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Abstract. Consensus halving refers to the problem of dividing a
resource into two parts so that every agent values both parts equally.
Prior work has shown that when the resource is represented by an inter-
val, a consensus halving with at most n cuts always exists, but is hard to
compute even for agents with simple valuation functions. In this paper,
we study consensus halving in a natural setting where the resource con-
sists of a set of items without a linear ordering. When agents have addi-
tive utilities, we present a polynomial-time algorithm that computes a
consensus halving with at most n cuts, and show that n cuts are almost
surely necessary when the agents’ utilities are drawn from probabilis-
tic distributions. On the other hand, we show that for a simple class of
monotonic utilities, the problem already becomes PPAD-hard. Further-
more, we compare and contrast consensus halving with the more general
problem of consensus k-splitting, where we wish to divide the resource
into k parts in possibly unequal ratios, and provide some consequences
of our results on the problem of computing small agreeable sets.
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1 Introduction

Given a set of resources, how can we divide it between two families in such a way
that every member of both families believes that the two resulting parts have the
same value? This is an important problem in resource allocation and has been
addressed several times under different names [1,15,20], with consensus halving
being the name by which it is best known today [26].

In prior studies of consensus halving, the resource is represented by an inter-
val, and the goal is to find an equal division into two parts that makes a small
number of cuts in the interval.1 Using the Borsuk-Ulam theorem from topology,
1 Simmons and Su [26] assume that the resource is a two- or three-dimensional object
but only consider cuts by parallel planes; their model is therefore equivalent to that
of a one-dimensional object.
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Simmons and Su [26] established that for any continuous preferences of the n
agents involved, there is always a consensus halving that uses no more than n
cuts—this also matches the smallest number of cuts in the worst case. In addi-
tion, the same authors developed an algorithm that computes an ε-approximate
solution for any given ε > 0, meaning that the values of the two parts differ by
at most ε for every agent. Although the algorithm is more efficient than a brute-
force approach, its running time is exponential in the parameters of the prob-
lem. This is in fact not a coincidence: Filos-Ratsikas and Goldberg [9] recently
showed that ε-approximate consensus halving is PPA-complete, implying that
the problem is unlikely to admit a polynomial-time algorithm. Filos-Ratsikas
et al. [11] strengthened this result by proving that the problem remains hard
even when the agents have simple valuations over the interval. In particular, the
PPA-completeness result holds for agents with “two-block uniform” valuations,
i.e., valuation functions that are piecewise uniform over the interval and assign
non-zero value to at most two separate pieces.

While these hardness results stand in contrast to the positive existence result,
they rely crucially on the resource being in the form of an interval. Most practical
division problems do not fall under this assumption, including when we divide
assets such as houses, cars, stocks, business ownership, or facility usage. When
each item is homogeneous, a consensus halving can be easily obtained by splitting
every item in half. However, since splitting individual assets typically involves
an overhead, for example in managing a joint business or sharing the use of
a house, we want to achieve a consensus halving while splitting only a small
number of assets. Fortunately, a consensus halving that splits at most n items
is guaranteed to exist regardless of the number of items—this can be seen by
arranging the items on a line in arbitrary order and applying the aforementioned
existence theorem of Simmons and Su [26]. The bound n is also tight: if each
agent only values a single item and the n valued items are distinct, all of them
clearly need to be split. Nevertheless, given that the items do not inherently lie
on a line, the hardness results from previous work do not carry over. Could it
be that computing a consensus halving efficiently is possible when the resource
consists of a set of items?

1.1 Overview of Results

We assume throughout the paper that the resource is composed of m items. Each
item is homogeneous, so the utility of an agent for a (possibly fractional) set of
items depends only on the fractions of the m items in that set. For this overview
we focus on the more interesting case where n ≤ m, but all of our results can be
extended to arbitrary n and m.

