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Abstract. Congestion games are a well-studied model for resource sharing among
uncoordinated selfish players. Usually, one assumes that the resources in a congestion
game do not have any preferences regarding the players that can access them. In typical
load-balancing applications, however, different jobs can have different priorities, and
jobs with higher priorities get, for example, larger shares of processor time. We extend
the classical notion of congestion game and introduce a model in which each resource
can assign priorities to the players, and players with higher priorities can displace
players with lower priorities. Not only does our model extend classical congestion
games, it can also be seen as a model of two-sided markets with ties. Hence it unifies
previous results for these two classical models.

We prove that singleton congestion games with priorities are potential games. Fur-
thermore, we show that every player-specific singleton congestion game with priorities
possesses a pure Nash equilibrium that can be found in polynomial time. Finally, we
extend our results to matroid congestion games, in which the strategy spaces of the
players are matroids over the resources.

1. Introduction

In a congestion game, there is a set of players who compete for a set of resources.
Each player has to select a subset of resources that she wishes to access. The
delay of a resource depends on the number of players accessing that resource,
and every player is interested in accessing a subset of resources with small total
delay. Congestion games are a well-studied model for resource sharing among
uncoordinated selfish agents. They are widely used to model routing [Fabrikant
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et al. 04], network design [Anshelevich et al. 04], load balancing [Even-Dar et
al. 03, Goemans et al. 04], and dynamic frequency assignment for WLANs [Fis-
cher et al. 07]. One appealing property of congestion games is that they are
potential games [Rosenthal 73]. This means that there exists a potential func-
tion assigning a value to every state that decreases on going from one configura-
tion to another by letting one player play a better response. In particular, this
implies that every congestion game possesses a pure Nash equilibrium and that
myopic players eventually reach a Nash equilibrium by iteratively playing better
responses.

One drawback of the standard model of congestion games is that resources do
not have any preferences with respect to the players. In typical load-balancing
applications, however, different jobs can have different priorities, and depending
on the policy, jobs with a low priority are stopped or slowed down when jobs
with higher priorities are present. We introduce congestion games with priorities
to model the scenario in which a job can prevent jobs with lower priorities from
being processed. In our model, each resource can partition the set of players into
classes of different priorities.

As long as a resource is accessed only by players with the same priority, these
players incur a delay depending on the congestion, as in standard congestion
games. But if players with different priorities access a resource, only play-
ers with the highest priority incur a delay, which depends on the number of
players with this priority, and players with lower priorities incur an infinite de-
lay. Intuitively, they are displaced by the players with the highest priority. This
model is applicable if every player controls a stream of jobs rather than only a
single one. In the latter case, it might be more reasonable to assume that jobs
with lower priorities incur a large but finite delay.

Motivated by the application of congestion games to load balancing and dy-
namic frequency assignment for WLANs, we mainly consider congestion games
in which each player has to choose exactly one resource to access, namely one
server on which her job is to be processed. Such singleton congestion games, or
congestion games on parallel links, have been studied extensively in the litera-
ture [Even-Dar et al. 03, Fotakis et al. 02, Gairing et al. 04, Ieong et al. 05]. We
show that singleton congestion games with priorities are potential games, imply-
ing that uncoordinated players who iteratively play better responses eventually
reach a pure Nash equilibrium. If the priorities assigned to the players coincide
for every resource, then we even obtain polynomial-time convergence to a Nash
equilibrium. Player-specific congestion games are introduced in [Milchtaich 96]
as an extended class of congestion games in which every player can have her own
delay function for every resource. Milchtaich shows that player-specific single-
ton congestion games are no longer potential games but that they possess pure
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Nash equilibria that can be computed in polynomial time. We show that also in
player-specific singleton congestion games with priorities, pure Nash equilibria
exist and can be computed efficiently.

Interestingly, our model of player-specific congestion games with priorities
extends not only congestion games but also the well-known model of two-sided
markets. This model was introduced in [Gale and Shapley 62] to model markets
on which different kinds of agents are matched to one another, for example men
and women, students and colleges [Gale and Shapley 62], interns and hospitals
[Roth 84], and firms and workers. Using the same terms as for congestion games,
we say that the goal of a two-sided market is to match players and resources (or
markets). In contrast to congestion games, each resource can be matched to only
one player. A payoff is associated with each player–resource pair, and players
are interested in maximizing their payoffs.

