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1. INTRODUCTION

According to Roger Myerson [1999], the 1950 publication of Nash’s paper on equilib-
ria was a watershed event not just for game theory, but for economics in general. The
new general equilibrium concept, and its established universality, was an impetus for
understanding rationality in much more general economic contexts, and inspired the
important price equilibrium results by Arrow and Debreu. Myerson [1999] argues con-
vincingly that the concept of Nash equilibrium lies at the foundations of modern eco-
nomic thought.

Seen from an algorithmic perspective, however, the Nash equilibrium suffers two
important problems: First, it is not clear how to find it efficiently (the same is true
for the Arrow-Debreu variety for markets and prices). This shortcoming had already
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9:2 P. W. Goldberg et al.

been identified by economists since the 1950s, and much effort has been devoted to
algorithms for finding Nash equilibria; see Scarf [1973], Lemke and Howson [1964],
and Herings and Peeters [2001] for examples from an extensive literature. None of
these algorithms came with polynomial-time guarantees, however, and the recent re-
sult [Chen et al. 2009; Daskalakis et al. 2009] establishing that the problem is PPAD-
complete explains why. Of the many algorithmic approaches proposed by economists
over the past 50 years for finding Nash equilibria, most have been shown by now to
require exponential time in the worst case [Hirsch et al. 1989; Savani and von Stengel
2006]. One exception is an important algorithmic genre known as homotopy methods
[Eaves 1972]; see Herings and Peeters [2010] for a recent survey.

In topology, a homotopy is a continuous transformation from one function to an-
other (as, for example, between two paths joining two points on a map). The homotopy
method starts with a fixpoint problem that is easy to solve (say, a rotation of a disc
around its center), and continuously transforms it into the problem in hand, by “piv-
oting” to new fixpoints along the way. A theorem by Browder [1960] establishes the
validity of this method in the limit, by showing the existence of a continuous path of
fixpoints that joins two fixpoints of the initial and the final problems.

The second algorithmic obstacle for the Nash equilibrium concept is multiplicity.
Games have multiple equilibria, and markets many price equilibria, and thus the
corresponding equilibrium concepts are only nondeterministic predictions (oxymoron
intended). In price equilibria, this multiplicity has been blamed for economic crises:
The path guaranteed by Browder’s theorem is nonmonotonic, going back and forth
in time. As a result, equilibria vanish at its folds, leaving the market in turmoil
[Balasko 1978]. In games, a proposed remedy for multiplicity is the so-called focal point
theory; see, for example, Kreps [1990, page 414], postulating that players implicitly
coordinate their equilibrium choice by focusing on the most obvious, or mutually ad-
vantageous, equilibrium; repeated play and learning (see, e.g., Fudenberg and Levine
[1998]) can also be considered a remedy for multiplicity. Harsanyi [1975] proposed
the tracing procedure for battling equilibrium multiplicity, a theory further explicated
in his joint book A General Theory of Equilibrium Selection in Games [Harsanyi and
Selten 1988] (Harsanyi and Selten shared in 1994 the Nobel prize with Nash). The
tracing procedure asserts that players engaged in a game G play at first a simple game
G0, in which their prior beliefs about the other players’ behavior result in a dominant
strategy. As time t progresses, and their priors are falsified by life, they play a more and
more realistic game Gt = (1 − t)·G0 + t·G, until, at time t = 1, they end up playing the
intended game G. They show that, for almost all games, tracing the equilibrium path
of this process results in a unique equilibrium. Notice the parallel with the homotopy
method; apparently the two were discovered independently.

Our results. This article is a complexity-theoretic critique of the tracing procedure
and the homotopy method: we show that finding the solutions they prescribe requires
the power of PSPACE. In particular, finding the Brouwer fixpoint that would have
been discovered by the homotopy method, for a simple starting function and an ad-
versarial final one, is PSPACE-complete. The same is true, via standard reductions,
for price equilibria. We also construct examples where the homotopy method will not
only undergo an exponential number of pivots (this was expected since Hirsch et al.
[1989]), but will suffer an exponential number of direction reversals. As for the tracing
procedure, we show that it is PSPACE-complete to find the Nash equilibrium selected
by it, even in two-player games, and even if the initial game has dominant strate-
gies obtained from priors, exactly as prescribed by Harsanyi and Selten. We extend
this result to homotopy-based algorithms where the starting game depends on the fi-
nal game and show that it is PSPACE-complete to implement the Herings-van den
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Elzen, Herings-Peeters, and van den Elzen-Talman algorithms for finding equilibria
in games. Finally, it is particularly noteworthy that PSPACE-completeness prevails
even for finding the solutions that would be returned by the classical Lemke-Howson
algorithm, a simplex-like method that had long been considered an oasis of conceptual
simplicity and (until Savani and von Stengel [2006]) of algorithmic hope in this field.
This reinforces the “exponentially long paths” result of Savani and von Stengel [2006]
with a new result which says that, subject only to the hardness of PSPACE, no short
cuts to Lemke-Howson solutions are possible (for any of the different initial choices of
the algorithm). Since it is known that the Lemke-Howson algorithm can be expressed
as a homotopy [Herings and Peeters 2010], this result can also be seen as a powerful
specialization of our first result.

The algorithms we consider solve problems in the complexity class PPAD, which is
contained in TFNP, the class of all total function problems in NP. Another prominent
complexity class contained in TFNP is PLS (for polynomial local search). Many com-
mon problems in PLS (e.g., local max cut and finding pure equilibria of congestion
games) are complete under a so-called tight PLS-reduction, implying that the corre-
sponding standard local search algorithm is exponential (for certain starting configu-
rations and any choices of the local search algorithm). Furthermore, one can conclude
that the computational problem of finding a local optimum reachable from a given
starting configuration by local search is PSPACE-complete.

No such concept of tight reductions is known for PPAD, and our results can be
seen as addressing this deficiency. Specifically, we show the PSPACE-completeness
(and exponential worst-case behavior) of a number of homotopy-based algorithms for
finding equilibria. Our reductions start with the problem OTHER END OF THIS LINE
(OEOTL), which is related to the problem END OF THE LINE used in the definition in
PPAD, seeking not just any end of a path, but the other end of the particular path
starting at the origin. OEOTL was known to be PSPACE-complete since Papadimitriou
[1994], but this fact has so far remained unexploited for proving lower bounds for other
problems.

Outline of the article. In Section 2.1, we give an overview of the linear homotopy
method as applied to Brouwer functions and games. In Section 2.2, we recall the
PSPACE-complete problem OEOTL (OTHER END OF THIS LINE), which serves as the
starting point for all our main reductions. In Section 3, we show that the linear ho-
motopy method to compute a Brouwer fixpoint is PSPACE-complete, which is proved
in Section 3.3. In Section 4, we establish the PSPACE-completeness of the linear trac-
ing procedure for two-player strategic form games for a special starting game that is
independent of the final game. These results are extended to starting games that de-
pend on the final game in Section 5, where we show that it is PSPACE-complete to
implement the Herings-van den Elzen, Herings-Peeters, and van den Elzen-Talman
algorithms for computing equilibria of games. The techniques of Chen et al. [2009] and
Daskalakis et al. [2009] are central to both Section 3 and Section 4 and are recalled
and extended along the way. In Section 6, we show that it is PSPACE-complete to find
any solution of a two-player game by the Lemke-Howson algorithm.

2. PRELIMINARIES

2.1. Homotopies

A Brouwer function F is a continuous function from a convex and compact domain
D to itself; by Brouwer’s fixpoint theorem there exists x ∈ D such that F(x) = x. A
homotopy between two functions F0 : X −→ Y and F1 : X −→ Y (where X and Y are
topological spaces) is a continuous function H :[ 0, 1] ×X −→ Y such that for all x ∈ X,
H(0, x) = F0(x) and H(1, x) = F1(x). In this article, we are interested in the special case
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9:4 P. W. Goldberg et al.

where X = Y = D, for D a closed compact subset of Euclidean space, such as a cube.
Thus, F0 and F1 are Brouwer functions on D. Given two continuous functions F0,F1 :
D −→ D, the linear homotopy is given by the expression H(t, x) = (1 − t)F0(x) + tF1(x),
and (if D is convex) results in a continuum of Brouwer functions Ft : D −→ D given by
Ft = (1 − t)·F0 + t·F1 for t ∈ [ 0, 1].

Browder’s fixpoint theorem [Browder 1960] (not to be confused with Brouwer’s fix-
point theorem) asserts that given a homotopy connecting F0 and F1, there is a path
in [ 0, 1] ×D from some fixpoint of F0 to some fixpoint of F1, such that for every point
(t, x) on that path, x is a fixpoint of Ft. The homotopy method [Eaves 1972; Herings and
Peeters 2010] for finding a fixpoint of F1 selects F0 to have a unique and easy to find
fixpoint, and essentially follows such a path. As noted in Herings and Peeters [2010],
we do not expect the path to be monotonic in t; indeed, we show in Appendix A.1 that
an exponential number of direction reversals is possible.

We are often interested in approximate fixpoints1. If F is a Brouwer function, an
ε-approximate fixpoint is a point x such that |F(x)− x| ≤ ε (we shall use the L∞ metric
throughout). It follows from Browder’s theorem that, for any F0,F1, there is a finite
sequence x0, xt1 , . . . , xtk , x1 of ε-approximate fixpoints of F0,Ft1 , . . . ,Ftk ,F1, for some k
and t1, . . . , tk, such that any two consecutive fixpoints in the sequence are at most ε
apart.

We shall be interested in the following problem, which we call BROWDER FIXPOINT:
Given two arithmetic circuits computing two functions F0 and F1 from [ 0, 1]d to it-
self with Lipschitz constant �, an ε > 0, where F0 has a unique fixpoint x0, find an
ε-approximate fixpoint x1 of F1 that is connected via a sequence of ε-approximate fix-
points to x0. (To make this definition precise, we of course have to identify classes of
functions from which F0 and F1 may be drawn.) Notice that the homotopy method for
computing Brouwer fixpoints provides a solution to this problem.

