study how to set
the price p such that the gain from trade achieved by the fixed price mechanism
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with price p is as close as possible to the optimal gain from trade. We will design
fixed price mechanisms where the ratio between OPTf,g and GFTf,g(p) is a
function of the probability that the buyer has a value greater than the seller,
i.e., the provability that a trade is efficient. This probability will be represented
by the parameter r. Thus, r = Prv∼f,w∼g[v ≥ w].

Due to space constraints, proofs of the theorems and lemmas have been
omitted, and will be provided in a full version of this paper.

3 An O(1/r)-Approximation Mechanism for Bilateral
Trade

In the bilateral trade setting there is only one unit-demand buyer and one unit-
supply seller. It can be proven that if a mechanism has to satisfy IR, DSIC, and
SBB, then it must be a fixed price mechanism [5], i.e., the mechanism fixes a
price p and posts it to the buyer and the seller. Trade happens if and only if
both the buyer’s valuation is at least p and the seller’s valuation is at most p.

We will show in this section that there exists a fixed price mechanism that
achieves an expected gain from trade that is at least r/2 times the expected
optimal gain from trade. In the fixed price mechanism that we propose for this,
the fixed price p is set such that Prv∼f [v ≤ p] = Prw∼g[w ≤ p]. The main
theorem that we prove is thus as follows.

Theorem 1. Let (f, g) be a bilateral trade instance, let p ∈ R≥0 be any fixed
price, and let q be the minimum of Prv∼f [v ≥ p] and Prw∼g[w ≤ p]. Then,

1
q
GFTf,g(p) ≥ OPTf,g. (1)

Moreover, if p is chosen such that q is maximised (i.e., p is such that Prw∼g[w ≤
p] = Prv∼f [v ≥ p]), it holds that

2
r
GFTf,g(p) ≥ OPTf,g. (2)

Note that this theorem strictly generalises McAfee’s result of [15], which states
that in case the seller’s median is less than the buyer’s median, then set-
ting the price in between the medians of the buyer and the seller results in a
2-approximation to the optimal gain from trade: If we take p to be any price in
between the median of the seller and the buyer, then q is at least 1/2, and (1)
then states that the gain from trade at fixed price p is at least half the optimal
gain from trade.

4 Improving the Asymptotic Dependence on r

In this section, we show how it is possible to improve the approximation factor
implementing a more involved rule to determine the fixed price p. When the trad-
ing price p will be set with the new rule the approximation factor will improve
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from 2/r to O(log(1/r)). Notice that when r is small, this is a big improvement
with respect to the approximation shown in the previous section. All logarithms
used in this section are to base 2.

Let us first give a high level description of how we determine the fixed price
of the mechanism. Let us consider any two points z and z′ such that Pr[v ≥
z] = 2Pr[v ≥ z′]. Let E be the event that the buyer’s valuation exceeds z, and
that the sellers valuation lies in between z and z′. Let FE be the complementary
cumulative distribution function of the buyer conditioned on E and let GE be
the cumulative distribution function of the seller conditioned on E. We now see
that on the interval [z, z′], the function FE decreases from 1 to 1/2 and the
function GE increases from 0 to 1. Thus, the functions cross each other in [z, z′]
at a value of at least 1/2, which means that the median of the buyer exceeds
the median of the seller when conditioning on E. Using Theorem 1, we thus
obtain that when conditioning on E there exists a fixed price that achieves a
2-approximation to the optimal gain from trade.

Our mechanism works by showing that we can decompose “roughly” the
entire probability space into at most log(1/r)+1 such events, so that choosing the
best fixed price corresponding to each of these events results into an O(log(1/r))
approximation to the optimal gain from trade. More precisely, we show that
there are two sets of roughly log(1/r)+1 such events, and we prove that in case
one of these sets does not cover a fraction of the probability space that accounts
for at least 1/2 of the optimal gain from trade, then the other set of events does.
To determine the desired fixed price, we can thus

1. first determine which of the two event sets “covers” a large part of the optimal
gain from trade,

2. and subsequently select the best fixed price among the log(1/r) + 1 prices
corresponding to the event set.

The two event sets have the following properties: one of them excludes the part
of the probability space where the buyer’s complementary CDF is below the
threshold r/2. The other one switches the roles of the seller and buyer, and
excludes the part of the probability space where the seller’s CDF is below a the
threshold r/2. From this property of the event sets (i.e., having these particular
thresholds on the tails of the two distributions), we are able to show that one
of the event sets covers a large part of the optimal gain from trade. We now
proceed by making these ideas precise.

We first describe how we determine the price, which we denote by p∗, for a
given instance (f, g). In contrast with the last section, we assume (for convenience
of exposition) without loss of generality that f and g are continuous distributions
without point masses, where we treat f and g as probability density functions,
and we let F and G be the corresponding cumulative distribution functions. We
write F to denote the buyer’s complementary cumulative distribution function
1 − F . Let r be the probability Prv∼f,w∼g[v ≥ w] of a trade being possible (as
before). Let x be the value such that F (x) = r/2 and let y be the value such
that G(y) = r/2. We distinguish between two cases.
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– If Ev∼f,w∼g[(v − w)1(w ≤ v ∧ w > y)] ≥ OPTf,g/2, then let p∗ be
the price that achieves the maximum gain from trade among the prices
p1, . . . , p�log(2/r)	, where for i ∈ [�log(2/r)�], price pi is such that

Prw∼g[w ≤ pi | F
−1

(1/2i−1) ≤ w ≤ F
−1

(1/2i)]

= Prv∼f [v > pi | F
−1

(1/2i−1) ≤ v].