We begin in Sect. 2 by considering agents with additive utilities, i.e., the util-
ity of each agent is additive across items and linear in the fraction of each item.
Under this assumption, we present a polynomial-time algorithm that computes
a consensus halving with at most n cuts by finding a vertex of the polytope
defined by the relevant constraints. This positive result stands in stark contrast
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with the PPA-hardness when the items lie on a line, which we obtain by dis-
cretizing an analogous hardness result of Filos-Ratsikas et al. [11]. We then show
that improving the number of cuts beyond n is difficult: even computing a con-
sensus halving that uses at most n− 1 cuts more than the minimum possible for
a given instance is NP-hard. Nevertheless, we establish that instances admitting
a solution with fewer than n cuts are rare. In particular, if the agents’ utilities
for items are drawn independently from non-atomic distributions, it is almost
surely the case that every consensus halving requires no fewer than n cuts.

Next, in Sect. 3, we address the broader class of monotonic utilities, wherein
an agent’s utility for a set does not decrease when any fraction of an item is added
to the set. For such utilities, we show that the problem of computing a consensus
halving with at most n cuts becomes PPAD-hard, thereby providing strong evi-
dence of its computational hardness.2 Perhaps surprisingly, this hardness result
holds even for the class of utility functions that we call “symmetric-threshold
utilities”, which are very close to being additive. Indeed, such utility functions
are additive across items; for each item, having a sufficiently small fraction of
the item is the same as not having the item at all, having a sufficiently large
fraction of it is the same as having the whole item, and the utility increases
linearly in between. On the other hand, we present a number of positive results
for monotonic utilities when the number of agents is constant in the full version
of our paper [13].

In Sect. 4, we provide some implications of our results on the “agreeable
sets” problem studied by Manurangsi and Suksompong [18]. A set is said to be
agreeable to an agent if the agent likes it at least as much as the complement
set. Manurangsi and Suksompong proved that a set of size at most

⌊
m+n

2

⌋
that

is agreeable to all agents always exists, and this bound is tight. They then
gave polynomial-time algorithms that compute an agreeable set matching the
tight bound for two and three agents. We significantly generalize this result by
exhibiting efficient algorithms for any number of agents with additive utilities,
as well as any constant number of agents with monotonic utilities. In addition,
we present a short alternative proof for the bound

⌊
m+n

2

⌋
via consensus halving.

Finally, in Sect. 5, we study the more general problem of consensus k-splitting
for agents with additive utilities. Our aim in this problem is to split the items
into k parts so that all agents agree that the parts are split according to some
given ratios α1, . . . , αk; consensus halving corresponds to the special case where
k = 2 and α1 = α2 = 1/2. Unlike for consensus halving, however, in consensus
k-splitting we may want to cut the same item more than once when k > 2, so
we cannot assume without loss of generality that the number of cuts is equal
to the number of items cut. For any k and any ratios α1, . . . , αk, we show that
there exists an instance in which cutting (k−1)n items is necessary. On the other
hand, a generalization of our consensus halving algorithm from Sect. 2 computes
a consensus k-splitting with at most (k − 1)n cuts in polynomial time, thereby
implying that the bound (k−1)n is tight for both benchmarks. We also illustrate

2 We refer to [22, Chapter 20] for a discussion of the complexity class PPAD.



Consensus Halving for Sets of Items 387

further differences between consensus k-splitting and consensus halving, both
with respect to item ordering and from the probabilistic perspective.

1.2 Related Work

Consensus halving falls under the broad area of fair division, which studies how
to allocate resources among interested agents in a fair manner [4,5,19]. Common
fairness notions include envy-freeness—no agent envies another agent in view
of the bundles they receive—and equitability—all agents have the same utility
for their own bundle. The fair division literature typically assumes that each
recipient of a bundle is either a single agent or a group of agents represented
by a single preference. However, a number of recent papers have considered an
extension of the traditional setting to groups, thereby allowing us to capture the
differing preferences within the same group as in our introductory example with
families [16,17,25]. Note that a consensus halving is envy-free for all members of
the two groups; moreover, it is equitable provided that the utilities of the agents
are additive and normalized so that every agent has the same value for the entire
set of items.