Homotopies can be defined very similarly also for games. Given two games G0,G1
of the same type (number of players and strategies), we consider Gt = (1 − t)·G0 +
t·G1, where it is the players’ utilities that are interpolated. It is routine to extend this
definition to more general classes of games, such as graphical games [Kearns et al.
2001] (in which case, in addition to the players and strategies, the two graphs must be
the same). Browder’s theorem, via Nash’s reduction, establishes that there is a path
of approximate Nash equilibria here as well. The problem LINEAR TRACING is the
following: Given two games G0 and G1, an ε > 0, and a Nash equilibrium x0 of G0,
find an ε-approximate Nash equilibrium x1 of G1 that is connected via a sequence of
ε-approximate Nash equilibria to x0.

It is easy to see that LINEAR TRACING is in PSPACE, and it can be checked that
the algorithm of Herings and van den Elzen [2002] achieves this (see Section 4.2).
BROWDER FIXPOINT is also in PSPACE.

2.2. Other End Of This Line

We consider directed graphs on 2n vertices represented as n-bit vectors. The arcs are
represented by two polynomial-size circuits S and P, each having n inputs and outputs,
as follows. There is an arc from vertex v to w provided that S(v) = w and P(w) = v.
Notice that all vertices of the graph have both indegree and outdegree 0 or 1, that is,
the graph consists of paths, cycles, and isolated vertices.

1A very interesting alternative consideration [Etessami and Yannakakis 2010] focuses on exact fixpoints,
resulting in higher complexity of the search problem; here we could also consider exact fixpoints and equi-
libria without much effect on our results, since we are dealing with PSPACE-completeness. It is known
from Etessami and Yannakakis [2010] that this harder problem belongs to PSPACE.
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Definition 2.1. An (S, P)-graph with parameter n is a graph on {0, 1}n specified by
circuits S and P, as described earlier, subject to the constraint that vertex 0n has no
incoming arc but does have an outgoing arc.

The problem END OF THE LINE is the problem of finding a vertex of a given (S, P)-
graph other than 0n which has at most one incident arc. Note that this problem is in
the class TFNP of total search problems in NP: there exists a solution that could be
obtained by following the directed path that starts at 0n, and any given solution may
be efficiently checked for correctness. The class PPAD [Papadimitriou 1994] is defined
as all search problems polynomial-time reducible to END OF THE LINE. The problem
OTHER END OF THIS LINE (which we will subsequently abbreviate to OEOTL) is the
problem of finding the end of the particular path that starts at 0n. In contrast with
END OF THE LINE, a given solution to an instance of OEOTL has no obvious concise
certificate that it is the correct endpoint, so while OEOTL is a total search problem, it is
apparently not an NP total search problem. In fact, we have the following (Theorem 2
of Papadimitriou [1994]), which is the starting point of our reductions.

THEOREM 2.2 [PAPADIMITRIOU 1994]. OEOTL is PSPACE-complete.

2.3. Our Approach

In Daskalakis et al. [2009], each instance I of END OF THE LINE is reduced to a game GI
in such a way that any Nash equilibrium of GI efficiently encodes a solution to I. Here
we reduce I to a homotopy problem defined by two games, (G0,G′

I), where G0 depends
only on n, while G′

I encodes the circuits in I, and is an extension of GI of Daskalakis
et al. [2009]. We establish that the associated linear homotopy corresponds to the naive
“follow the line” approach to solving OEOTL; technically, a suffix of the homotopy path
corresponds to following the line, and the existence of the relevant suffix is established
in a nonconstructive way, using the intermediate value theorem. In extending the re-
sult to the Lemke-Howson algorithm, the main technical obstacle is the initial choice
of which “label to drop”, leading to multiple paths in the mixed-strategy profile space.
We have to ensure that all of the 2n solutions (one for each pure strategy) efficiently
encode the solution to I, where I is treated as an instance of OEOTL. This is done by
embedding two copies of the game G′

I inside a larger one in such a way that at least one
copy does not contain the initially dropped label, and arguing that any Lemke-Howson
equilibrium restricted to this copy ends up encoding the unique solution to I.

3. THE HOMOTOPY METHOD FOR BROUWER FIXPOINTS

In this section we give detailed definitions of classes of fixpoint and approximate
fixpoint computation problems. In Section 3.1, we review the definition of Brouwer-
mapping functions—and related concepts—from Chen et al. [2009], here applied to
a three-dimensional domain. In Section 3.2, we review the techniques of Daskalakis
et al. [2009] and Chen et al. [2009] for implementing Brouwer-mapping functions as
arithmetic circuits. In Section 3.3, we prove Theorem 3.7, the main result of Section 3,
in which we establish the PSPACE-completeness of a linear homotopy for finding a
fixpoint of a Brouwer function. n ∈ IN will denote a complexity parameter of prob-
lem instances. We define a sequence F (n)

0 of “basic Brouwer functions” having unique
known fixpoints. For each n we define a class of Brouwer functions whose members
encode (S, P)-graphs on {0, 1}n. The homotopy of Eq. (1) defines a class of functions Ft,
t ∈ [ 0, 1], that interpolate between F0 and F1 and specifies a particular fixpoint of F1.
We will show that from that fixpoint, we can efficiently recover a solution to OEOTL for
the graph encoded by F1. In Theorem 3.7, we consider the problem of finding fixpoints
within accuracy that is inverse exponential in n. In Appendix A.2, we show how to use

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 9, Publication date: May 2013.
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9:6 P. W. Goldberg et al.

the snake embeddings of Chen et al. [2009] to strengthen the result so that it applies
to finding fixpoints within accuracy that is inverse polynomial in n.

3.1. Definitions and Notation

Notation 1. Let K be the unit 3D cube [ 0, 1]3. For n ∈ IN let K(n) denote a partition
of K into 23n “cubelets”, K(n) = {Kijk : 0 ≤ i, j, k ≤ 2n − 1}; Kijk is an axis-aligned cube
of length 2−n whose vertex closest to the origin has coordinates 2−n(i, j, k).

We define a Brouwer-mapping circuit in a similar way to the definition in Chen
et al. [2009], here specialized to the case of three dimensions. We also introduce some
variations of the definition, as follows.

Definition 3.1. (Brouwer-Mapping Circuit/Function; Basic Brouwer-Mapping Func-
tion; DGP-Style Basic Brouwer-Mapping Function; Partial Basic Brouwer-Mapping
Function).

A Brouwer-mapping circuit (bmc) is a directed boolean circuit with 3n input nodes
and 2 output nodes. Note that any bmc B has an associated Brouwer-mapping function
(bmf) fB : K(n) −→ {0, 1, 2, 3} that maps any cubelet Kijk to one of the four colors
{0, 1, 2, 3}. We require the colors of all exterior cubelets to be predetermined as follows.
For i = 0, fB(Kijk) = 1. For j = 0, i > 0, fB(Kijk) = 2. For k = 0, i, j > 0, fB(Kijk) = 3. All
other exterior cubelets are mapped to 0.

The basic bmf f (n)

0 : K(n) −→ {0, 1, 2, 3} has the additional property that all internal
cubelets get mapped to 0. Notice that f (n)

0 is computable by a bmc of size polynomial
in n.

A DGP-style bmf is one that is derived from an (S, P)-graph in the manner
of Daskalakis et al. [2009], and so is computable with a bmc of size polynomial in
the size of circuits S and P. (Proposition 3.2 notes the relevant property of DGP-style
bmf’s.)

A partial bmf f is defined with respect to a set S ⊆ K(n); f assigns a color to elements
of S but f may be undefined on nonelements of S.

PROPOSITION 3.2. The following problem is PSPACE-complete. Given a Brouwer-
mapping circuit B, find a cubelet vertex in K whose set of (typically 8) neighboring
cubelets contains 4 that are mapped to all 4 colors by the associated bmf fB, and which
is connected to the origin via cubelets having colors other than 0.

This is a total search problem: the topological intuition is that there is a line that
is adjacent to the colors {1, 2, 3} and has one end at 2−n(1, 1, 0). The other end must
be inside K and adjacent to color 0, since no other exterior point is adjacent to the
colors {1, 2, 3}. We note in passing that if we did not make the “connected to the origin”
requirement, the problem would be PPAD-complete.

PROOF. We reduce from OEOTL (Theorem 2.2). Let G be an (S, P)-graph. Let fB be
a DGP-style bmf derived from G, whose circuit B efficiently encodes G.

Given a bmf fB, define a {1, 2, 3}-chromatic vertex to be one that is shared by 3
cubelets with colors 1, 2, and 3. By construction, the only exterior {1, 2, 3}-chromatic
vertex for any bmf is 2−n(1, 1, 0). Form a digraph GB on {1, 2, 3}-chromatic vertices by
adding an arc between any pair that are connected by an edge of a cubelet, directed
such that if it is pointing away from a viewer, its adjacent colors 1, 2, 3 will appear
in clockwise order around it. The reduction of Daskalakis et al. [2009] ensures GB has
indegree/outdegree at most 1.

Define a panchromatic vertex to be one that belongs to 4 cubelets of all 4 different
colors. By construction, for all bmf’s there is a path of {1, 2, 3}-chromatic vertices
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starting at 2−n(1, 1, 0) and ending at a unique panchromatic vertex vend. vend is a
solution; it can be found in polynomial space by following this path.

Let GB be the graph on fB’s {1, 2, 3}-chromatic vertices as described before. The
reduction of Daskalakis et al. [2009] has the following properties, from which the
result follows.