Hence the payoffs implicitly define a preference list with respect to the re-
sources for each player. Additionally, each resource has a preference list of the
players that is independent of the profits. Every player can propose to one
resource, and if several players propose to a resource, only the most-preferred
player is assigned to that resource and receives the corresponding payoff. In this
way, every set of proposals corresponds to a bipartite matching between players
and resources. A matching is stable if no player can be assigned to a resource
from which she receives a higher payoff than from her current resource given the
proposals of the other players. It is shown in [Gale and Shapley 62] that stable
matchings always exist and can be found in polynomial time. Since the seminal
work of Gale and Shapley there has been a significant amount of work in study-
ing two-sided markets. See for example, [Knuth 76], [Gusfield and Irving 89], or
[Roth and Sotomayor 90].

Just as in many situations it is unrealistic to assume that in congestion games
the resources have no preferences with respect to the players, it is often unrealistic
in two-sided markets to assume that the preference lists of the resources are strict.
Our model of player-specific congestion games with priorities can also be seen as
a model of two-sided markets with ties, in which several players can be assigned to
one resource. If different players propose to a resource, only the most-preferred
ones are assigned to it. If the most-preferred player is not unique, several players
share the payoff of the resource. Such two-sided markets correspond to our
model of congestion games with priorities, except that players are now interested
in maximizing their payoffs instead of minimizing their delays, which does not
affect our results. Two-sided markets with ties have been extensively studied in
the literature [Gusfield and Irving 89, Iwama et al. 99].

In these models, ties are somehow broken, i.e., despite ties in the prefer-
ence lists, every resource can be assigned to at most one player. Hence, these
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models differ significantly from our model. One application of our model is
markets into which different companies can invest: as long as the investing
companies are of comparable size, they share the payoff of the market, but
large companies can utilize their market power to eliminate smaller companies
completely from the market. Player-specific congestion games and two-sided
markets are the special cases of our model in which all players have the same
priority or distinct priorities, respectively. In the following, we use the terms
two-sided markets with ties and player-specific congestion games with priorities
interchangeably.

We also consider a special case of correlated two-sided markets with ties in
which the payoffs of the players and the preference lists of the resources are
correlated. In this model, every resource prefers to be assigned to players who
receive the highest payoff when assigned to it. We show that this special case is a
potential game. Variants of correlated two-sided markets without ties have been
studied in the context of content distribution in networks and distributed caching
problems [Fleischer et al. 06, Goemans et al. 04, Mirrokni 05]. These markets
have also been considered for discovering stable geometric configurations with
applications in VLSI design [Hoffman et al. 06]. Our result implies that variants
of the uniform distributed caching game with bandwidth constraints (defined in
[Mirrokni 05, Fleischer et al. 06]) are potential games.

Additionally, we consider congestion games with priorities with strategy spaces
that do not consist of singleton sets only. In particular, we consider player-
specific congestion games with priorities in which the strategy space of each
player is a matroid over the resources. For this case, we show that pure Nash
equilibria exist and can be computed in polynomial time, extending a result for
player-specific congestion games without priorities [Ackermann et al. 09]. These
games can also be seen as many-to-one two-sided markets with ties. Many-to-one
two-sided markets are well studied in the economics literature [Fleiner 03, Kelso
and Crawford 82, Kojima and Ünver 08]. It is shown in [Kelso and Crawford 82]
that if the preference list of every player satisfies a certain substitutability prop-
erty, then stable matchings exist. It is proved in [Kojima and Ünver 08] that
in this case, from every matching there exists a better-response sequence to a
stable matching of polynomial length. This substitutability property is satis-
fied if the strategy spaces of the players are matroids. The crucial difference
between our model of many-to-one markets with ties and the models consid-
ered in the economics literature is that in those models, every player speci-
fies a ranking on the power set of the resources. This ranking is fixed and
does not depend on the current matching. In our model with ties, however,
players do not have fixed rankings but rankings that depend on the current
matching.
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2. Preliminaries

In this section, we define the problems and notation used throughout the paper.

2.1. Congestion Games

A congestion game Γ is a tuple (N ,R, (Σi)i∈N , (dr)r∈R), where N = {1, . . . , n}
denotes the set of players, R the set of resources, Σi ⊆ 2R the strategy space
of player i, and dr : N → N a delay function associated with resource r. By
m we denote |R|, and we denote by S = (S1, . . . , Sn) the state of the game in
which player i plays strategy Si ∈ Σi. For a state S, we define the congestion
nr(S) on resource r by nr(S) = |{i | r ∈ Si}|, that is, nr(S) is the number of
players sharing resource r in state S. Every player i acts selfishly and wishes
to play a strategy Si ∈ Σi that minimizes her individual delay, which is defined
as

∑
r∈Si

dr(nr(S)). We call a state S a pure Nash equilibrium1 if given the
strategies of the other players, no player can decrease her delay by changing her
strategy. It is shown in [Rosenthal 73] that every congestion game possesses
at least one Nash equilibrium by considering the potential function φ : Σ1 ×
· · · × Σn → N with φ(S) =

∑
r∈R

∑nr(S)
i=1 dr(i). A congestion game is called a

singleton if each strategy space Σi consists only of sets with cardinality one. The
current state S of a singleton congestion game can be written as S = (r1, . . . , rn),
meaning that player i currently accesses resource ri.