A classical fair division algorithm that dates back over two decades is the
adjusted winner procedure, which computes an envy-free and equitable divi-
sion between two agents [4].3 The procedure has been suggested for resolving
divorce settlements and international border disputes, with one of its advan-
tages being the fact that it always splits at most one item. Sandomirskiy and
Segal-Halevi [24] investigated the problem of attaining fairness while minimiz-
ing the number of shared items, and gave algorithms and hardness results for
several variants of the problem. Like in our work, both the adjusted winner pro-
cedure and the work of Sandomirskiy and Segal-Halevi [24] assume that items
are homogeneous and, as in Sect. 2, that the agents’ utilities are linear in the
fraction of each item and additive across items. Moreover, both of them require
the assumption that all items can be shared—if some items are indivisible, then
an envy-free or equitable allocation cannot necessarily be obtained.4

Besides consensus halving, another problem that also involves dividing items
into equal parts is necklace splitting, which can be seen as a discrete analog
of consensus halving [1,12]. In a basic version of necklace splitting, there is a
necklace with beads of n colors, with each color having an even number of beads.
Our task is to split the necklace using at most n cuts and arrange the resulting
pieces into two parts so that the beads of each color are evenly distributed
between both parts. Observe that the difficulty of this problem lies in the spatial
3 See http://www.nyu.edu/projects/adjustedwinner for a demonstration and imple-
mentation of the procedure.

4 This motivates relaxations such as envy-freeness up to one item (EF1) and envy-
freeness up to any item (EFX), which have been extensively studied in the last few
years (e.g., [6,21]). However, as Sandomirskiy and Segal-Halevi [24] noted, when a
divorcing couple decides how to split their children or two siblings try to divide
three houses between them, it is unlikely that anyone will agree to a bundle that is
envy-free up to one child or house.

http://www.nyu.edu/projects/adjustedwinner
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ordering of the beads—the problem would be trivial if the beads were unordered
items as in our setting. While consensus halving and necklace splitting have
long been studied by mathematicians, they recently gained significant interest
among computer scientists thanks in large part to new computational complexity
results [9–11]. In particular, the PPA-completeness result of Filos-Ratsikas and
Goldberg [9] for approximate consensus halving was the first such result for a
problem that is “natural” in the sense that its description does not involve a
polynomial-sized circuit.

2 Additive Utilities

We first formally define the problem of consensus halving for a set of items.
There is a set N = [n] of n agents and a set M = [m] of m items, where
[r] := {1, 2, . . . , r} for any positive integer r. A fractional set of items contains
a fraction xj ∈ [0, 1] of each item j. We will mostly be interested in fractional
sets of items in which only a small number of items are fractional—that is,
most items have xj = 0 or 1. Agent i has a utility function ui that describes
her nonnegative utility for any fractional set of items; for an item j ∈ M , we
sometimes write ui(j) to denote ui({j}). A partition of M into fractional sets
of items M1, . . . ,Mk has the property that for every item j ∈ M , the fractions
of item j in the k fractional sets sum up to exactly 1.

Definition 1. A consensus halving is a partition of M into two fractional sets
of items M1 and M2 such that ui(M1) = ui(M2) for all i ∈ N . An item is said
to be cut if there is a positive fraction of it in both parts of the partition.

In this section, we assume that the agents’ utility functions are additive. This
means that for a set M ′ containing a fraction xj of item j, the utility of agent i
is given by ui(M ′) =

∑
j∈M xj · ui(j). Observe that under additivity, M ′ forms

one part of a consensus halving exactly when

∑

j∈M

xj · ui(j) =
1
2

∑

j∈M

ui(j) ∀i ∈ N. (1)

As we mentioned in the introduction, a consensus halving with no more than
n cuts is guaranteed to exist regardless of the number of items. Our first result
shows that such a division can be found efficiently for additive utilities.

Theorem 1. For n agents with additive utilities, there exists a polynomial-time
algorithm that computes a consensus halving with at most min{n,m} cuts.