(1) Each vertex v of G has an associated {1, 2, 3}-chromatic vertex b(v) of GB; v
and b(v) may be computed in polynomial time from each other. For v = 0n,
b(v) = 2−n(1, 1, 0).

(2) v is a solution to END OF THE LINE if and only if b(v) is panchromatic.
(3) Each arc (v, w) of G corresponds to a sequence of edges of GB that connect b(v) to

b(w).
(4) Each connected component of cubelets colored with {1, 2, 3}, corresponds to a

connected component of G.

3.2. Implementing Brouwer-Mapping Functions as Arithmetic Circuits

We review a class of functions used to establish PPAD-completeness of graphical and
strategic form games. Recall that K denotes the three-dimensional unit cube; we con-
sider continuous functions F : K −→ K having the following structure. Each function
is an arithmetic circuit composed of nodes, with each node taking inputs from up to 2
other nodes, and producing an output, for example, the sum of its inputs. All values
are constrained to [ 0, 1], so a node that adds its inputs would output 1 if their sum is
greater than 1. Identify 3 nodes as “input nodes” and another 3 as “output nodes”, so
if F is a continuous function from K to K, it has a Brouwer fixpoint.

Definition 3.3. A linear arithmetic circuit is an arithmetic circuit that computes a
function from K to K, represented by a directed graph whose nodes are “gates” that
perform certain basic arithmetic operations on their inputs as follows. Each gate takes
as input 0, 1, or 2 real values in [ 0, 1] and outputs a single real value in [ 0, 1], where
the output of a gate may be the sum/difference/max/min of two inputs, or a constant
multiple of a single input, or no input and constant output. (An output value is set
to 1 if, for example, two inputs that sum to more than 1 are input to a “sum” gate.)
We also allow “comparator gates” in which the output of such a gate evaluates to 1
(respectively, 0) if its first input is greater (respectively, less) than the second input,
and may take any value if they are equal.

Notation 2. Let α = 2−2n. Let δ1 = (α, 0, 0), δ2 = (0, α, 0), δ3 = (0, 0, α), δ0 =
(−α, −α, −α).

Definition 3.4. We shall say that a Brouwer-mapping function f is implemented by
an arithmetic circuit C if whenever f (Kijk) = c, then C(x) − x = δc when x is at the
center of Kijk. For x not at a center, C(x) − x should be a convex combination (i.e., a
weighted sum where weights are nonnegative and sum to 1) of values of C(z) − z for
cubelet centers z within L∞ distance 2−n of x. Given F : K −→ K computed by such a
C, we shall similarly say that F implements f .

Observation 1. If F implements f , then any fixpoints of F must lie within distance
2−n of panchromatic vertices of f , and vice versa.

THEOREM 3.5. A Brouwer-mapping function having complexity parameter n can
be implemented using a linear arithmetic circuit having poly(n) gates, that computes a
continuous function.

The proof gives a new technique to implement any Brouwer-mapping function f as a
continuous function F that uses a linear arithmetic circuit. This is in contrast with the

ACM Transactions on Economics and Computation, Vol. 1, No. 2, Article 9, Publication date: May 2013.



�

�

�

�

�

�

�

�

9:8 P. W. Goldberg et al.

corresponding techniques of Chen et al. [2009] and Daskalakis et al. [2009] that used a
sampling-based approach in order to smooth the transition between distinct cubelets.
The sampling-based approach results in discontinuous functions, where Browder’s the-
orem would not be applicable (although it could still be applied to a continuous approx-
imation). The technique only works in constant dimension; it can be extended to higher
dimension using the “snake embeddings” of Chen et al. [2009]. (See Appendix A.2.) The
general idea of the technique is to take a simplicial decomposition of the domain K, give
rules for obtaining the values of F at the vertices of the decomposition, and linearly
interpolate within each simplex.

PROOF. Let f : K(n) −→ {0, 1, 2, 3} be a Brouwer-mapping function. We construct a
continuous Brouwer function F : K −→ K computed by a linear arithmetic circuit C
as follows.

For x at the center of cubelet Kijk, set F(x)−x = δc where c = f (Kijk). For x a vertex of
cubelets Kx ⊂ K(n), set F(x)−x to be the average of F(z)−z for all points z at the centers
of members of Kx. The relevant points z can be obtained using a polynomial-sized piece
of circuitry.

Let S be a simplicial decomposition of the unit cube consisting of 12 simplices that
share a vertex at the center of the cube, and all other vertices are vertices of the cube.
Let Sijk be the simplicial decomposition of cubelet Kijk obtained by scaling S down to
Kijk. Applied to all cubelets in K(n) this results in a highly regular decomposition S(n)

of K into 12.23n simplices.
For any x ∈ K, F(x) is obtained by linearly interpolating between the vertices of the

simplex in S(n) that contains x. Clearly F is continuous.
The result follows from the following claim.

PROPOSITION 3.6. F as defined earlier, may be computed by a linear arithmetic
circuit of size polynomial in n.

PROOF. If x is not a vertex of S(n), the circuit can determine the vertices of a simplex
Sx ∈ S(n) that contains x. There may be more than one such simplex, in which case it
does not matter which is chosen.

The circuit has 12 cases to consider, depending on the orientation of Sx. Each case
can be handled in the same general manner, by subtracting some vertex v of Sx from
x, and multiplying (x − v) by some constants (the coefficients of the linear function
that interpolated between the vertices of Sx). Note that we never need to multiply two
computed quantities together, multiplication only ever takes place between a computed
quantity and a constant, as required for a linear arithmetic circuit.

3.3. The PSPACE Reduction to Linear Arithmetic Circuits

In this subsection, we establish the PSPACE-completeness of the problem BROWDER
FIXPOINT, mentioned in the Introduction, which can now be made precise as follows.
We use two bmf’s f0 and f1, where f0 is the basic bmf of Definition 3.1, and f1 shall
be a DGP-style bmf that encodes an instance of END OF THE LINE as constructed
in Daskalakis et al. [2009]. Let F0 and F1 be implementations of f0 and f1 using linear
arithmetic circuits as described in the proof of Theorem 3.5. For F : K −→ K let F (i)

denote the i-th component of F . For i = 1, 2, 3 let

F̄ (i)
t = (F (i)

0 − t) + (F (i)
1 − (1 − t)),

F (i)
t = max(min(F (i)

0 ,F (i)
1 ), F̄ (i)

t ),
(1)

where in Eq. (1), the outputs of operators + and − are restricted to lie in [ 0, 1] (so,
rounding to 0 or 1 if needed). Ft interpolates continuously between F0 and F1 and is
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Complexity of the Homotopy Method, Equilibrium Selection, and L-H Solutions 9:9

constructed from them using elements of the linear arithmetic circuits of Definition 3.3
(which is useful later; the natural alternative Ft = tF0 + (1 − t)F1 does not have this
property).

Observation 2. For all t ∈[ 0, 1], F (i)
t is Lipschitz continuous, with Lipschitz value

< 2.2−n.

F0 has a unique fixpoint close to 2−n(1, 1, 1). F0 is a “basic Brouwer function” which
forms the starting point of homotopies we consider. Hence Observation 2 and Browder’s
fixpoint theorem implicitly define a corresponding fixpoint of F1.

Define an approximate fixpoint of F : K −→ K to be a point x ∈ K with |F(x) − x| ≤
α/5 (recall α = 2−2n).

THEOREM 3.7. It is PSPACE-complete to find, within accuracy 2−n, the coordinates
of the fixpoint of F1 that corresponds to the homotopy of (1). It is also PSPACE-complete
to find the coordinates of an approximate fixpoint of F1 that would be obtained by
following a sequence of approximate fixpoints of Ft in which consecutive points are
within distance α of each other.

PROOF. We reduce from the problem defined in Proposition 3.2 as follows. Let B be
a Brouwer-mapping circuit derived from OEOTL-instance (S, P) using Proposition 3.2
and let fB : K(n) −→ {0, 1, 2, 3} be the function computed by B. Let F1 : K −→ K be
the function computed by a linear arithmetic circuit that implements fB, and F0 be
computed by a circuit that implements the basic bmf f0 (where both implementations
apply Theorem 3.5). Ft is given by Eq. (1).

Let P be a connected subset of K×[ 0, 1] such that for any (x, t) ∈ P, x is a fixpoint
of Ft, and P contains x0 ∈ (K, 0) and x1 ∈ (K, 1). Browder’s fixpoint theorem (with
Observation 2) assures us that such a P exists. We claim that x1 is within distance 2−n

of the unique solution to B of the problem specified in Proposition 3.2 (and hence, given
x1 we can easily construct this solution).

Suppose otherwise. For x1 to be a fixpoint (even an approximate one) of F1, by Ob-
servation 1 it must be within distance 2−n of a panchromatic vertex v of fB. But now,
v is not connected to the origin via nonzero cubelets of fB. By connectivity of P, there
must exist (x, t) ∈ P such that x lies within a cubelet Kx where fB(Kx) = 0.

We may assume further that x is at least 2−n distant from any nonzero cubelet of
fB. This follows provided we assume that connected components of nonzero cubelets of
fB are separated from each other by a layer of 0-colored cubelets of thickness at least
3. This may be safely assumed by increasing n by a factor of 3 and subdividing the
cubelets. We note that:

(1) each entry of vector F0(x) − x is < −α/5, and
(2) each entry of F1(x) − x is < −α/5.

It follows that for t ∈[ 0, 1], each entry of ft(x) − x is less than −α/5, since coordi-
natewise, f0 ≤ ft ≤ fB. That means that x cannot be an approximate fixpoint of any ft,
contradicting the assumption as required.