2.2. Player-Specific Congestion Games

Player-specific congestion games are congestion games in which every player i

has her own delay function di
r : N → N for each resource r. The delay of player

i is then computed with respect to the functions di
r.

2.3. Player-Specific Congestion Games with Priorities

We define player-specific congestion games with priorities to be a generalization
of player-specific congestion games in which each resource r assigns a priority
or rank rkr(i) to every player i. For a state S, let rkr(S) = maxi:r∈Si rkr(i).
We say that player i accesses resource r if r ∈ Si, and we say that player i is
assigned to resource r if r ∈ Si and rkr(i) = rkr(S). We define n∗

r(S) to be the
number of players that are assigned to resource r, that is, the number of players
i with r ∈ Si and rkr(i) = rkr(S). The delay that an assigned player i incurs on
r is di

r(n
∗
r(S)). Players who access a resource r but are not assigned to it incur

an infinite delay on resource r. Congestion games with priorities but without

1In this paper, the term Nash equilibrium always refers to a pure Nash equilibrium.
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player-specific delay functions are defined in the same way, except that instead
of player-specific delay functions di

r there is only one delay function dr for each
resource r. We say that the priorities are consistent if the priorities assigned to
the players by different resources coincide.

2.4. Two-Sided Markets

A two-sided market consists of two disjoint sets N = {1, . . . , n} and R with
|R| = m. We use the terms players and agents to denote elements from N , and
we use the terms resources and markets to denote elements from R. In a two-
sided market, every player can be matched to one resource, and every resource
can be matched to one player. We assume that with every pair (i, r) ∈ N ×R,
a payoff pi,r is associated and that player i receives payoff pi,r if she is matched
to resource r. Hence, the payoffs describe implicitly for each player a preference
list with respect to the resource. Additionally, we assume that every resource
has a strict preference list with respect to the players, which is independent of
the payoffs. Each player i ∈ N can propose to a resource ri ∈ R. Given a state
S = (r1, . . . , rn), each resource r ∈ R is matched to the winner of r, which is
the player whom r ranks highest among all players i ∈ N with r = ri. If i

is the winner of r, she gets a payoff of pi,r. If a player proposes to a resource
won by another player, she receives no payoff at all. We say that S is a stable
matching if none of the players can unilaterally increase her payoff by changing
her proposal given the proposals of the other players. That is, for each player i

who is assigned to a resource ri, each resource r from which she receives a higher
payoff than from ri is matched to a player whom r prefers to i.

2.5. Two-Sided Markets with Ties

We define a two-sided market with ties to be a two-sided market in which the
preference lists of the resources can have ties. Given a vector of proposals S =
(r1, . . . , rn), we say that a player i ∈ N is matched to resource r ∈ R if r = ri

and if there is no player j ∈ N such that r = rj and j is strictly preferred to i

by r. For a resource r, we denote by nr(S) the number of players proposing to
r and by n∗

r(S) the number of players that are matched to r. We assume that
every player i has a nonincreasing payoff function pi

r : N → N for every resource
r. A player i who is matched to resource r receives a payoff of pi

r(n
∗
r(S)). Also

for two-sided markets with ties, we call a state S a stable matching if none of
the players can increase her payoff given the proposals of the other players.
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2.6. Correlated Two-Sided Markets with Ties

In correlated two-sided markets with ties, the preferences of players and resources
are correlated. We assume as well that the preference lists of the resources are
chosen according to the payoffs that are associated with the pairs from N ×R.
That is, a player i ∈ N is preferred to a player j ∈ N by resource r ∈ R if
and only if pi,r > pj,r. Due to this construction, if two players i and j are both
matched to a resource r, then the payoffs pi,r and pj,r must be the same. We
denote this payoff by pr(S), and we assume that it is split among the players
that are matched to r. The payoff that a player receives who is matched to
r is specified by a function qr(pr(S), n∗

r(S)) with qr(pr(S), 1) = pr(S) that is
nonincreasing in the number of players matched to r.