Proof. If n ≥ m, a partition that divides every item in half is clearly a consensus
halving and makes m = min{n,m} cuts. We therefore assume from now on that
n ≤ m and describe a polynomial-time algorithm that computes a consensus
halving using no more than n cuts.

The main idea of our algorithm is to start with the trivial consensus halving
where x1 = x2 = · · · = xm = 1/2, and then gradually reduce the number of cuts.
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We stop when the process cannot be continued, at which point we show that
the consensus halving must contain at most n cuts. Our algorithm is presented
below.

1. Let x1 = x2 = · · · = xm = 1/2.
2. Let S denote the set of n equations

∑
j∈M

(
yj − 1

2

) ·ui(j) = 0 for i ∈ N , and
let T = ∅.

3. While there exists a solution (y1, . . . , ym) �= (x1, . . . , xm) to S ∪ T , do the
following:
(a) For every j ∈ M such that yj �= xj , compute

γj :=

{
1−xj

yj−xj
if yj > xj ;

xj

xj−yj
if yj < xj .

(b) Let j∗ = argminj∈M,yj �=xj
γj .

(c) For every j ∈ M , let sj := (1 − γj∗) · xj + γj∗ · yj , and update the value
of xj to sj .

(d) Add the equation yj∗ = xj∗ to T .
4. Output (x1, . . . , xm).

Finding a solution (y1, . . . , ym) to S ∪ T that is not equal to (x1, . . . , xm) or
determining that such a solution does not exist (Step 3) can be done in polyno-
mial time via Gaussian elimination.5 Moreover, it is obvious that the other steps
of the algorithm run in polynomial time.

We next prove the correctness of our algorithm, starting with arguing that
(x1, . . . , xm) forms a consensus halving. Since we start with a consensus halving
x1 = · · · = xm = 1/2, it suffices to show that each execution of the loop in Step 3
preserves the validity of the solution. Observe that, since both (x1, . . . , xm) and
(y1, . . . , ym) are solutions to the Eqs. (1), their convex combination (in Step 3c)
also satisfies the Eqs. (1). Furthermore, for each j such that yj �= xj , the value
γj is chosen so that if we replace γj∗ by γj in the formula for sj , we would have
sj = 1 for the case yj > xj , and sj = 0 for the case yj < xj . Since γj∗ ≤ γj ,
we have that sj ∈ [0, 1] for all j such that yj �= xj . In addition, the value of xj

does not change for j such that yj = xj . Thus, (x1, . . . , xm) remains a consensus
halving throughout the algorithm.

Finally, we are left to show that at most n items are cut in the output
(x1, . . . , xm). As noted above, our definition of γj ensures that xj∗ ∈ {0, 1}
after the execution of Step 3c. Furthermore, as the constraint yj∗ = xj∗ is then
immediately added to T , the value of xj∗ does not change for the rest of the
algorithm. As a result, every item j ∈ T is uncut. Thus, it suffices to show that
|T | ≥ m − n at the end of the execution.

5 Specifically, if the linear equations in S ∪ T lead to a unique solution (x1, . . . , xm),
then Gaussian elimination immediately results in this solution. Otherwise, Gaussian
elimination will yield a row echelon form; by setting one of the non-pivots yj to
be an arbitrary number not equal to xj , we obtain a solution that is not equal to
(x1, . . . , xm).
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When the while loop in Step 3 terminates, (x1, . . . , xm) must be the unique
solution to S ∪ T . Recall that a system of linear equations with m variables can
only have a unique solution when the number of constraints is at least m. This
means that |S ∪ T | ≥ m at the end of the algorithm. Since |S| = n, we must
have |T | ≥ m − n, as desired. 	


Note that the above algorithm can be viewed as finding a vertex of the
polytope defined by the constraints (1) and 0 ≤ xj ≤ 1 for all j ∈ M . In
fact, it suffices to use a generic algorithm for this task; however, to the best of
our knowledge, such algorithms often involve solving a linear program, whereas
the algorithm presented above is conceptually simple and can be implemented
directly. We also remark that our algorithm works even when some utilities ui(j)
are negative, i.e., some of the items are goods while others are chores. Allocating
a combination of goods and chores has received increasing attention in the fair
division community [2,3].