Since x is at least 2−n distant from any nonzero cubelet of fB, it is also at least 2−n

distant from any nonzero cubelet of f0, since for any cubelet Kijk, fB(Kijk) = 0 
⇒
f0(Kijk) = 0. The implementation of any bmf f as a function F computed by a linear
arithmetic circuit, as referred to in Theorem 3.5, ensures that F(x) − x is a convex
combination of vectors F(z) − z for cubelet centers z in the vicinity of x, and since all
those cubelet centers are colored 0, we have that the entries of F(x) are all less than
−α/5, as required.
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9:10 P. W. Goldberg et al.

4. THE LINEAR TRACING PROCEDURE

We now turn to games and Nash equilibrium. Let G denote an n×n game that we wish
to solve, assumed to be chosen by an adversary. G0 is a game with a unique “obvious”
solution. In G0 each player receives payoff 1 for his first action, and payoff 0 for all
others, regardless of what the other player does.

G0 =

sc
0 sc

1 . . . sc
n−1

sr
0 (1, 1) (1, 0) . . . (1, 0)

sr
1 (0, 1) (0, 0) . . . (0, 0)
...

...
...

...
sr

n−1 (0, 1) (0, 0) . . . (0, 0)

(2)

In the problem LINEAR TRACING the solution consists of the Nash equilibrium of
G that is connected to the unique equilibrium (sr

0, sc
0) of G0 via equilibria of convex

combinations (1− t)G0 + tG. We can also define an approximate version of this problem,
where instances include an additional parameter ε, and we seek an ε-Nash equilibrium
that is connected to the solution of G0 via a sequence of ε-approximate solutions of
Gt. For the two-player case we assume ε = 0. For more than two players, we need a
positive ε to ensure that solutions can be written down as rational numbers.

THEOREM 4.1. LINEAR TRACING is PSPACE-complete for 2-person games.

The same result then holds for strategic form games with more than 2 players. It
holds for a value of ε that is exponentially small; we could again use the ideas of Chen
et al. [2009] to obtain a version where ε is inverse polynomial.

Our reduction uses the result of the previous section, along with earlier reductions
between strategic form games and graphical games. G0 has a similar role to the basic
Brouwer function F0, but the correspondence is indirect; generally F0 is associated
with one of the “intermediate games” Gt for t > 0.

4.1. Brief Overview of the Proof Ideas

The following is a brief overview of the rest of Section 4. Membership of PSPACE can
be deduced from Herings and van den Elzen [2002]. The reduction from the PSPACE-
complete discrete Brouwer fixpoint problem of the previous section applies the idea
from Daskalakis et al. [2009] of going via graphical games to normal-form games.
We derive a type of graphical game in which a specific player (denoted vswitch) acts
as a switch, allowing the remaining players to simulate either the basic Brouwer-
mapping function, or one associated with an instance of the search for a discrete
Brouwer fixpoint. vswitch governs this behavior via his choice of either one of two
alternative strategies, and we show that a continuous path of equilibria from one
choice to the other results in an equilibrium that ultimately represents a solution to
OEOTL. The graphical game is then encoded as a two-player game such that the linear-
tracing procedure corresponds to this continuous path of equilibria in the graphical
game.

4.2. Membership of PSPACE

Herings and van den Elzen [2002] show how to find approximate equilibria on multi-
player games, implicitly constructing a degree-2 graph that has a vertex corresponding
to N0, the Nash equilibrium of G0. Given a simplicial decomposition of D×[ 0, 1] (where
D is the space of mixed strategies of G) vertices of the graph correspond to simplices
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Complexity of the Homotopy Method, Equilibrium Selection, and L-H Solutions 9:11

and subsimplices, and edges are implicitly defined by a lexicographical pivoting rule
that governs a choice of movement from simplex to adjacent simplex, at each step of the
algorithm. It can be checked that this algorithm establishes membership of PSPACE
for multiplayer LINEAR TRACING.

4.3. Graphical Games

In a graphical game [Kearns et al. 2001], each player is a vertex of a graph, and his
payoffs depend on his own and his neighbors’ actions. For a low-degree graph, this
is one way that games having many players may be represented concisely. A homo-
topy between two graphical games GG0 and GG1 would require that these games have
the same underlying graph, so that they differ only in their numerical payoffs. In the
graphical games considered here, each player has just 2 actions and 3 neighbors. The
main result of this section is as follows.

PROPOSITION 4.2. Consider graphical games that contain a special player vswitch
whose payoffs are constant (unaffected by his own actions or the other players’). The
following problem is PSPACE-complete: find a Nash equilibrium of the game where
vswitch plays 1, that is topologically connected to a Nash equilibrium in which vswitch
plays 0, via a path of Nash equilibria in which vswitch plays mixed strategies.

Let F0 and F1 be functions computed by linear arithmetic circuits that implement
Brouwer-mapping functions f0 and f1, where f0 is the “basic bmf” of Definition 3.1, and
f1 is a DGP-style bmf that encodes some instance of END OF THE LINE.

Notation 3. In a graphical game in which all players have 2 pure strategies denoted
0 and 1, given a mixed-strategy profile for the players we let p[ v] denote the probability
that player v plays 1.

Definition 4.3 (Linear Graphical Game; Simulation of bmf’s and Partial bmf’s).
Given a bmf f , we construct an associated graphical game GGf as follows. GGf has

3 special players (vx, vy, vz) whose strategies (p[ vx] , p[ vy] , p[ vz] ) represent a point in
K. If f is implemented by F : K −→ K we use gadgets of Daskalakis et al. [2009] to
simulate the nodes in the arithmetic circuit that computes F (each node of the cir-
cuit has an additional associated player in GGf ). The game can pay them to adjust
(p[ vx] , p[ vy] , p[ vz] ) in the direction F(p[ vx] , p[ vy] , p[ vz] ) −(p[ vx] , p[ vy] , p[ vz] ).
Then the players (vx, vy, vz) are incentivized to play F(p[ vx] , p[ vy] , p[ vz] ). Conse-
quently a Nash equilibrium of GGf corresponds to a fixpoint of F . Moreover, an ε-Nash
equilibrium corresponds to a poly(ε)-approximate fixpoint of F . We call GGf a linear
graphical game since we only allow players whose payoffs cause them to simulate the
gates of linear arithmetic circuits.

A game of the preceding kind is said to simulate f . We say further that a game
GG simulates a partial bmf on a subset S of cubelets, if for any K ∈ S, when
(p[ vx] , p[ vy] , p[ vz] ) lie at the center of K the players (vx, vy, vz) are incentivized to
play (p[ vx] , p[ vy] , p[ vz] ) + δc, where c = f (K).

LEMMA 4.4. Given any linear graphical game GG1 that simulates a Brouwer-
mapping function f1, we can efficiently construct a new game GG+ having a player
vswitch whose behavior can either cause GG to simulate f1 (if vswitch plays 1) or cause GG
to simulate f0 if instead vswitch plays 0.

vswitch shall serve as a “switch”, in allowing the game to switch between simulating
f0 and f1 (using an additional 3 players (v+

x , v+
y , v+

z ) whose strategies represent a point
in K) according to whether vswitch plays 0 or 1. Of course, vswitch has a key role in the
associated two-player game.
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9:12 P. W. Goldberg et al.

PROOF. For i ∈ {0, 1}, let GGi be a graphical game constructed from fi according
to Definitions 3.1, 3.4, and 4.3. GGi has 3 players/vertices whose mixed strategies, as
represented by the probabilities that they play 1, represent a point in K. Denote these
players (vi

x, vi
y, vi

z).
Construct a “combined” game GG+ as follows. GG+ contains all the players in GG0

and GG1 together with a new player vswitch, where vswitch has the same fixed payoff for
playing either 0 or 1. We add 3 players (v+

x , v+
y , v+

z ) whose mixed strategies represent a
point in K, and players (v̄+

x , v̄+
y , v̄+

z ), whose behavior is governed by

p[ v̄+
x ]=(p[ v0

x] −p[ vswitch] ) + (p[ v1
x] −(1 − p[ vswitch] ))

p[ v+
x ]=max(p[ v̄+

x ] , min(p[ v0
x] , p[ v1

x] ))
(3)

(and similar expressions for v+
y and v+

z ) where the parentheses in the previous expres-
sion are important since the outputs of the operators + and − are truncated to lie in
[ 0, 1].

Players from GG0 and GG1 that take input from nodes v0
i or v1

i , respectively, are then
modified to take that input from v+

i instead. This completes the construction.

PROOF. of Proposition 4.2: We reduce from the circuit homotopy of Theorem 3.7.
Let {Ft : t ∈[ 0, 1] } be an instance of this circuit homotopy. Construct G1 from F1
as per Definition 4.3. Construct GG+ as in Lemma 4.4, and we make the following
observation.

Observation 3. Suppose that in GG+ we have p[ vswitch] = t ∈ (0, 1). The resulting
game GG+

t simulates a partial Brouwer-mapping function ft which is implemented by
a Brouwer function Ft that is (pointwise) a convex combination of F0 and F1 and is de-
fined on the subset of cubelets where f0 = f1. Given a homotopy path of Nash equilibria
of GG+ that start at the unique equilibrium of GG+ that satisfies p[ vswitch] = 0 and ends
at an equilibrium of GG+ in which p[ vswitch] = 1, there is a corresponding homotopy
path from the fixpoint of F0 and a fixpoint of F1 (noting that Eq. (3) is essentially the
same as Eq. (1)).

That concludes the proof of Proposition 4.2.

The following version of Lemma 4.4 is useful in the construction for Lemke-Howson
solutions, later on.

COROLLARY 4.5. Given any linear graphical game GG1 that simulates a Brouwer-
mapping function f1, we can efficiently construct a new game GG+ having 2 players
vswitch and v′

switch whose behavior can either cause GG+ to simulate f1 (if both vswitch,
v′

switch play 1) or cause GG+ to simulate f0 if instead either or both play 0. Furthermore,
it is PSPACE-complete to compute a Nash equilibrium of GG+ where vswitch and v′

switch
play 1, that is connected to one where either or both play 0 (via equilibria of games
where vswitch, v′

switch play intermediate strategies).