2.7. Player-Specific Matroid Congestion Games with Priorities

In a player-specific matroid congestion game with priorities, each strategy space
Σi must be the set of bases of a matroid over the set of resources. A set system
(R, I) with I ⊆ 2R is said to be a matroid if X ∈ I implies Y ∈ I for all Y ⊆ X

and if for every X, Y ∈ I with |Y | < |X | there exists an x ∈ X with Y ∪{x} ∈ I.
A basis of a matroid (R, I) is an inclusion-maximal set X ∈ I. Every basis of
a matroid has the same cardinality, which is called the rank of the matroid.
For a matroid congestion game Γ, we denote by rk(Γ) the maximal rank of one
of the strategy spaces of the players. Examples of matroid congestion games
are singleton games and games in which the resources are the edges of a graph
and every player has to access a spanning tree. Again, these games can also be
seen as an extension of two-sided markets in which each player can propose to

non player-specific correlated

consistent priorities

congestion games

two-sided markets

player-specific matroid congestion games with priorities

player-specific
congestion games

equilibria
exist

potential
games

polynomial
convergence

Figure 1. For games on the upper level, equilibria can be computed in polynomial
time, games on the mid-level are potential games, and games on the lower level
converge in a polynomial number of rounds. An arrow form A to B indicates
that B is a special case of A.
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a subset of resources instead of only one, so-called many-to-one markets, and in
which the preference lists of the resources can have ties.

Figure 1 shows a summary of our results and the models we consider.

3. Singleton Congestion Games with Priorities

In this section, we consider singleton congestion games with priorities but with-
out player-specific delay functions. For games with consistent priorities, we show
that the better-response dynamics reaches a Nash equilibrium after a polynomial
number of rounds. We use the term “round” to denote a sequence of activations
of players in which every player gets at least once the chance to improve. For
example, our result implies that a polynomial (expected) number of better re-
sponses suffices if players are activated in a round-robin fashion or uniformly at
random. We also prove that games in which different resources can assign dif-
ferent priorities to the players are potential games. We leave open the question
whether they converge in a polynomial number of rounds.

Theorem 3.1. In singleton congestion games with consistent priorities, the better-
response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

Proof. It is proved in [Ieong et al. 05] that in singleton congestion games, every
sequence of better responses terminates in a Nash equilibrium after a polynomial
number of steps. Since the players with the highest priority are not affected by
the other players, the result of Ieong et al. shows that after a polynomial number
of rounds, none of them any longer has an incentive to change her strategy. From
that point on, the strategies of these players are fixed, and we can again apply
the result by Ieong et al. to the players with the second-highest priority. After
a polynomial number of rounds, none of them has any longer an incentive to
change her strategy. After that, the argument can be applied to the players with
the third-highest priority, and so on.

Next we consider congestion games in which different resources can assign
different priorities to the players.

Theorem 3.2. Singleton congestion games with priorities are potential games.

Proof. We set D = (N ∪ {∞}) × N, and for elements x = (x1, x2) ∈ D and
y = (y1, y2) ∈ D we denote by < the lexicographic order on D in which the first
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component is to be minimized and the second component is to be maximized, i.e.,
we define x < y if x1 < y1 or if x1 = y1 and x2 > y2. We construct a potential
function Φ: Σ1×· · ·×Σn → Dn that maps every state S = (r1, . . . , rn) to a vector
of values from D. In state S, every resource r ∈ R contributes nr(S) values to
the vector Φ(S), and Φ(S) is obtained by sorting all values contributed by the
resources in nondecreasing order according to the lexicographic order defined
above. Resource r contributes the values (dr(1), rkr(S)), . . . , (dr(n∗

r(S)), rkr(S))
to the vector Φ(S) and nr(S) − n∗

r(S) times the value (∞, 0). We claim that if
state S′ is obtained from S by letting one player play a better response, then
Φ(S′) is lexicographically smaller than Φ(S), i.e., there is k with Φj(S) = Φj(S′)
for all j < k and Φk(S′) < Φk(S).

Assume that in state S, player i plays a better response by changing her al-
location from resource ri to resource r′i. We compare the two vectors Φ(S) and
Φ(S′), and we show that the smallest element added to the potential vector is
smaller than the smallest element removed from the potential vector, showing
that the potential decreases lexicographically. Due to the strategy change of
player i, either the value (dri(n∗

ri
(S)), rkri(S)) or the value (∞, 0) is replaced

by the value (dr′
i
(n∗

r′
i
(S′)), rkr′

i
(S′)). Since player i plays a better response,

dr′
i
(n∗

r′
i
(S′)) < dri(n∗

ri
(S)) or dr′

i
(n∗

r′
i
(S′)) < ∞, respectively, and hence the term

added to the potential is smaller than the term removed from the potential. In
the following we show that all values that are contained in Φ(S) but not in Φ(S′)
are larger than (dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)). Clearly, only terms for the resources ri

and r′i change, and we can restrict our considerations to these two resources.