As we discussed in the introduction, an important reason behind the positive
result in Theorem 1 is the lack of linear order among the items. Indeed, as we
show next, if the items lie on a line and we are only allowed to cut the line using
n cuts, finding a consensus halving becomes computationally hard. This follows
from discretizing the hardness result of Filos-Ratsikas et al. [11] and holds even
if we allow the consensus halving to be approximate instead of exact. Formally,
when the items lie on a line, we may place a number of cuts, with each cut
lying either between two adjacent items or at some position within an item. All
(fractional or whole) items between any two adjacent cuts must belong to the
same fractional set of items in a partition, where the left and right ends of the
line also serve as “cuts” in this requirement (see Fig. 1 for an example). We
say that a partition into fractional sets of items (M1,M2) is an ε-approximate
consensus halving if |ui(M1) − ui(M2)| ≤ ε · ui(M) for every agent i.

M1 M2 M1 M2 M1

Fig. 1. Consensus halving for items on a line: in this example there are 15 items
(represented by gray balls) that lie on a line and we have used 4 cuts to obtain a
partition into fractional sets of items (M1,M2). The labels M1 and M2 indicate the set
to which each segment belongs.

Theorem 2. Suppose that the items lie on a line. There exists a polynomial p
such that finding a 1/p(n)-approximate consensus halving for n agents with at
most n cuts on the line is PPA-hard, even if the valuations are binary and every
agent values at most two contiguous blocks of items.
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The proof of Theorem 2, along with all other omitted proofs, can be found
in the full version of our paper [13].

Although Theorem 1 allows us to efficiently compute a consensus halving with
no more than n cuts in any instance, for some instances there exists a solution
using fewer cuts. An extreme example is when all agents have the same utility
function, in which case a single cut already suffices. This raises the question of
determining the least number of cuts required for a given instance. Unfortunately,
when there is a single agent, deciding whether there is a consensus halving that
leaves all items uncut is already equivalent to the well-known NP-hard problem
Partition. For general n, even computing a division that uses at most n−1 cuts
more than the optimal solution is still computationally hard, as the following
theorem shows.

Theorem 3. For n agents with additive utilities, it is NP-hard to compute a
consensus halving that uses at most n − 1 cuts more than the minimum number
of cuts for the same instance.

Theorem 3 implies that there is no hope of finding a consensus halving with
the minimum number of cuts or even a non-trivial approximation thereof in
polynomial time, provided that P �= NP. Nevertheless, we show that instances
that admit a consensus halving with fewer than n cuts are rare: if the utilities
are drawn independently at random from probability distributions, then it is
almost surely the case that any consensus halving needs at least n cuts. We say
that a distribution is non-atomic if it does not put positive probability on any
single point.

Theorem 4. Suppose that for each i ∈ N and j ∈ M , the utility ui(j) is drawn
independently from a non-atomic distribution Di,j. Then, with probability 1,
every consensus halving uses at least min{n,m} cuts.

As our final remark of this section, consider utility functions that are again
additive across items, but for which the utility of each item scales quadratically
as opposed to linearly in the fraction of the item. That is, for a set M ′ containing
a fraction xj of item j, the utility of agent i is given by ui(M ′) =

∑
j∈M x2

j ·
ui(j). Even though these utility functions appear different from the ones we
have considered so far, it turns out that the set of consensus halvings remains
exactly the same. Indeed, a partition (M1,M2) is a consensus halving under the
quadratic functions if and only if

∑

j∈M

x2
j · ui(j) =

∑

j∈M

(1 − xj)2 · ui(j) ∀i ∈ N.