PROOF. The proof of the previous lemma is modified as follows. We reuse Eq. (3)
for players (v+

x , v+
y , v+

z ). We have an additional 3 players (v++
x , v++

y , v++
z ) whose mixed

strategies represent a point in K, and have behavior governed by

p[ v̄++
x ] = (p[ v0

x] −p[ v′
switch] ) + (p[ v+

x ] −(1 − p[ v′
switch] ))

p[ v++
x ] = max(p[ v̄++

x ] , min(p[ v0
x] , p[ v+

x ] ))
(4)

again with similar expressions for v++
y and v++

z .
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The PSPACE-completeness follows in a similar way to the proof of Proposition 4.2;
Observation 3 applies to GG+.

4.4. From Graphical to Two-Player Strategic Form Games

In this subsection we prove the following theorem, from which Theorem 4.1 follows
since we have previously noted membership of PSPACE.

THEOREM 4.6. It is PSPACE-hard to compute the Nash equilibrium of a given two-
player normal-form game G1, that is obtained via the linear homotopy that starts from
G0, a version of G1 where the payoffs have been changed to give each player payoff 1 for
his first strategy and 0 for the others.

We reduce from the graphical game problem of Proposition 4.2. Let GG+ be a lin-
ear graphical game that includes a player vswitch as per Proposition 4.2. First, modify
GG+ to give vswitch a small payment (say, 0.01) to play 1, and zero to play 0. Thus in
equilibria of GG+, vswitch plays 1.

We define a homotopy between two-player strategic form games G0 and G1 such that
equilibria of G1 efficiently encode equilibria of GG+, and equilibria of Gt encode equilib-
ria of versions of GG+ where vswitch has a bias towards playing 0. We use the reduction
of Daskalakis et al. [2009, Section 6.1] from graphical games to two-player games (a
similar reduction is used in Chen et al. [2009, Section 7] to express generalized circuits
(similar to our linear arithmetic circuits) as two-player games).

In the context of a mixed-strategy profile, let Pr[ s] denote the probability allocated
to pure strategy s by its player.

Definition 4.7. A circuit-encoding two-player game G has a corresponding graphical
game GG (G is assumed to be derived from GG by the reduction of Daskalakis et al.
[2009]) where the graph of GG is bipartite; denote it G = (V1 ∪ V2, E); each player
(vertex) in GG has 2 actions (denote them 0 and 1) and payoffs that depend on the
behavior of 2 other players in the opposite side of G’s bipartition. Each vertex/action
pair (v, a) of GG has a corresponding strategy in G; for v ∈ V1, (v, a) belongs to the row
player and for v ∈ V2, (v, a) belongs to the column player. The payoffs in G are designed
to ensure that in a Nash equilibrium of G.

— Pr[ (v, 0)] + Pr[ (v, 1)] ≥ 1/2n where n is the number of players in GG;
— if in GG, v plays 1 with probability Pr[ (v, 1)] /(Pr[ (v, 0)] + Pr[ (v, 1)] ) then we have

a Nash equilibrium of GG.

Let G be a circuit-encoding game derived from GG+ according to Definition 4.7. vswitch
has 2 corresponding strategies (vswitch, 0) and (vswitch, 1) which we may assume be-
long to the column player; denote them sc

k and sc
k+1. Hence a Nash equilibrium

of G corresponds to one of GG+ where the value p[ vswitch] is given by the value
Pr[ sc

k+1] /(Pr[ sc
k] + Pr[ sc

k+1] ).

Observation 4. If we take a circuit-encoding two-player game, and award one of the
players a small bonus to play (v, a), then this corresponds to incentivizing the player
v in GG to select strategy a. The corresponding incentive for v will be larger, but only
polynomially larger.

Let G0 be a (n + 1) × (n + 1) game with strategies {sr
0, . . . sr

n} for the row player,
and {sc

0, . . . sc
n} for the column player. Payoffs are as follows: each player receives 1 for

playing sr
0 or sc

0, and 0 for sr
j or sc

j for j > 0. (Thus G0 is a (n + 1) × (n + 1) version of
Eq. (2).)
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Rescale the payoffs of G to all lie in the range [ 0· 9, 1· 1]. Let G1 be a (n + 1) × (n + 1)
game with strategies {sr

0, . . . , sr
n} for the row player, and {sc

0, . . . , sc
n} for the column

player. Payoffs are as follows:

— (sr
0, sc

0) results in payoffs (0, −1) for the players.2

— (sr
0, sc

j ) for j > 0 results in payoffs (0, 3
4 ).

— (sr
j , sc

0) for j > 0 results in payoffs (−1, 3
4 ) for j �= k, and (−1, 3

4 + δ) (for δ inverse
polynomial in n) for j = k.

— The rest of G1 is a copy of G given before.

G1 =

sc
0 sc

1 · · · sc
k−1 sc

k sc
k+1 · · · sc

n
sr

0 (0, −1) (0, 3
4 ) · · · (0, 3

4 ) (0, 3
4 + δ) (0, 3

4 ) · · · (0, 3
4 )

sr
1 (−1, 3

4 )
...

... G
sr

n (−1, 3
4 )

Let Gt = (1 − t)G0 + tG1. The preceding payoffs have been chosen so that Nash equi-
libria satisfy: in G1, players do not use sr

0 or sc
0; in G0·6, players both have a proper

mixture of sr
0 and sc

0 with their other strategies. Since G’s payoffs were rescaled to lie
in [ 0· 9, 1· 1], Pr[ sr

0] and Pr[ sc
0] can be shown to lie in [ 0· 1, 0· 9], which can be checked

from the following payoff ranges for G0·6.

sc
0 sc

1 . . . sc
n

sr
0 (0· 4, −0· 2) (0· 4, 0· 45 + δ)

sr
1 . . . sr

n (−0· 6, 0· 85) ([ 0· 54, 0· 66] , [ 0· 54, 0· 66] )

Thus a continuous path of equilibria should at some stage allocate gradually less and
less probability to sr

0 and sc
0 as t increases.

Observation 5. In any Nash equilibrium N of G1, the players assign probability 0
to sr

0 and sc
0, and consequently N consists of a Nash equilibrium of G, restricting to

strategies sr
j , sc

j′ for j, j′ > 0.

Since Gt = (1 − t)G0 + tG1, we can write Gt as follows.

sc
0 sc

1 · · · sc
k−1 sc

k sc
k+1 · · · sc

n
sr

0 (1 − t, 1 − 2t) (1 − t, 3
4 t) · · · (1 − t, 3

4 t) (1 − t, (3
4 + δ)t) (1 − t, 3

4 t) · · · (1 − t, 3
4 t)

sr
1 (−t, 1 − 1

4 t)
...

... tG
sr

n (−t, 1 − 1
4 t)

The general idea is as follows. Consider the Browder path of equilibria that begins
from the unique equilibrium of G0 (where initially both players play sr

0, sc
0). As t in-

creases, the players will start to use the other strategies. At that stage, consider the

2The two-component payoff vectors assign the first component to the row player and the second component
to the column player.
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distribution of their mixed strategies restricted to sr
1, . . . , sr

n and sc
1, . . . , sc

n. These dis-
tributions will constitute a Nash equilibrium of a version of G in which the column
player receives a small bonus for playing sc

k. As t increases to 1, the bonus decreases
continuously to 0, and we recover Observation 5. Now, recall from Definition 4.7 that
the way Daskalakis et al. [2009] and Chen et al. [2009] reduce graphical games to two-
player games is to associate each player v in the graphical game with two strategies
in the two-player game, both belonging to the same player. The division of probability
between these two strategies represents the probability that v plays 1. Consider vswitch
now, corresponding to sc

k and sc
k+1. vswitch is, in the graphical game, mildly incentivized

to play 1, but for t < 1 the δ in the two-player game Gt pushes it the other way, to-
wards 0. As a result, a Nash equilibrium of Gt may simulate a Nash equilibrium of
GG+

t where p[ vswitch] ∈ (0, 1). As t increases and the contribution from δ decreases, this
process corresponds to raising p[ vswitch] continuously (but not monotonically) from 0
to 1.

LEMMA 4.8. Let N be a Nash equilibrium of Gt in which Pr[ sr
0] < 1 and Pr[ sc

0] < 1.
Let P be the probability distributions over {sr

1, . . . , sr
n} and {sc

1, . . . , sc
n} obtained by taking

each value Pr[ si
j] (for i ∈ {r, c}, 1 ≤ j ≤ n) and dividing it by 1 − Pr[ si

0].
Then P is a Nash equilibrium of a version of G in which the column player receives

an additional bonus of δ Pr[ sr
0] /(1 − Pr[ sr

0] ) for playing sc
k.

PROOF. In Nash equilibrium N , c’s strategy sc
0 contributes the same quantity to

each one of r’s strategies sr
1, . . . , sr

n. So the values Pr[ sr
1] , . . . , Pr[ sr

n] must form a best
response to c’s mixed strategy from P.

The column player receives a bonus δt Pr[ sr
0] specific to sc

k, arising from the possibil-
ity that row player plays 0. He also receives an additional 3

4 t for all strategies sc
j for

j > 0, but that uniform bonus has no further effect on his preference amongst sc
1, . . . , sc

n.
So in N , Pr[ sc

1] , . . . , Pr[ sc
n] is a best response to a mixture of G weighted by 1−Pr[ sr

0]
and the probability Pr[ sr

0] of a bonus δ Pr[ sr
0] for playing sc

k. This is equivalent to a best
response to a version of G with a bonus of δ Pr[ sr

0] /(1 − Pr[ sr
0] ) for playing sc

k.