Let us consider resource ri first. If the rank of ri does not decrease by the
strategy change of player i or if no player accesses resource ri in state S′, then
only the term (dri(n∗

ri
(S)), rkri(S)) or (∞, 0) is no longer contained in the vector

Φ(S′). All other terms contributed by resource ri do not change. If the rank
of resource ri is decreased by the strategy change of player i, then additionally
some terms (∞, 0) in the potential are replaced by other terms. Obviously, the
removed terms (∞, 0) are larger than (dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)).

Now we consider resource r′i. If the rank of r′i does not increase by the strategy
change of player i or if no player accesses r′i in state S, then only the term
(dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)) is added to the potential. All other terms contributed

by r′i do not change. If the rank of r′i is increased by the strategy change of
player i, then additionally the terms (dr′

i
(1), rkr′

i
(S)), . . . , (dr′

i
(n∗

r′
i
(S)), rkr′

i
(S))

are replaced by n∗
r′

i
(S) terms (∞, 0). In this case, n∗

r′
i
(S′) = 1, and because

rkr′
i
(S′) > rkr′

i
(S), the smallest removed term, (dr′

i
(1), rkr′

i
(S)), is larger than

(dr′
i
(1), rkr′

i
(S′)) = (dr′

i
(n∗

r′
i
(S′)), rkr′

i
(S′)).
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4. Player-Specific Singleton Congestion Games with Priorities

In this section we consider singleton congestion games with priorities and player-
specific delay functions, and we show that these games always possess Nash
equilibria. Our proof also yields an efficient algorithm for finding an equilibrium.

Theorem 4.1. Every player-specific singleton congestion game with priorities pos-
sesses a pure Nash equilibrium that can be computed in polynomial time with
O(m · n3) strategy changes.

Proof. In order to compute an equilibrium, we compute a sequence of states
S0, . . . , Sk such that S0 is the state in which no player accesses a resource and
Sk is a state in which every player accesses a resource. Keep in mind that in
Section 2.3, we distinguish between accessing a resource and being assigned to
it. Our construction ensures the invariant that in each state Sa in this sequence,
every player who accesses a resource has no incentive to change her strategy.
Clearly, this invariant is true for S0, and it implies that Sk is a pure Nash
equilibrium.

In state Sa we pick an arbitrary player i who is accessing no resource and we
let her play her best response. If in state Sa there is no resource to which i can
be assigned, then i can access an arbitrary resource without affecting the players
who are already accessing a resource and hence without affecting the invariant.
It remains to consider the case that after her best response, player i is assigned
to a resource r. If we leave the strategies of the other players unchanged, then
the invariant may no longer be true after the strategy change of player i. The
invariant can, however, be false only for players who are assigned to resource r

in state Sa. We distinguish two cases in order to describe how the strategies of
these players are modified in order to maintain the invariant.

First we consider the case that the rank of resource r does not change by the
strategy change of player i. If there is a player j who is assigned to resource r

in Sa and who can improve her strategy after i is also assigned to r, then we
change the strategy of j to the empty set, i.e., in state Sa+1 player j belongs
to the set of players who do not access any resource. Besides this, no further
modifications of the strategies are necessary because no other player is affected
by the replacement of j by i on resource r. In the case that the rank of resource
r increases by the strategy change of player i, all players who are assigned to
resource r in state Sa are set to their empty strategy in Sa+1.

It remains only to show that the described process terminates after a polyno-
mial number of strategy changes in a stable state. We prove this by a potential
function that is the lexicographic order of two components. The most important
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component is the sum of the ranks of the resources, i.e.,
∑

r∈R rkr(Sa), which
is to be maximized. Observe that this sum does not decrease in any of the two
aforementioned cases, and that it increases strictly in the second case. Thus
we need to show that after a polynomial number of consecutive occurrences of
the first case, the second case must occur. Therefore, we need a second and
less-important component in our potential function.

In order to define this component, we associate with every pair (i, r) ∈ N ×R
for which i is assigned to r in state Sa a tolerance tola(i, r) that describes how
many players (including i) can be assigned to r without changing the property
that r is an optimal strategy for i, i.e.,

min{max{b | in Sa, r is best response for i if i shares r with b − 1 players}, n} .

The second component of the potential function is the sum of the tolerances
of the assigned pairs in Sa, which is to be maximized. We denote the set of
assignments in state Sa by Ea ⊆ N ×R and define the potential function as

Φ(Sa) =
( ∑

r∈R
rkr(Sa),

∑
(i,r)∈Ea

tola(i, r)
)

.