– Otherwise, let p∗ be the price that achieves the maximum gain from trade
among the prices p′

1, . . . , p
′
�log(2/r)	, where for i ∈ [�log(2/r)�], price p′

i is such
that

Prv∼f [v > pi | G−1(1/2i) ≤ v ≤ G−1(1/2i−1)]

= Prw∼g[w ≤ pi | G−1(1/2i) ≤ w],

where we define G−1(1) = ∞ if there exists no point t ∈ R≥0 such that
G(t) = 1.

This completes the definition of the fixed price p∗.
First we can show that if the first of the two cases does not apply (i.e., if the

inequality Ev∼f,w∼g[(v −w)1(w ≤ v ∧w > y)] ≤ OPTf,g/2 does not hold), then
the symmetric inequality Ev∼f,w∼g[(v −w)1(w ≤ v ∧w < x)] ≤ OPTf,g/2 holds
for the second case.

Lemma 1. If Ev∼f,w∼g[(v − w)1(w ≤ v ∧ w > y)] > OPTf,g/2, then Ew∼f,v∼g

[(v − w)1(w ≤ v ∧ v < x)] ≤ OPTf,g/2.

Using the above lemma, it is possible to prove the intended approximation factor
for price p∗.

Theorem 2. Let (f, g) be any bilateral trade instance, and let p∗ be the price
for (f, g), as defined above. It holds that

OPTf,g ≤ 4 log
(⌈

2
r

⌉)

GFTf,g(p∗).

Note that the approximation bound of 2/r that we established in the first
section is better than the approximation bound of 4�log(2/r)� when r is roughly
greater than 0.05. At r = 0.05, the approximation factor 4�log(2/r)� already
takes a value around 20. Hence, the result of this section is intended to provide
theoretical insight into how the approximability of the gain from trade depends
on r asymptotically. An (asymptotically) matching lower bound is given in the
appendix of [2], which shows that Θ(log(1/r)) is asymptotically the best possible
factor by which the optimal gain from trade that can always be approximated.

5 A Fixed Price Double Auction

We now turn to the double auction setting. Recall that in this setting there are
n ≥ 1 buyers and m ≥ 1 sellers. The sellers each hold one item, and neither the
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buyers or the sellers are interested in holding more than one item. As before, we
refer to f for the probability distribution function from which the buyers’ valu-
ations are independently drawn, and to g for the probability distribution from
which the sellers’ valuations are independently drawn. We denote the (random)
valuation of buyer i ∈ [n] by vi and the (random) valuation of seller j ∈ [m] by
wj . See Sect. 2 for the definition.

In order to present the definition of a fixed price mechanism for the double
auction setting, let us first introduce the concept of feasible pair.

Definition 1. Let (n,m, f, g) be an instance of a double auction setting, let
(v, w) ∈ R

n × R
m be a valuation profile for the buyers and sellers, and let p ∈

R≥0. We call (i, j) ∈ [n] × [m] a feasible pair with respect to profile (v, w) and
fixed price p iff vi ≥ p ≥ wj.

Now, we can define a fixed price mechanism as follows.

Definition 2. We define a fixed price mechanism M for a double auction setting
(n,m, f, g) as a direct revelation mechanism for which there is a price p such
that the mechanism selects a uniform random maximal subset of feasible pairs
with respect to reported profile (v, w) and p, and makes these pairs trade with
each other. Moreover, for every selected trading pair (i, j), the mechanism makes
buyer i pay an amount of p to seller j. We refer to p as the price of M.

This is perhaps the most natural generalization of the notion of a fixed price
mechanism that one may think of. Please note that in a fixed price mechanism
with price p, given a reported valuation profile (v, w), the number of pairs that
trade is always the minimum of |{vi : vi ≥ p}| and |{wi : wi ≤ p}|.

It is easy to show that fixed price mechanisms clearly satisfy the three basic
properties that we want:

Theorem 3. For every double auction setting, every fixed price mechanism is
ex-post IR, SBB, and DSIC.

Fixed price mechanisms have some additional advantanges.

– First, a fixed price mechanism is entirely symmetric: Each seller has the same
expected utility, and each buyer has the same expected utility. The mechanism
treats buyers with the same valuation entirely symetrically and does not break
ties in favour of one over the other. This symmetricity is desirable from the
point of view of fairness.