Consider the path of equilibria connecting equilibrium N0 of G0 to equilibrium N1
of G1. By Lemma 4.8 we can choose δ such that in any equilibrium of G0.5 we have
Pr[ sc

k+1] = 0. We also have that in any equilibrium of G1, Pr[ sc
k] = 0. Consider the

longest suffix of this path of equilibria for which t ≥ 0.5 for all games Gt that appear in
that suffix. The corresponding equilibria assign weight strictly less than 1 to sr

0 and sc
0,

so Lemma 4.8 may be used to recover corresponding equilibria of versions of G which
in turn correspond to versions of GG+ in which initially, vswitch is incentivized to play
0, and finally, vswitch is incentivized to play 1.

5. FROM LINEAR TRACING TO THE HOMOTOPIES OF VAN DEN ELZEN-TALMAN,
HERINGS-VAN DEN ELZEN, AND HERINGS-PEETERS

In the previous section, we showed the PSPACE-completeness of finding the Nash
equilibrium of a two-player game that is associated with a homotopy that uses a spe-
cific simple starting game that is not derived from the game of interest. In the litera-
ture on homotopy methods, starting with Harsanyi [1975], the starting game is usually
derived from the game of interest by positing a prior distribution over the players’ pure
strategies, and using a starting game whose payoffs are the result of playing against
this prior distribution. In this section, we extend the result of Section 4 to handle these
starting games and thus obtain results for the Herings and van den Elzen [2002] and
Herings and Peeters [2001] algorithms, which use the same underlying homotopy, and
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the van den Elzen-Talman [Herings and Peeters 2010] algorithm, which uses a differ-
ent homotopy. All three algorithms have been shown under certain conditions to mimic
the Harsayni-Selten linear tracing procedure. For each algorithm, we use the uniform
distribution as the prior distribution, which is a natural choice.

The van den Elzen-Talman algorithm uses a homotopy based on a starting mixed-
strategy profile v. Letting � be the set of mixed-strategy profiles, let �(t) be the set
of convex combinations (1 − t){v} + t�. In the notation of Herings and Peeters [2010],
the van den Elzen-Talman algorithm —restricted to the two-player case— uses the
homotopy

H(t, σ) = β1
σ1(t)(σ ) × β2

σ2(t)(σ ),

where for i = 1, 2, βi
σ i(t)

(σ ) denotes the best responses of player i to mixed strategy σ ,
restricted to �(t).

THEOREM 5.1. It is PSPACE-complete to compute equilibria that result from the
aforesaid van den Elzen-Talman homotopy.

PROOF. (sketch) It can be checked that the algorithm uses polynomial space. For
the hardness, we reduce from LINEAR TRACING; consider a game G for which we seek
an equilibrium that results from starting with G0 of the form of (2). Suppose we take
a game G from Section 4 and give each player an additional strategy as follows. Let
sr

n and sc
n be the new strategies, for the row and column player respectively. sr

n has a
payoff of −10 for the row player, regardless of how the column player plays (thus, sr

n is
dominated by all the other strategies). The payoffs to the column player arising from
sr

n are chosen in such a way that, if in fact the row player uses the uniform distribution
over sr

0, . . . , sr
n, then the column player’s payoffs will be 1 for sc

0 and 0 for sc
j , for j > 0.

The new strategy sc
n has a similar definition. Note that the new payoffs are at most n in

absolute value. These new strategies ensure that we have the desired G0 of Section 4,
when we restrict each player to his first n strategies. Strategies sr

n and sc
n are not used

in any Nash equilibrium of Gt, since they are strictly dominated for all t.
We let v be the uniform distribution. In Gt, the row plays a mixture (1 − t)v + tσ r

t
while the column player plays (1 − t)v + tσ c

t , where σ r
t and σ c

t are mixed strategies
whose support do not include sr

n and sc
n, so they constitute a Nash equilibrium of a

version of G in which there is a bonus to play sr
0 and sc

0. This bonus drops continuously
to zero, so it is equivalent to the linear-tracing homotopy.

The algorithms of Herings and van den Elzen [2002] and Herings and Peeters [2001]
are based on an identical homotopy and differ only in the numerical technique used
to follow the homotopy path. We can show using essentially the same construction as
before that it is PSPACE-hard to compute the equilibria found by these homotopies.
To do so we can again construct a starting game by giving the row/column players new
strategies sr

n and sc
n chosen to have low payoffs to the row (respectively, column) play-

ers, but whose payoffs to the opponent are chosen such that if either player played the
uniform distribution, the opponent would receive a higher payoff for his first strategy
(either sr

0 or sc
0) than the others, which would all receive the same (lower) payoffs.

6. FROM LINEAR TRACING TO LEMKE-HOWSON

The Lemke-Howson (L-H) algorithm is an important and rich research subject in and
by itself within game theory; for the purposes of this reduction, it is helpful to take a
point of view that considers the L-H algorithm as a homotopy [Herings and Peeters
2010], where an arbitrary strategy s (the one whose label is dropped initially) is ini-
tially given a large “bonus” B to be played; that is, the payoffs are changed so that
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the player who has s receives an additional B to play s. We refer to this bonus as the
“L-H bonus”. For large enough B, strategy s strictly dominates all other strategies, and
s together with a best response from the other player constitutes an equilibrium; the
homotopy arises from reducing the bonus continuously to zero.

THEOREM 6.1. It is PSPACE-complete to find any of the solutions of a two-player
game that are constructed by the Lemke-Howson algorithm.

The remainder of this section proves Theorem 6.1, the hardness being established by
a reduction from the graphical game problem of Proposition 4.2, extending the ideas of
the reduction for LINEAR TRACING (Theorems 4.1 and 4.6). A new technical challenge
here is that the choice of initially dropped label results in 2n alternative homotopy
paths, and we must ensure that any of the (up to) 2n solutions encodes the single
solution to some instance of LINEAR TRACING.

Suppose that some strategy is given the L-H bonus, and a Browder path of Nash
equilibria is obtained from reducing that bonus to zero. As before let t ∈[ 0, 1] be a
parameter that denotes the distance from the starting game of the homotopy to the
game of interest, so that 1 − t is a multiplicative weight for the bonus in intermediate
games. Consider the Browder path. It is piecewise linear, a topologically well-behaved
line. Let T ∈[ 0, 1] parameterize points along the Browder path — an equilibrium NT
is the one that is a fraction T of the distance along the path (starting at the version
of the game with the L-H bonus). So, multiple values of T can correspond to the same
value of t. Here we mostly focus on T rather than t.

Overview. The construction described shortly (and in Figure 1) addresses the is-
sue that an arbitrary strategy may receive the L-H bonus. We embed two copies of
a circuit-encoding game G (Definition 4.7) into a game instance for the L-H algorithm.
At least one of those copies of G will not contain the strategy that receives the L-H
bonus. The L-H homotopy, restricted to that copy of G, will simulate the homotopy of
Section 4. Observation 6 identifies a point on the homotopy path where the players’
mixed strategies, restricted to the relevant copy of G, simulate play with bonuses for
each player to use their first strategies. The subsequent discussion and Lemma 6.2
establish that these bonuses are large but get smaller as we continue along the ho-
motopy path. Lemma 6.3 shows that at t = 1 these bonuses are significantly smaller.
Lemma 6.4 shows a positive lower bound on the probability allocated to the strategies
of both copies of G, so that we may validly consider distributions that are restricted to
those strategies.

The reduction. In Figure 1, G denotes a circuit-encoding n × n game (note the two
copies) whose payoffs have been rescaled to lie in the interval [ 0· 4, 0· 6]. G is assumed
to have an associated graphical game with two “switch” players vr

switch, vc
switch that

affect the equilibria of G according to Corollary 4.5. They will correspond to the first
pair of each of G’s players’ strategies (sr

0, sr
1) and (sc

0, sc
1) such that:

— if both p[ vr
switch] = 1 and p[ vc

switch] = 1, G’s equilibrium encodes a solution to an
END OF THE LINE instance that is efficiently encoded by G;

— if either p[ vr
switch] = 0 or p[ vc

switch] = 0, G encodes the “basic” Brouwer-mapping
function;

— if we add a bonus to the row player for his first strategy sr
0 that is less than some

threshold τ , it will result in Pr[ sr
0] = 0 and hence p[ vr

switch] = 1, and similarly for
the column player with respect to sc

0 and vc
switch. (We will see that such bonuses

occur, and they decrease as T −→ 1.)

Notation. A, B, C, D and A′, B′, C′, D′ denote sets of the players’ strategies as shown
in Figure 1. In the context of a mixed-strategy profile, Pr[ C] denotes the probability
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9:18 P. W. Goldberg et al.

Fig. 1. The game has 2 copies of n × n game G embedded in the top-left and bottom-right regions, with
payoff rescaled to [ 0· 4, 0· 6]. In the top-right and bottom-left regions are copies of a n × n game that give the
column player a payoff of 0 and the row player a payoff of 1. Each of A, B, A′, B′ denotes a set of n strategies.
C, D, C′, and D′ are individual strategies. In the proofs we put M = 1000, e = 1.

that the column player uses C; Pr[ A] that he chooses an element of A, and so on.
Let X(T) = Pr[ C] + Pr[ D] + Pr[ C′] + Pr[ D′], a function of distance along the Browder
path. We note the following facts.

— X(0) ≥ 1 (if, say, a column player strategy receives the L-H bonus, then the
row player will play some pure best response, either C′ or D′; so Pr[ C′] = 1 or
Pr[ D′] = 1.)

— X(1) ≤ 1
25 (shown in Lemma 6.3)

together with the key observation that X(T) is a continuous function of T, implying
the following.

Observation 6. For some T′ ∈[ 0, 1], X(T′) = 1
4 , and for T > T′, X(T) < 1

4 .

Let Ḡ be the copy of G that does not contain the strategy that receives the L-H bonus.
(If one of C, D, C′ or D′ receive the L-H bonus, then Ḡ may be either copy of G.)