In every occurrence of the first case, the second component increases by at
least 1. Since the values of the components are bounded from above by m ·n and
n2 and bounded below away from 0, the potential function implies that there
can be at most m · n3 strategy changes before an equilibrium is reached. This
does not include the last strategy change of players who are not assigned to any
resource in the final state. In their last strategy change, these players access an
arbitrary resource, which does not affect the potential. However, there are fewer
than n such strategy changes.

Let us remark that the potential function does not imply that the considered
games are potential games, because it increases only if the strategy changes are
made according to the above-described policy.

5. Correlated Two-Sided Markets with Ties

In this section we analyze the better-response dynamics for correlated two-sided
markets with ties, and we show that these games are potential games.

Theorem 5.1. Correlated two-sided markets with ties are potential games.

Proof. We define a potential function Φ: Σ1×· · ·×Σn → N
n that is similar to the

one used in the proof of Theorem 3.2, and we show that it increases strictly with
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every better response that is played. Again each resource r contributes nr(S)
values to the potential, namely the values qr(pr(S), 1), . . . , qr(pr(S), n∗

r(S)) and
nr(S) − n∗

r(S) times the value 0. In the potential vector Φ(S), all these values
are sorted in nonincreasing order. A state S′ has a higher potential than a state
S if Φ(S′) is lexicographically larger than Φ(S), i.e., if there exists an index k

such that Φj(S) = Φj(S′) for all j < k and Φk(S) < Φk(S′).
Let S denote the current state and assume that there exists one player i ∈ N

who plays a better response, leading to state S′. We show that Φ(S′) is lex-
icographically larger than Φ(S). Assume that i changes her proposal from ri

to r′i. Since i plays a better response, she must be matched to r′i in state S′.
That is, the value qr′

i
(pi,r′

i
, n∗

r′
i
(S′)) is added to the potential. We show that only

smaller values are removed from the potential, implying that the potential must
lexicographically increase. If i is matched to ri in state S, then only the value
qri(pri(S), n∗

ri
(S)) is removed from the vector, and perhaps, if n∗

ri
(S) = 1, some

0 values are replaced by larger values. Since player i plays a better response,
qri(pri(S), n∗

ri
(S)) < qr′

i
(pi,r′

i
, n∗

r′
i
(S′)). If n∗

r′
i
(S′) = 1 and there are players as-

signed to r′i in state S, then also the values qr′
i
(pr′

i
(S), 1), . . . , qr′

i
(pr′

i
(S), n∗

r′
i
(S))

are removed from the potential vector. In this case, player i displaces the
previously assigned players from resource r′i, which implies qr′

i
(pi,r′

i
, n∗

r′
i
(S′)) =

qr′
i
(pi,r′

i
, 1) > qr′

i
(pr′

i
(S), 1), as desired.

6. Extensions to Matroid Strategy Spaces

In this section we study player-specific congestion games with priorities in which
each strategy space Σi consists of the bases of a matroid over the resources. For
this setting, we generalize the results that we obtained for the singleton case.

Theorem 6.1. In matroid congestion games with consistent priorities, the best-
response dynamics reaches a Nash equilibrium after a polynomial number of
rounds.

For matroid congestion games, it is known that every sequence of best re-
sponses reaches a Nash equilibrium after a polynomial number of steps [Acker-
mann et al. 08]. Using this result yields the theorem analogously to the proof of
Theorem 3.1.

Given a state S of a matroid congestion game with priorities, we call a better
response of a player i ∈ N from Si to S′

i lazy if it can be decomposed into a
sequence of strategies Si = S0

i , S1
i , . . . , Sk

i = S′
i such that |Sj+1

i \Sj
i | = 1 and the

delay of player i in state Sj+1
i is strictly smaller than her delay in state Sj

i for
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all j ∈ {0, . . . , k − 1}. That is, a lazy better response can be decomposed into a
sequence of exchanges of single resources such that each step strictly decreases
the delay of the corresponding player. In [Ackermann et al. 09], it is observed
that for matroid strategy spaces, there always exists a best response that is lazy.
In particular, the best response that exchanges the least number of resources is
lazy, and in singleton games every better response is lazy.

Theorem 6.2. Matroid congestion games with priorities are potential games with
respect to lazy better responses.

Since lazy better responses can be decomposed into exchanges of single re-
sources, the same potential function as in the proof of Theorem 3.2 also works
for the matroid case. The restriction to lazy better responses in Theorem 6.2 is
necessary, as shown by the following result.