Since x2
j − (1 − xj)2 = xj − (1 − xj) = 2xj − 1, the above condition is equivalent

to (1), so all of our results in this section apply to the quadratic functions as
well.
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3 Monotonic Utilities

Next, we turn our attention to utility functions that are no longer additive as in
Sect. 2. We assume that the utilities are monotonic, meaning that the utility of an
agent for a set of items cannot decrease upon adding any fraction of an item to the
set. Our main result is that finding a consensus halving is computationally hard
for such valuations; in fact, the hardness holds even when the utilities take on a
specific structure that we call symmetric-threshold. Symmetric-threshold utilities
are additive over items, and linear with symmetric thresholds within every item.
Formally, the utility of agent i for a fractional set of items M ′ containing a
fraction xj ∈ [0, 1] of each item j can be written as ui(M ′) =

∑
j∈M fij(xj)·ui(j),

where

fij(xj) :=

⎧
⎨

⎩

0 if xj ≤ cij ;
xj−cij
1−2cij

if cij < xj < 1 − cij ;
1 if xj ≥ 1 − cij ,

xj

fij(xj)

1

cij 1 − cij 10

where cij ∈ [0, 1/2) is the threshold or cap of agent i for item j. Intuitively,
symmetric-threshold utilities model settings where having a small fraction of an
item is the same as not having the item at all, while having a large fraction of
the item is the same as having the whole item. The point where this threshold
behavior occurs is controlled by the cap cij , which can be different for every pair
(i, j) ∈ N × M . It is easy to see that the resulting utility functions are indeed
monotonic. Note that although general monotonic utility functions do not neces-
sarily admit a concise representation (see the discussion preceding Theorem 7),
symmetric-threshold utility functions can be described succinctly.

Even though symmetric-threshold utility functions are very close to being
additive, we show that finding a consensus halving for such utilities is compu-
tationally hard. Recall that a partition (M1,M2) is an ε-approximate consensus
halving if |ui(M1) − ui(M2)| ≤ ε · ui(M) for every agent i.

Theorem 5. There exists a constant ε > 0 such that finding an ε-approximate
consensus halving for n agents with monotonic utilities that uses at most n cuts
is PPAD-hard, even if all agents have symmetric-threshold utilities.

At a high level, we prove this result by reducing from a modified version of
the generalized circuit problem. The generalized circuit problem is the main tool
that has been used (implicitly or explicitly) to prove hardness of computing Nash
equilibria in various settings [7,8,23]. A generalized circuit is a generalization
of an arithmetic circuit, because it allows cycles, which means that instead of a
simple computation, the circuit now represents a constraint satisfaction problem.
The version of the problem we use is different from the standard one in two
aspects. First, instead of the domain [0, 1], we use [−1, 1], which is more adapted
to the consensus halving problem. Second, we will only allow the circuit to use
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three types of arithmetic gates. We show that these modifications do not change
the complexity of the problem.

4 Connections to Agreeable Sets

We now present some implications of results from consensus halving on the
setting of computing agreeable sets. Let us first formally define the agreeable
set problem, introduced by Manurangsi and Suksompong [18].6 As in consensus
halving, there is a set N of n agents and a set M of m items. Agent i has a
monotonic utility function ui over non-fractional sets of items, where we assume
the normalization ui(∅) = 0; this corresponds to a set function.

Definition 2. A subset of items M ′ ⊆ M is said to be agreeable to agent i if
ui(M ′) ≥ ui(M\M ′).

As one of their main results, Manurangsi and Suksompong [18] showed that
for any n and m, there exists a set of at most min

{�m+n
2 ,m}

items that is
agreeable to all agents, and this bound is tight. Their proof relies on a graph-
theoretic statement often referred to as “Kneser’s conjecture”, which specifies
the chromatic number for a particular class of graphs called Kneser graphs. Here
we present a short alternative proof that works by arranging the items on a line
in arbitrary order, applying consensus halving, and rounding the resulting frac-
tional partition. As a bonus, our proof yields an agreeable set that is composed
of at most �n/2 + 1 blocks on the line.