For any X, at least one player p has an additional bonus at least X/2 to play sp
0 in

Ḡ (suppose for example Pr[ C] + Pr[ D] ≥ X/2 and p is the row player; Figure 1 awards
additional e = 1 to p when C or D is played). But neither player’s bonus exceeds X. As T
increases from T′ to 1, X(T) goes down from 1

4 to at most 1
25 (in more detail, 4

M is shown
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in Lemma 6.3, and we choose M ≥ 100). We will establish that when X(T) = 1
4 , NT

contains a solution to a “biased” version of Ḡ where one of the players’ first strategies
(i.e., sr

0 or sc
0) has an additional bonus (enough to ensure Pr[ sr

1] = 0 and p[ vr
switch] = 0,

in the case of the row player). Furthermore, when T = 1, we have that NT contains
a solution to Ḡ, only with smaller biases. These biases are associated with “switch”
strategies in the graphical game associated with G.

Let T′ be the largest value of T where X(T) is large enough that one of the bonuses
sets Pr[ sp

0] = 1 in Ḡ (for p ∈ {r, c}). Between T′ and T = 1 we pass through a continuum
of equilibria where Pr[ sp

0] changes from 1 to 0; equivalently p[ vp
switch] changes from 0

to 1, and the resulting equilibrium at T = 1 corresponds to a solution to OEOTL.

LEMMA 6.2. Let NT be a solution of GT. If Ḡ is the bottom right-hand copy of G
in Figure 1, then if the distributions over B and B′ are normalized to 1, we have
a Nash equilibrium of a game Ĝ where the row player has an additional bonus of
e(Pr[ C] + Pr[ D] )/ Pr[ B′] to play his first strategy sr

0, and the column player has an
additional bonus of e(Pr[ C′] + Pr[ D′] )/ Pr[ B] to play his first strategy sc

0.

By symmetry, a similar result also holds in the case that Ḡ is the top right-hand copy
of the G.

PROOF. Payoffs to the row player are unaffected by the column player’s distribution
over A. Meanwhile, C and D lead to an additional bonus of e (weighted by the probabil-
ity that C and D are used by the column player) for the row player to use the top row
of B′.

LEMMA 6.3. At t = 1 (equivalently, T = 1) we have in any Nash equilibrium, that
Pr[ C] ≤ 1

M , Pr[ D] ≤ 1
M , Pr[ C′] ≤ 1

M and Pr[ D′] ≤ 1
M . Since M ≥ 100 we have X(1) ≤ 1

25 .

PROOF. of Lemma 6.3. We give the proof that Pr[ C] ≤ 1
M ; by symmetry the other

claims are similar.
Assume for contradiction that Pr[ C] > 1

M . We know that at least one strategy from
A∪B gives positive payoff, since the places where they can obtain a negative payoff are
“equal and opposite”. Indeed, it can be checked that the payoff to at least one member
of A and B is at least 1

2 min{0· 4, e}. The (column player’s) payoffs from C and D must
sum to zero, so if Pr[ C] > 0 then Pr[ D] = 0 (D gets negative payoff and is a strictly
worse response A or B.) A similar argument for the row player’s payoffs establishes
that one or both of C′ and D′ gets zero probability.

Given that Pr[ C] > 1
M we can deduce that Pr[ A′] = 0 due to being a worse response

than B′: C contributes at least 2M
M = 2 to payoff(B′)−payoff(A′); A contributes a positive

amount; D has zero probability so contributes nothing; B contributes ≥ −0· 6. We noted
before that Pr[ C′] = 0 or Pr[ D′] = 0 (or both). Consider the following two cases.

Case 1. Pr[ D′] = 0. Deleting strategies with probability zero, we are left with the
following structure.

A C B
B′ (1, 0) ([ M, M + e] , −M) ([ 0· 4, 0· 6] , [ 0· 4, 0· 6] )

C′ (−M, [ M, M + e] ) (−M, M) (M, [ −M, −M + e] )

Comparing C with A, we need Pr[ C′] = 1 to avoid A being a better response than
C (which is supposed to have positive probability > 1

M ). If Pr[ C′] = 1, B is a worse
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response than the others, but when the column player uses only A and C, C′ has much
lower payoff than B′, contradicting assumption that Pr[ C′] is positive. This leaves us
with Case 2.

Case 2. Pr[ C′] = 0. We get, after deleting zero-probability strategies, the following.

A C B
B′ (1, 0) ([ M, M + e] , −M) ([ 0· 4, 0· 6] , [ 0· 4, 0· 6] )

D′ (M, [ −M, −M + e] ) (M, −M) (−M, [ M, M + e] )

Here the contradiction is immediate since B is a strictly better response than C,
preventing Pr[ C] > 0.

LEMMA 6.4. Assume that e ≤ 1 in Figure 1 and that M ≥ 100. Suppose that X(T) ≤
1
4 . Then Pr[ A] ≥ 1

10 , Pr[ B] ≥ 1
10 , Pr[ A′] ≥ 1

10 , Pr[ B′] ≥ 1
10 .

PROOF. We need to consider two cases in detail: case 1 assumes that an element
of A′ received the L-H bonus and case 2 assumes that C received the bonus. All other
possibilities are essentially the same as these, by symmetry.

Case 1. Suppose first that a strategy from A′ has been given the L-H bonus, and we
are at a Nash equilibrium where X = 1

4 .
First we prove that the row player strategies satisfy Pr[ A′] ≥ 1

10 , Pr[ B′] ≥ 1
10 . Since

X ≤ 1
4 , we have Pr[ A′] + Pr[ B′] ≥ 3

4 . Suppose for a contradiction that Pr[ B′] < 1
10 , so

that Pr[ A′] ≥ 0· 65. Then (for e ≤ 1), C is the unique best response for the column
player and hence Pr[ C] = 1. This implies X ≥ 1, contradicting the assumption that
X ≤ 1

4 . Similarly, if Pr[ A′] < 1
10 then Pr[ B′] ≥ 0· 65, then D is the column player’s

unique best response, hence Pr[ D] = 1, again contradicting X ≤ 1
4 .

Next we prove that the column player strategies satisfy Pr[ A] ≥ 1
10 , Pr[ B] ≥ 1

10 . Sup-
pose for a contradiction that Pr[ B] < 1

10 , so that Pr[ A] ≥ 0· 65. Then for the row player,
D′ is a better response than B′ and C′ (and regarding A′, some strategy from A′ re-
ceived the L-H bonus, so we do not claim A′ is suboptimal). If B′ is not a best response,
so Pr[ B′] = 0, since X ≤ 1

4 we have Pr[ A′] ≥ 3
4 . Then C is strictly better than A, con-

tradicting Pr[ A] ≥ 0· 65. Alternatively suppose that Pr[ A] < 1
10 , so that Pr[ B] ≥ 0· 65.

Then C′ is a better response than B′ and D′, since payoff(C′) ≥ (0· 65−0· 35)M = 0· 3M;
payoff(B′) ≤ 1

4M since Pr[ C] ≤ 1
4 by assumption that X ≤ 1

4 ; payoff(D′) is nega-
tive. With D′ and B′ eliminated, C is a strictly better response than B, contradicting
Pr[ B] > 0.

Case 2. Suppose alternatively that it was strategy C′ that received the L-H bonus.
We show first that the row player’s strategies satisfy Pr[ A′] ≥ 1

10 , Pr[ B′] ≥ 1
10 . Sup-

pose Pr[ A′] < 1
10 , so that Pr[ B′] ≥ 0· 65. D is a better response than A and B. But from

this it follows that Pr[ D] + Pr[ C] = 1, contradicting X = 1
4 . Suppose Pr[ B′] < 1

10 , so
that Pr[ A′] ≥ 0· 65. C is a better response than A and B, so Pr[ C] + Pr[ D] = 1 contra-
dicting X = 1

4 .

Next we show that the column player’s strategies satisfy Pr[ A] ≥ 1
10 , Pr[ B] ≥ 1

10 .
Suppose Pr[ B] < 1

10 , so Pr[ A] > 0· 65. D′’s payoff is greater than 0· 3M while A′ and B′

have payoff at most 1
4M + 1 so D′ is a better response than A′ and B′, contradicting
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X ≤ 1
4 . Suppose Pr[ A] < 1

10 , so Pr[ B] > 0· 65. C′ is a better response than A′ and B′
even ignoring the L-H bonus.

At X(T) = 1
4 we have that at least one of Pr[ C], Pr[ D], Pr[ C′], Pr[ D′] is at least 1

16 ,
while at the end of the Browder path, we know that all these quantities are at most

1
100 . We set the switch threshold probability to be somewhere between these, but we
have to use lower bounds on Pr[ A], Pr[ B], Pr[ A′], Pr[ B′] at t = 1 and upper bounds
on these at X = 1

4 (as well as lower bounds on these at X = 1
4 to ensure that a Nash

equilibrium of the “biased game” is being encoded).

Finally, we need to show that there exists τ such that the bonus from at least one
switch strategy in Ḡ changes continuously above τ to below it, while the bonus for the
other switch strategy ends up below τ , thus initially, at least one value of p[ vr

switch] and
p[ vc

switch] is zero, but at the end both evaluate to 1. This needs to take into account the
variable amount of probability allocated to the strategies in Ḡ, since that affects the
impact of the bonuses on sp

0.
For any T ∈[ T′, 1] the weight assigned by each player to Ḡ’s strategies is at least

1
10 by Lemma 6.4, so that the bonus for player p to play sp

0, falls by a larger factor
than the probability that Ḡ is played. That means that τ can indeed be chosen as
required.

7. DISCUSSION AND OPEN PROBLEMS

Should a more general result be obtainable? For example, perhaps it should be possi-
ble to identify general classes of “path-following algorithms” that include the ones we
analyzed here, for which it is PSPACE-complete to compute their output.