Theorem 6.3. The best-response dynamics in matroid congestion games with priori-
ties can cycle.

Proof. Let N = {1, 2} denote the players and let R = {a, b, c, d} denote the
resources. The set of strategies of player 1 is

Σ1 = {{a}, {d}},
and the set of strategies of player 2 is

Σ2 = {{a, b}, {b, c}, {c, d}, {a, d}} .

Resource a assigns a higher priority to player 2, and resource d assigns the same
priority to both players. The delay functions are chosen as follows:

da(1) = 1, db(1) = 3, dc(1) = 1, dd(1) = 2, dd(2) = 4 .

Given these delays, the following sequence of states is a cycle in the best-response
dynamics:

({d}, {a, d}) → ({d}, {b, c}) → ({a}, {b, c}) → ({a}, {a, d}) → ({d}, {a, d}) .

This completes the proof.

Similar arguments as for Theorem 4.1 yield the following generalization.

Theorem 6.4. Every player-specific matroid congestion game Γ with priorities pos-
sesses a pure Nash equilibrium that can be computed in polynomial time with
O(m · n3 · rk(Γ)) strategy changes.
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Proof. For i ∈ N , we denote by Ii the set {X | X ⊆ Y ∈ Σi}, and we assume
that the set system Mi = (R, Ii) is a matroid. We use the same arguments as
in the proof of Theorem 4.1, that is, we compute a sequence of states S0, . . . , Sk

such that S0 is the state in which every player accesses the empty set and Sk is
a Nash equilibrium. In contrast to the definition of matroid congestion games,
where each player i is required to access a basis from Σi, we also allow partial
strategies from Ii in states Sa with a < k. To be precise, in states Sa with
a < k it can happen that the set of resources that a player accesses is a strict
subset of a basis. For a player i ∈ N , let Ra

i ⊆ R denote the set of resources to
which she can be assigned in state Sa, i.e., Ra

i contains exactly those resources
that are in state Sa not assigned to a player that they strictly prefer to i. Let
Ma

i = (Ra
i , Σa

i ) denote the matroid that is obtained from Mi by deleting all
resources in R \Ra

i . The following invariant will be true for all states Sa.

Invariant 6.5. For every player i ∈ N , there exists a basis Ba
i ∈ Σa

i of the matroid
Ma

i with Sa
i ⊆ Ba

i that has minimum delay given the partial strategies of the
other players in Sa.

That is, if the other players do not change their strategies, no player is forced
to leave resources that she currently accesses in order to obtain a basis with
minimum delay. If the basis Ba

i of the matroid Ma
i is not a basis of the matroid

Mi, then player i has no strategy with finite delay given the partial strategies
of the other players in Sa.

Now we describe how state Sa+1 is obtained from state Sa. If in state Sa

every player i accesses a basis of the matroid Ma
i , then due to the invariant, an

equilibrium Sa+1 is obtained from Sa by letting each player i access an arbitrary
basis Ba+1

i of Mi with Sa
i ⊆ Ba+1

i . Assume that there exists a player i ∈ N who
is not accessing a basis of Ma

i . In order to obtain Sa+1, we choose an arbitrary
resource r ∈ Ba

i \ Sa
i and let player i access r, i.e., we set Sa+1

i = Sa
i ∪ {r}.

Obviously, after this strategy change, player i is assigned to resource r, since
r ∈ Ra

i . If we leave all other strategies unchanged, then the invariant may no
longer be true.

We distinguish three cases in order to determine the strategies of the other
players in state Sa+1:

1. If no player accesses r in Sa, then Sa+1
j = Sa

j for all j ∈ N \ {i}.
2. If i is ranked higher in r’s preference list than the players assigned to r in

Sa, then resource r is removed from the strategies of all players assigned to
r in Sa, i.e., for all these players j we set Sa+1

j = Sa
j \ {r}. The strategies

of all other players remain as in Sa.
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3. If i is tied in r’s preference list with the players assigned to r in state
Sa, then we check whether the invariant remains true if additionally i is
assigned to r. If this is not the case, then we remove one player k from
r for whom the invariant becomes false, i.e., we set Sa+1

k = Sa
k \ {r} and

Sa+1
j = Sa

j for all j ∈ N \ {i, k}.
First we show that the invariant remains true in all three cases. This is based

on the following property of matroids, which is proven in [Ackermann et al. 09].

Lemma 6.6. Let (R, I) be a matroid with weights w : R → N and let B be a basis of
minimum weight. If the weight of a single resource r ∈ B is increased such that
B is no longer of minimum weight, then in order to obtain a basis of minimum
weight, it suffices to exchange r with a resource r′ ∈ R of minimum weight such
that B ∪ {r′} \ {r} is a basis.