Theorem 6 ([18]). For n agents with monotonic utilities, there exists a subset
M ′ ⊆ M such that

|M ′| ≤ min
{⌊

m + n

2

⌋
,m

}

and M ′ is agreeable to all agents.

Proof. Let s =
⌊

m+n
2

⌋
. If s ≥ m, the entire set of items M has size m =

min{s,m} and is agreeable to all agents due to monotonicity, so we may assume
that s ≤ m. Arrange the items on a line in arbitrary order, and extend the
utility functions of the agents to fractional sets of items in a continuous and
monotonic fashion.7 Consider a consensus halving with respect to the extended
utilities that uses at most n cuts on the line; some of the cuts may cut through
items, whereas the remaining cuts are between adjacent items. Let r ≤ n be the
number of items that are cut by at least one cut. Without loss of generality,
assume that the first part M ′ contains no more full items than the second part
M ′′, so M ′ contains at most

⌊
m−r
2

⌋
full items. By moving all cut items from

6 The notion of agreeability was introduced in an earlier conference version of the
paper [27]. Gourvès [14] considered an extension of the problem that takes into
account matroidal constraints.

7 For example, one can use the Lovász extension or the multilinear extension (see the
full version of our paper [13]). .
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M ′′ to M ′ in their entirety, M ′ contains at most
⌊

m−r
2

⌋
+ r =

⌊
m+r
2

⌋ ≤ s items.
Since we start with a consensus halving and only move fractional items from
M ′′ to M ′, we have that M ′ is agreeable to all agents. Moreover, one can check
that M ′ is composed of at most

⌈
n+1
2

⌉
=

⌊
n
2

⌋
+ 1 blocks on the line.

In light of Theorem 6, an important question is how efficiently we can com-
pute an agreeable set whose size matches the worst-case bound. Manurangsi and
Suksompong [18] addressed this question by providing a polynomial-time algo-
rithm for two agents with monotonic utilities and three agents with “responsive”
utilities, a class that lies between additive and monotonic utilities. They left the
complexity for higher numbers of agents as an open question, and conjectured
that the problem is hard even when the number of agents is a larger constant.
We show that this is in fact not the case: the problem can be solved efficiently for
any number of agents with additive utilities, as well as for any constant number
of agents with monotonic utilities. Note that since the input of the problem for
monotonic utilities can involve an exponential number of values (even for con-
stant n), and consequently may not admit a succinct representation, we assume
a “utility oracle model” in which the algorithm is allowed to query the utility
ui(M ′) for any i ∈ N and M ′ ⊆ M .

Theorem 7. There exists a polynomial-time algorithm that computes a set of
at most min

{⌊
m+n

2

⌋
,m

}
items that is agreeable to all agents, for each of the

following two cases:

(i) All agents have additive utilities.
(ii) All agents have monotonic utilities and the number of agents is constant

(assuming access to a utility oracle).

5 Consensus k-Splitting

In this section, we address two important generalizations of consensus halving,
both of which were mentioned by Simmons and Su [26]. In consensus splitting,
instead of dividing the items into two equal parts, we want to divide them into
two parts so that all agents agree that the split satisfies some given ratio, say
two-to-one. In consensus 1/k-division, we want to divide the items into k parts
that all agents agree are equal. We consider a problem that generalizes both of
these problems at once.

Definition 3. Let α1, . . . , αk > 0 be real numbers such that α1+ · · ·+αk = 1. A
consensus k -splitting with ratios α1, . . . , αk is a partition of M into k fractional
sets of items M1, . . . ,Mk such that

ui(M1)
α1

=
ui(M2)

α2
= · · · =

ui(Mk)
αk

∀i ∈ N.

When the ratios are clear from context, we will simply refer to such a partition
as a consensus k-splitting.
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As in Sect. 2, we will assume that the utility functions are additive, in which
case our desired condition is equivalent to ui(M�) = α� ·ui(M) for all i ∈ N and
� ∈ [k].