A somewhat tangential question: Is the two-dimensional analog of OEOTL PSPACE-
complete? (i.e., consider the PPAD-complete problem 2D-SPERNER [Chen and Deng
2009]; suppose we ask for the trichromatic triangle identified in the proof of Sperner’s
lemma.) In two dimensions, the gadget that is used to allow “edges” to cross each
other, rearranges the structure of those edges, such that the corresponding solutions
to END OF THE LINE are the same, but not the unique solution to OEOTL. Generally,
there are many ways to modify the edges of a given (S, P)-graph so that the degree-1
vertices are unchanged, but the structure of the graph is in other respects completely
different.

The tracing procedure is used by von Stengel et al. [2002] to solve extensive two-
person games, and a normal-form perfect equilibrium is obtained by starting from a
completely mixed starting vector. What is the complexity of computing a normal-form
perfect solution using this (or other) methods? (They note [von Stengel et al. 2002,
page 707] that on strategic form games this procedure mimics the linear tracing pro-
cedure of Harsanyi and Selten [1988].)

APPENDIXES

A.1. Exponentially Many Changes of Direction

We give an outline of how to modify our first construction, so as to show that in follow-
ing a sequence of approximate fixpoints of Brouwer functions, or equilibria of games,
t may have to change direction exponentially many times, and furthermore, oscillate
between values whose difference is bounded away from zero.
F0 shall be the same as in Theorem 3.7. We construct a modified form of F1, which

we will call Fm
1 , as follows. We identify two subsets of the cubelets Kijk, R1 and R2,
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defined as R1 = {Kijk : 10 ≤ k ≤ 12}, and R2 = {Kijk : 20 ≤ k ≤ 22}. These subsets
are “thin layers” of cubelets that are perpendicular to the z-axis. Now we define how
Fm

1 behaves on points at the centers of cubelets. For x at the center of Kijk,

if Kijk ∈ R1, Fm
1 (x) − x = 10(F1(x) − x),

if Kijk ∈ R2, Fm
1 (x) − x = 1

10 (F1(x) − x),
otherwise, Fm

1 (x) = F1(x).

For points not at the centers of cubelets, Fm
1 shall interpolate between the values

at the nearest cubelet centers, using the same general approach as F1. Let Fm
t =

(1 − t)F0 + tFm
1 .

Let D be the set of cubelets Kijk for which f0(Kijk) �= f1(Kijk), so D is the region where
fixpoints of Fm

t may exist. Let D− be the connected component of D which contains
the cubelet K1,1,1, so D− is the region within which fixpoints of Fm

t will occur on the
homotopy path.

By construction, D− has the property that D− \ R1 (and similarly D− \ R2) has
exponentially many connected components. This follows from the construction of
Daskalakis et al. [2009] from which D is derived; D simulates a (S, P)-graph by, for
each edge of the (S, P)-graph, including a long sequence of cubelets that passes through
both R1 and R2.

Now consider points in D− ∩ R1. The claim is that fixpoints x of Fm
t for which x ∈

D− ∩ R1, satisfy t ≤ 1
4 , and that for fixpoints x of Fm

t with x ∈ D− ∩ R2 we have
t ≥ 3

4 . The general idea (in the first case; the second case is similar) is that Fm
1 will

map points z in R1 to points z′ for which at least one component of z′ − z is greater
than 10α (recall α = 2−2n). Hence for t ≥ 1

4 , Fm
t raises the value of this component

(the positive contribution from Fm
1 exceeds the negative contribution from F0) and

prevents it from being a fixpoint. We can see this applies to z at the center of any
cubelet in D− ∩ R1; away from cubelet centers, consider the hyperplane spanned by
cubelet centers of R1. For points z in this hyperplane, we have by construction that
some component of Fm

1 (z)−z is at least 5α, so we need t < 1
4 to have one of these points

a fixpoint of Fm
t .

The homotopy path must pass through this long sequence of regions that require
t > 3

4 or else t < 3
4 . Moreover, the two types of regions alternate, so we establish the

following result.

THEOREM A.1. For continuous functions defined using arithmetic circuits, the se-
quence of fixpoints along the path given by the linear homotopy (1 − t)F0 + tF1 has
exponentially many alternations of the value of t.

We obtain the following corollary.

COROLLARY A.2. For graphical or two-player games, suppose G0 is a game that as-
signs each player a dominating strategy, and G is an arbitrary game. The linear tracing
procedure for the homotopy (1 − t)G0 + tG will, in the worst case, have exponentially
many reversals of t.

The corollary follows since the way we represent Brouwer functions parameterized
by t in terms of games parameterized by t does not change the value of t. Since we
did not change F0, the associated game G0 is the same “dominating strategy” game of
Section 4.
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A.2. Polynomially Small Error

We can use the machinery of Chen et al. [2009] so that when we talk about the hard-
ness of finding an ε-fixpoint, ε is allowed to be inverse polynomial rather than inverse
exponential. This is achieved by using the snake embeddings of Chen et al. [2009].

Snake embeddings. A snake embedding reduces a low-dimensional Brouwer-
mapping function (bmf) having 2n cubelets in each dimension, to a 
(n)-dimensional
bmf having O(1) cubelets in each dimension, in such a way that panchromatic ver-
tices of the high-dimensional bmf efficiently encode panchromatic vertices of the low-
dimensional bmf. The reduction can be decomposed into a sequence of 
(n) iterations,
in which at each iteration, the number of cubelets along some axis is reduced by a
constant factor, and we acquire an additional axis having O(1) cubelets (in Chen et al.
[2009] it is in fact 8 cubelets). (Intuitively, the space is folded a constant number of
times and gains thickness along the new dimension.)

A specific snake embedding, and some notation. We consider a snake embedding
of a three-dimensional bmf fB of the type of Proposition 3.2. Initially the colors are
{0, 1, 2, 3}; let ci denote the new color at the i-th iteration and let s be the number of
iterations required to reduce to 8 the number of cubelets along each axis.

Let n = 4 + cs be the dimension of the new snake embedding.

Definition A.3. Let Kn be the unit n-dimensional cube. Partition Kn into cubelets
Kn

v where v ∈ {0, 1, ..., 7}n represents a cubelet of edge length 1/8. A Brouwer-mapping
circuit maps each such cubelet to one of the colors {0, 1, 2..., n}. Again, a bmf should be
polynomial-time computable, and map exterior cubelets to color i for cubelets whose
i-th coordinate contains the first 0 (when v contains a 0), otherwise color 0. Other types
of bmf that correspond to Definition 3.1 are defined analogously.

The high-dimensional bmf can be computed by a Brouwer-mapping circuit B′ that
is polynomial in the size of B. Let fB′ be the function computed. The challenge is to
implement fB′ using an arithmetic circuit that is polynomial in the size of the circuit
that computes the bmf, and computes a Lipschitz continuous function. The simplicial
decomposition technique of Theorem 3.5 no longer works when we move to nonconstant
dimension, since the number of simplices per cubelet is exponential in the dimension.

Observation 7. After iteration i, we have a (i + 3)-dimensional bmf in which
ci becomes the “background color” corresponding to color 0 in the original three-
dimensional instance.

The cubelets having colors {0, 1, 2, 3, c1, . . . , ci−1} are mapped to cubelets in the
(i + 3)-dimensional instance in such a way as to have the same neighborhood structure,
but with some duplication at the folds of the embedding.

The continuous implementation. Define FB′ : Kn −→ Kn as follows. If x lies at
the center of a cubelet (of length 1/8), letting j = fB′(x), FB′(x) = x + δj, where δj =
(−α, −α, . . . , −α) if j is the background color cs, otherwise δj = (0, 0, . . . , 0, α, 0, 0, . . . , 0)
where the position of the nonzero entry depends on the color j, and is chosen to satisfy
the boundary conditions of a bmf.

If x does not lie at the center of a cubelet, we claim that for each color j, we can
efficiently compute the L∞ distance from x to the closest center of a cubelet having
color j, using a linear arithmetic circuit. Let dj(x) ∈[ 0, 1] be this distance. Let λj(x) =
max(0, ( 1

10 − dj(x))). Then define FB′(x) = x + ∑
j δj.λj(x). In that expression for FB′(x),

δj is a constant vector, so we are not multiplying two computed quantities together
(which is disallowed in a linear arithmetic circuit).
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Why it works. If we are not within distance 1
10 of a panchromatic vertex, then λj = 0

where j is one of the missing colors. However, there is some j′ for which λj′ > 1
16 . The

choice of the vectors δj ensures that |FB′(x) − x| ≥ 1
16 .

Consequently any approximate fixpoint of FB′ is close to a panchromatic vertex of
fB′ . To show that it is close enough to permit that panchromatic vertex to be efficiently
reconstructed from the coordinates of the fixpoint, it is easiest to assume that there
are 24 rather than 8 cubelets along each axis, with the original cubelets having been
divided into 27 smaller ones all having the same color. Then an approximate fixpoint
can be assumed to lie within 1

30 of a panchromatic vertex.
We also need to point out that the high-dimensional bmf fB′ has a path

of {0, 1, 2, 3, c1, . . . , cs−1}-chromatic cubelets which simulates the path of {1, 2, 3}-
chromatic cubelets in the bmf fB. Thus, the one obtained by following the path in fB′ ,
encodes the one obtained by following the corresponding path in fB.

By way of a final remark, it is necessary for us to make a snake embedding of our 3D
graph into higher dimension, rather than (as in Chen et al. [2009]) reduce from the 2D
version of the problem. This is because the PPAD-completeness of 2D SPERNER [Chen
and Deng 2009] is a reduction that alters the structure of the END OF THE LINE graph
being encoded, and so would not (in an obvious way) apply in a reduction from OEOTL.
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