Consider the first case and assume that the invariant is true in state Sa. Since
no player is assigned to resource r in state Sa, there is no player whose current
delay is increased by assigning i to r, but there can be players j ∈ N with
r ∈ Ba

j . For these players, either Ba
j is still a basis of minimum delay or, due to

Lemma 6.6, they can choose a basis Ba+1
j with Sa

j ⊆ Ba+1
j of minimum delay

given that i is assigned to r. Since players j ∈ N with r /∈ Ba
j are not affected

by the strategy change of player i, the invariant is also true in state Sa+1. In the
second case, the invariant remains true for all players who are assigned to r in
state Sa, because they just need to exchange r with another resource to obtain
a basis with minimum delay again due to Lemma 6.6.

The invariant remains true for all other players j with r ∈ Ba
j due to Lemma 6.6,

and again players j ∈ N with r /∈ Ba
j are not affected by the strategy change

of player i. In the third case, for all players j ∈ N \ {i, k} the effects of the
strategy changes of i and k cancel each other out, and hence these players are
not affected by the strategy changes of i and k. The invariant remains true for
k due to Lemma 6.6.

It remains only to show that the described process terminates after a poly-
nomial number of strategy changes in an equilibrium. This follows by the same
potential function as in the proof of Theorem 4.1. The upper bound on the
second component of the potential function increases by a factor of rk(Γ), which
accounts for the increased number of strategy changes.

The previous proof relies on the fact that players who cannot be assigned to
a complete basis do not leave the game completely but still access a basis. In
fact, it is important only that every player i accesses a basis of the matroid
obtained from Mi by deleting the resources to which she cannot be assigned. If
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we redefine the model that players who cannot be assigned to a complete basis
do not access any resource, then in general, Nash equilibria do not exist, as the
following example shows.

Consider a game with three resources R = {r1, r2, r3} and two players who
want to access two resources each, i.e., their strategy spaces are the bases of a
uniform matroid of rank 2. Assume that the resources r1 and r2 prefer player
1 to player 2 and the players are tied in the preference list of r3. If the player-
specific delay functions are defined as follows, then no pure Nash equilibrium
exists:

r1 r2 r3

congestion 1 2 1 2 1 2

player 1 1 - 2 - 1 3
player 2 1 - 1 - 1 2

A state in which the first player accesses the resources r1 and r2 cannot be a
pure Nash equilibrium, because in such a state the second player cannot be as-
signed to a basis, and hence the resource r3 would be empty. In that case, the first
player prefers {r1, r3} to her current strategy {r1, r2}. A state in which the
first player accesses the resources ri and r3 for either i = 1 or i = 2 cannot be a
Nash equilibrium either, because in such a state, the second player would access
the resources r3−i and r3, which in turn implies that the first player would prefer
{r1, r2} to her current choice {r3−i, r3}.

Next, we consider correlated two-sided matroid markets with ties. Since lazy
better responses can be decomposed into exchanges of single resources, the poten-
tial function defined in the proof of Theorem 5.1 also works for matroid strategy
sets if players play only lazy better responses.

Theorem 6.7. Correlated two-sided matroid markets with ties are potential games
with respect to lazy better responses.

The restriction in Theorem 6.7 to lazy better responses is necessary.

Theorem 6.8. The best-response dynamics in correlated two-sided matroid markets
with ties can cycle.

Proof. We choose N , R, and the strategy sets as in Theorem 6.3. The payoffs
associated with the possible pairs in N ×R are defined as follows:

p1,a = 5, p1,d = 3, p2,a = 7, p2,b = 1, p2,c = 7, p2,d = 2 .
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The cycle in the best-response dynamics in Remark 6.3 is also a cycle in this
example.

7. Conclusions and Open Problems

We have considered a model of player-specific congestion games with priorities.
We have shown that pure Nash equilibria exist in these games and that the
special cases of non-player-specific and correlated games are potential games.
We leave open the question whether the better-response dynamics reaches a
Nash equilibrium after a polynomial number of rounds in these special cases.
This has been shown only for the special case of non-player-specific congestion
games with consistent priorities.

In our model, players displace other players with lower priorities. As we men-
tioned in the introduction, this is reasonable if players control streams of jobs
rather than single ones. It would be interesting to find and analyze different mod-
els in which jobs are only slowed down by jobs with higher priorities, i.e., models
in which they incur a large but finite delay.
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Combinatoires. Montreal: Les Presses de l’Université de Montréal, 1976.
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