While there is no reason to cut an item more than once in consensus halving,
one may sometimes wish to cut the same item multiple times in consensus k-
splitting in order to split the item across three or more parts. Hence, even though
the number of cuts made is always at least the number of items cut, the two
quantities are not necessarily the same in consensus k-splitting. If there are n
items and each agent only values a single distinct item, then it is clear that we
already need to make (k − 1)n cuts for any ratios α1, . . . , αk, in particular k − 1
cuts for each item. Nevertheless, it could still be that for some ratios, it is always
possible to achieve a consensus k-splitting by cutting fewer than (k − 1)n items.
We show that this is not the case: for any set of ratios, cutting (k − 1)n items is
necessary in the worst case.

Theorem 8. For any ratios α1, . . . , αk > 0, there exists an instance with addi-
tive utilities in which any consensus k-splitting with these ratios cuts at least
(k − 1)n items.

Next, we show that computing a consensus k-splitting with at most (k − 1)n
cuts can be done efficiently using a generalization of our algorithm for consensus
halving (Theorem 1). Note that such a splitting also cuts at most (k−1)n items.

Theorem 9. For n agents with additive utilities and ratios α1, . . . , αk, there
is a polynomial-time algorithm that computes a consensus k-splitting with these
ratios using at most (k − 1) · min{n,m} cuts.

As in Theorem 1, our algorithm does not require the nonnegativity assump-
tion on the utilities and therefore works for combinations of goods and chores.

When the items lie on a line, there is always a consensus halving that makes
at most n cuts on the line and therefore cuts at most n items—this matches
the upper bound on the number of items cut in the absence of a linear order.
Theorem 9 shows that the bound n continues to hold for consensus splitting into
two parts with any ratios. As we show next, however, this bound is no longer
achievable for some ratios with ordered items, thereby demonstrating another
difference that the lack of linear order makes.8

Theorem 10. Let n ≥ 2, k = 2 and (α1, α2) = ( 1
n , n−1

n ). There exists an
instance such that the n agents have additive utilities, the items lie on a line,
and any consensus k-splitting with ratios α1 and α2 makes at least 2n − 4 cuts
on the line.

For consensus halving, Theorem 4 shows that in a random instance, any
solution almost surely uses at least the worst-case number of cuts min{n,m}.
One might consequently expect that an analogous statement holds for consensus
k-splitting, with (k−1) ·min{n,m} cuts almost always being required. However,

8 See the definition of the consensus halving problem on a line before Theorem 2.
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we show that this is not true: even in the simple case where n = 1 and the
agent’s utilities are drawn from the uniform distribution over [0, 1], it is likely
that we only need to make one cut (instead of k − 1) for large m.

Theorem 11. Let n = 1, and suppose that the agent’s utility for each item
is drawn independently from the uniform distribution on [0, 1]. For any ratios
α1, . . . , αk > 0, with probability approaching 1 as m → ∞, there exists a con-
sensus k-splitting with these ratios using at most one cut. Moreover, there is a
polynomial-time algorithm that computes such a solution.

6 Conclusion

In this paper, we studied a natural version of the consensus halving problem
where, in contrast to prior work, the items do not have a linear structure. We
showed that computing a consensus halving with at most n cuts in our version
can be done in polynomial time for additive utilities, but already becomes PPAD-
hard for a class of monotonic utilities that are very close to additive. We also
demonstrated several extensions and connections to the problems of consensus
k-splitting and agreeable sets.

While our PPAD-hardness result serves as strong evidence that consensus
halving for a set of items is computationally hard for non-additive utilities, it
remains open whether the result can be strengthened to PPA-completeness—
indeed, the membership of the problem in PPA follows from a reduction to
consensus halving on a line, as explained in the introduction. Obtaining a PPA-
hardness result will most likely require new ideas and perhaps even new insights
into PPA, since all existing PPA-hardness results for consensus halving heavily
rely on the linear structure. Of course, it is also possible that the problem is
in fact PPAD-complete. In addition to consensus halving, settling the compu-
tational complexity of the agreeable sets problem for a non-constant number of
agents with monotonic utilities would also be of interest.
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