– Secondly, the mechanism does not require the agents to fully reveal their
entire valuation, since it can be implemented as a two-sided sequential posted
price mechanism [5]. Under such an implementation, the mechanisms goes
over the buyers and sellers one by one. It proposes a take-it-or-leave-it price
(equal to p, in this case) to each buyer and seller, which the buyers and sellers
can choose to accept or reject. As soon as an accepting (buyer, seller)-pair
is found, the mechanism lets this pair trade at price p. Taking a uniform
random order of buyers and sellers will result in a random subset of feasible
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pairs who trade at price p, i.e., it will result in an implementation of the fixed
price mechanism with price p. Under such an implementation, each buyer and
seller has to reveal only one bit of information, which indicates whether her
valuation is above or below p.

We aim to design a simple fixed price mechanism for which the gain from
trade is a good approximation to the optimal gain from trade. The mechanism
we use is as follows.

Definition 3. Given an instance (n,m, f, g) of a double auction setting, let p
be the price such that nF (p) = mG(p). We refer to the fixed price mechanism
with price p as the balanced fixed price double auction. For ease of presentation,
we refer to F (p) as qB and we refer to G(p) as qS. We denote by GFT(p) the
expected gain from trade achieved by the balanced fixed price double auction, and
we denote by #T the expected number of trades that the balanced fixed price
double auction generates.

Observe that the balanced fixed price double auction is a generalization of the
mechanism of Theorem 1 that achieves for the bilateral trade setting a 2/r-
approximation of the optimal gain from trade. We note that the value #T is by
definition equal to nqB = mqS .

The main result we prove in this section is as follows.

Theorem 4. For all ε ∈ [0, 1], with probability at least 1 − 2/e#Tε2/2, the bal-
anced fixed price double auction achieves a gain from trade that is at least (1−ε)
times the expected optimal gain from trade.

Note that #T , the expected number of trades of the balanced fixed price double
auction, needs to exceed 2 ln(2)/ε2 by any constant for the above theorem to
yield a constant approximation guarantee. The value #T can be regarded as a
property of the instance (n,m, f, g) on which the mechanism is run, and is equal
to the value where the functions nF and mG cross each other. The requirement
on #T is reasonably mild: For example, the above theorem says that when #T
is at least 10, the balanced fixed price double auction yields an expected gain
from trade that is a (<4)-approximation to the optimal gain from trade, by
taking ε ≈ 0.61 (since (1 − 2/e0.612·5) · (1 − 0.61) > 0.25). The theorem provides
a constant approximation ratio for all instances where #T > 2 ln(2) ≈ 1.38, but
grows unbounded as #T approaches 2 ln 2 from above.

There is an interesting interpretation of this theorem in terms of large mar-
kets: Observe that increasing the number of buyers or sellers in the market also
increases #T . In particular, by increasing both the number of buyers and the
number of sellers simultaneously, #T grows unboundedly. From our theorem we
may therefore infer that the balanced fixed price double auction approximation
approximates the gain from trade by a factor that goes to 1 as the market grows.

To prove the desired approximation property of the balanced fixed price
double auction, we note that due to symmetry, we may assume that under the
optimum allocation every buyer has the same a priori probability of trading
with a seller, and every seller has the same a priori probability of trading with
a buyer. This motivates the following definition.
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Definition 4. For a double auction setting (n,m, f, g) we define the values qS as
the probability that any buyer receives an item under the optimum allocation, and
we define qS as the probability that any seller loses her item under the optimum
allocation. We define the prices pB and pS as the prices closest to p such that
F (pB) = qB and G(pS) = qS. That is: pB is such that a buyers’ probability of
her valuation exceeding pB is equal to the probability of obtaining an item under
the optimum allocation, and if there multiple such prices then pB is defined as
the unique one closest to p. Likewise, pS is such that a sellers’ probability of her
valuation being at most pS is equal to the probability of losing her item under
the optimum allocation. Lastly, we let OPT denote the expected gain from trade
achieved by the optimum allocation.

The values GFT(p), OPT, #T , p, qB , qS , p, qB, and qS all depend (like r) on
the instance (n,m, f, g). We will leave this dependence implicit.

Theorem 4 can be proved by means of the following sequence of lemmas.

Lemma 2. For every instance (n,m, f, g) of a double auction setting, the fol-
lowing property of the optimal allocation is satisfied.

nqB = mqS .

The following lemma states that our price p always lies in between pB and pS .

Lemma 3. For every instance (n,m, f, g) of a double auction setting, pB ≥ p ≥
pS or pS ≥ p ≥ pB.

The following lemma provides a useful bound on OPT.

Lemma 4. For every instance (n,m, f, g) of a double auction setting, it holds
that

OPT ≤ nqBE[v1 | v1 ≥ pB ] − mqSE[w1 | w1 ≤ pS ].

We then use the following technical lemma to bound OPT further.

Lemma 5. For every instance (n,m, f, g) of a double auction setting, it holds
that

nqBE[v1 | v1 ≥ pB ] − mqSE[w1 | w1 ≤ pS ]

≤ nqBE[v1 | v1 ≥ p] − mqSE[w1 | w1 ≤ p].

Using the above lemmas, Theorem 4 can be proved by showing an appropriate
bound on the gain from trade of the balanced fixed price double auction, along
with applying a Chernoff bound.
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